Exemple #1
0
    def __new__(cls, variables, expr):
        if not is_Tuple(variables) or len(variables) != 3:
            raise TypeError('variables is not a 3-Tuple: %s'%variables)
        if not is_Tuple(expr) or len(expr) != 3:
            raise TypeError('expr is not a 3-Tuple: %s'%expr)

        return Functor.__new__(cls, variables, expr)
Exemple #2
0
    def transform(self, st):
        """
        >>> from sympy import *
        >>> from symplus.strplus import init_mprinting
        >>> init_mprinting()
        >>> m = translation([2,3,5])
        >>> m.transform((1,2,3))
        (3, 5, 8)
        >>> s = shearing(2*j,sqrt(3)*i)
        >>> m.transform(s)
        AffineTransformation([1 0 0; 2*sqrt(3) 1 0; 0 0 1], [0 -4*sqrt(3) 0]')
        >>> import symplus.setplus
        >>> x, y, z = symbols('x,y,z')
        >>> m.transform(AbstractSet((x,y,z), x**2+y**2+z**2<1))
        {(x + 2, y + 3, z + 5) | x**2 + y**2 + z**2 < 1}
        """
        if is_Tuple(st) and len(st) == 3:
            return self(*st)

        elif is_Function(st):
            return compose(self, st, inverse(self))

        elif isinstance(st, Set):
            return Image(self, st)

        else:
            raise ValueError
Exemple #3
0
 def _contains(self, other):
     if not is_Tuple(other) or len(other) != 3:
         return false
     v = Mat(other)
     if self.closed:
         return dot(v, self.direction) >= self.offset
     else:
         return dot(v, self.direction) > self.offset
Exemple #4
0
 def _contains(self, other):
     if not is_Tuple(other) or len(other) != 3:
         return false
     v = Mat(other)
     p = v - self.center
     if self.closed:
         return norm(cross(p, self.direction)) <= self.slope*dot(p, self.direction)
     else:
         return norm(cross(p, self.direction)) < self.slope*dot(p, self.direction)
Exemple #5
0
 def _contains(self, other):
     if not is_Tuple(other) or len(other) != 3:
         return false
     v = Mat(other)
     p = v - self.center
     if self.closed:
         return norm(cross(p, self.direction))**2 <= self.radius**2
     else:
         return norm(cross(p, self.direction))**2 < self.radius**2
Exemple #6
0
    def _contains(self, other):
        if not is_Tuple(other) or len(other) != 3:
            return false
        v = Mat(other)

        if self.closed:
            return norm(v-self.center)**2 <= self.radius**2
        else:
            return norm(v-self.center)**2 < self.radius**2
def rename_variables_in(variables, varspace):
    if not is_Tuple(variables):
        return rename_variables_in((variables,), varspace)[0]
    names = [v.name for v in variables]
    namespace = {v.name for v in varspace}
    for i in range(len(names)):
        while names[i] in namespace:
            names[i] += '_'
        namespace.add(names[i])
    return list(Symbol(n, **v.assumptions0)
                if isinstance(v, Symbol) else MatrixSymbol(n, v.rows, v.cols)
                for n, v in zip(names, variables))
Exemple #8
0
 def _contains(self, other):
     return is_Tuple(other) and len(other) == 3
Exemple #9
0
 def _contains(self, other):
     if not is_Tuple(other) or len(other) != 3:
         return false
     v = Mat(other)
     p = v - self.center
     return self.func(dot(p, self.direction), norm(cross(p, self.direction)))