Exemple #1
0
def test_reflect_entity_overrides():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    b = Symbol('b')
    m = Symbol('m')
    l = Line((0, b), slope=m)
    p = Point(x, y)
    r = p.reflect(l)
    c = Circle((x, y), 3)
    cr = c.reflect(l)
    assert cr == Circle(r, -3)
    assert c.area == -cr.area

    pent = RegularPolygon((1, 2), 1, 5)
    l = Line(pent.vertices[1],
        slope=Rational(random() - .5, random() - .5))
    rpent = pent.reflect(l)
    assert rpent.center == pent.center.reflect(l)
    rvert = [i.reflect(l) for i in pent.vertices]
    for v in rpent.vertices:
        for i in range(len(rvert)):
            ri = rvert[i]
            if ri.equals(v):
                rvert.remove(ri)
                break
    assert not rvert
    assert pent.area.equals(-rpent.area)
Exemple #2
0
def test_reflect():
    b = Symbol('b')
    m = Symbol('m')
    l = Line((0, b), slope=m)
    p = Point(x, y)
    r = p.reflect(l)
    dp = l.perpendicular_segment(p).length
    dr = l.perpendicular_segment(r).length
    assert test_numerically(dp, dr)
    t = Triangle((0, 0), (1, 0), (2, 3))
    assert t.area == -t.reflect(l).area
    e = Ellipse((1, 0), 1, 2)
    assert e.area == -e.reflect(Line((1, 0), slope=0)).area
    assert e.area == -e.reflect(Line((1, 0), slope=oo)).area
    raises(NotImplementedError, lambda: e.reflect(Line((1,0), slope=m)))
    # test entity overrides
    c = Circle((x, y), 3)
    cr = c.reflect(l)
    assert cr == Circle(r, -3)
    assert c.area == -cr.area
    pent = RegularPolygon((1, 2), 1, 5)
    l = Line((0, pi), slope=sqrt(2))
    rpent = pent.reflect(l)
    poly_pent = Polygon(*pent.vertices)
    assert rpent.center == pent.center.reflect(l)
    assert str([w.n(3) for w in rpent.vertices]) == (
        '[Point(-0.586, 4.27), Point(-1.69, 4.66), '
        'Point(-2.41, 3.73), Point(-1.74, 2.76), '
        'Point(-0.616, 3.10)]')
    assert pent.area.equals(-rpent.area)
Exemple #3
0
def main():

    O = Point(0, 0)
    p0 = Point(0, 10.1)
    p1 = Point(1.4, -9.6)
    m = p0.midpoint(p1)
    X = Line(O, Point(10, 0))
    Y = Line(O, Point(0, 10))

    ellipse = Ellipse(Point(0, 0), 5 , 10)
    sortie = Segment(Point(-0.01, 10), Point(0.01, 10))

    ray = Ray(m, p1)

    reflections = 0
    
    while not sortie.intersection(ray) and reflections < 5:
        targets = ellipse.intersection(ray)
        print " Targets: ", targets
        origin = next_origin(ray.p1, targets)
        tangents = ellipse.tangent_lines(origin)
        if len(tangents) > 1:
            print("Error computing intersection")
            break
        tangent = tangents.pop()
        alpha = next_angle(ray, tangent, (X, Y))
        reflections += 1
        ray = Ray(origin, angle=alpha)
        print "Reflections :", reflections
Exemple #4
0
def test_transform():
    p = Point(1, 1)
    assert p.transform(rotate(pi/2)) == Point(-1, 1)
    assert p.transform(scale(3, 2)) == Point(3, 2)
    assert p.transform(translate(1, 2)) == Point(2, 3)
    assert Point(1, 1).scale(2, 3, (4, 5)) == \
        Point(-2, -7)
    assert Point(1, 1).translate(4, 5) == \
        Point(5, 6)
Exemple #5
0
def test_is_similar():
    p1 = Point(2000, 2000)
    p2 = p1.scale(2, 2)

    r1 = Ray3D(Point3D(1, 1, 1), Point3D(1, 0, 0))
    r2 = Ray(Point(0, 0), Point(0, 1))

    s1 = Segment(Point(0, 0), p1)

    assert s1.is_similar(Segment(p1, p2))
    assert s1.is_similar(r2) is False
    assert r1.is_similar(Line3D(Point3D(1, 1, 1), Point3D(1, 0, 0))) is True
    assert r1.is_similar(Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))) is False
Exemple #6
0
def test_subs():
    p = Point(x, 2)
    q = Point(1, 1)
    r = Point(3, 4)
    for o in [p,
              Segment(p, q),
              Ray(p, q),
              Line(p, q),
              Triangle(p, q, r),
              RegularPolygon(p, 3, 6),
              Polygon(p, q, r, Point(5,4)),
              Circle(p, 3),
              Ellipse(p, 3, 4)]:
        assert 'y' in str(o.subs(x, y))
    assert p.subs({x: 1}) == Point(1, 2)
Exemple #7
0
def test_subs():
    p = Point(x, 2)
    q = Point(1, 1)
    r = Point(3, 4)
    for o in [p,
              Segment(p, q),
              Ray(p, q),
              Line(p, q),
              Triangle(p, q, r),
              RegularPolygon(p, 3, 6),
              Polygon(p, q, r, Point(5,4)),
              Circle(p, 3),
              Ellipse(p, 3, 4)]:
        assert 'y' in str(o.subs(x, y))
    assert p.subs({x: 1}) == Point(1, 2)
    assert Point(1, 2).subs(Point(1, 2), Point(3, 4)) == Point(3, 4)
    assert Point(1, 2).subs((1,2), Point(3,4)) == Point(3, 4)
    assert Point(1, 2).subs(Point(1,2), Point(3,4)) == Point(3, 4)
    assert Point(1, 2).subs(set([(1, 2)])) == Point(2, 2)
    raises(ValueError, lambda: Point(1, 2).subs(1))
    raises(ValueError, lambda: Point(1, 1).subs((Point(1, 1), Point(1, 2)), 1, 2))
Exemple #8
0
def test_reflect():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    b = Symbol('b')
    m = Symbol('m')
    l = Line((0, b), slope=m)
    p = Point(x, y)
    r = p.reflect(l)
    dp = l.perpendicular_segment(p).length
    dr = l.perpendicular_segment(r).length

    assert verify_numerically(dp, dr)
    t = Triangle((0, 0), (1, 0), (2, 3))
    assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=oo)) \
        == Triangle(Point(5, 0), Point(4, 0), Point(4, 2))
    assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=oo)) \
        == Triangle(Point(-1, 0), Point(-2, 0), Point(-2, 2))
    assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=0)) \
        == Triangle(Point(1, 6), Point(2, 6), Point(2, 4))
    assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=0)) \
        == Triangle(Point(1, 0), Point(2, 0), Point(2, -2))
Exemple #9
0
def test_reflect_entity_overrides():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    b = Symbol('b')
    m = Symbol('m')
    l = Line((0, b), slope=m)
    p = Point(x, y)
    r = p.reflect(l)
    c = Circle((x, y), 3)
    cr = c.reflect(l)
    assert cr == Circle(r, -3)
    assert c.area == -cr.area

    pent = RegularPolygon((1, 2), 1, 5)
    l = Line((0, pi), slope=sqrt(2))
    rpent = pent.reflect(l)
    assert rpent.center == pent.center.reflect(l)
    assert str([w.n(3) for w in rpent.vertices]) == (
        '[Point2D(-0.586, 4.27), Point2D(-1.69, 4.66), '
        'Point2D(-2.41, 3.73), Point2D(-1.74, 2.76), '
        'Point2D(-0.616, 3.10)]')
    assert pent.area.equals(-rpent.area)
Exemple #10
0
def test__normalize_dimension():
    assert Point._normalize_dimension(Point(1, 2), Point(3, 4)) == [
        Point(1, 2), Point(3, 4)]
    assert Point._normalize_dimension(
        Point(1, 2), Point(3, 4, 0), on_morph='ignore') == [
        Point(1, 2, 0), Point(3, 4, 0)]
Exemple #11
0
def test_geometry_transforms():
    from sympy import Tuple
    c = Curve((x, x**2), (x, 0, 1))
    pts = [Point(0, 0), Point(S(1) / 2, S(1) / 4), Point(1, 1)]
    cout = Curve((2 * x - 4, 3 * x**2 - 10), (x, 0, 1))
    pts_out = [Point(-4, -10), Point(-3, -S(37) / 4), Point(-2, -7)]
    assert c.scale(2, 3, (4, 5)) == cout
    assert [c.subs(x, xi / 2) for xi in Tuple(0, 1, 2)] == pts
    assert [cout.subs(x, xi / 2) for xi in Tuple(0, 1, 2)] == pts_out
    assert Triangle(*pts).scale(2, 3, (4, 5)) == Triangle(*pts_out)

    assert Ellipse((0, 0), 2, 3).scale(2, 3, (4, 5)) == \
        Ellipse(Point(-4, -10), 4, 9)
    assert Circle((0, 0), 2).scale(2, 3, (4, 5)) == \
        Ellipse(Point(-4, -10), 4, 6)
    assert Ellipse((0, 0), 2, 3).scale(3, 3, (4, 5)) == \
        Ellipse(Point(-8, -10), 6, 9)
    assert Circle((0, 0), 2).scale(3, 3, (4, 5)) == \
        Circle(Point(-8, -10), 6)
    assert Circle(Point(-8, -10), 6).scale(S(1)/3, S(1)/3, (4, 5)) == \
        Circle((0, 0), 2)
    assert Curve((x + y, 3*x), (x, 0, 1)).subs(y, S.Half) == \
        Curve((x + S(1)/2, 3*x), (x, 0, 1))
    assert Curve((x, 3*x), (x, 0, 1)).translate(4, 5) == \
        Curve((x + 4, 3*x + 5), (x, 0, 1))
    assert Circle((0, 0), 2).translate(4, 5) == \
        Circle((4, 5), 2)
    assert Circle((0, 0), 2).scale(3, 3) == \
        Circle((0, 0), 6)
    assert Point(1, 1).scale(2, 3, (4, 5)) == \
        Point(-2, -7)
    assert Point(1, 1).translate(4, 5) == \
        Point(5, 6)
    assert scale(1, 2, (3, 4)).tolist() == \
        [[1, 0, 0], [0, 2, 0], [0, -4, 1]]
    assert RegularPolygon((0, 0), 1, 4).scale(2, 3, (4, 5)) == \
        Polygon(Point(-2, -10), Point(-4, -7), Point(-6, -10), Point(-4, -13))
Exemple #12
0
def test_line_geom():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    x1 = Symbol('x1', real=True)
    y1 = Symbol('y1', real=True)
    half = Rational(1, 2)
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x1)
    p4 = Point(y1, y1)
    p5 = Point(x1, 1 + x1)
    p6 = Point(1, 0)
    p7 = Point(0, 1)
    p8 = Point(2, 0)
    p9 = Point(2, 1)

    l1 = Line(p1, p2)
    l2 = Line(p3, p4)
    l3 = Line(p3, p5)
    l4 = Line(p1, p6)
    l5 = Line(p1, p7)
    l6 = Line(p8, p9)
    l7 = Line(p2, p9)
    raises(ValueError, lambda: Line(Point(0, 0), Point(0, 0)))

    # Basic stuff
    assert Line((1, 1), slope=1) == Line((1, 1), (2, 2))
    assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2))
    assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2))
    raises(TypeError, lambda: Line((1, 1), 1))
    assert Line(p1, p2) == Line(p1, p2)
    assert Line(p1, p2) != Line(p2, p1)
    assert l1 != l2
    assert l1 != l3
    assert l1.slope == 1
    assert l1.length == oo
    assert l3.slope == oo
    assert l4.slope == 0
    assert l4.coefficients == (0, 1, 0)
    assert l4.equation(x=x, y=y) == y
    assert l5.slope == oo
    assert l5.coefficients == (1, 0, 0)
    assert l5.equation() == x
    assert l6.equation() == x - 2
    assert l7.equation() == y - 1
    assert p1 in l1  # is p1 on the line l1?
    assert p1 not in l3
    assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0)

    assert simplify(l1.equation()) in (x - y, y - x)
    assert simplify(l3.equation()) in (x - x1, x1 - x)

    assert Line(p1, p2).scale(2, 1) == Line(p1, p9)

    assert l2.arbitrary_point() in l2
    for ind in range(0, 5):
        assert l3.random_point() in l3

    # Orthogonality
    p1_1 = Point(-x1, x1)
    l1_1 = Line(p1, p1_1)
    assert l1.perpendicular_line(p1.args).equals( Line(Point(0, 0), Point(1, -1)) )
    assert l1.perpendicular_line(p1).equals( Line(Point(0, 0), Point(1, -1)) )
    assert Line.is_perpendicular(l1, l1_1)
    assert Line.is_perpendicular(l1, l2) is False
    p = l1.random_point()
    assert l1.perpendicular_segment(p) == p

    # Parallelity
    l2_1 = Line(p3, p5)
    assert l2.parallel_line(p1_1).equals( Line(Point(-x1, x1), Point(-y1, 2*x1 - y1)) )
    assert l2_1.parallel_line(p1.args).equals( Line(Point(0, 0), Point(0, -1)) )
    assert l2_1.parallel_line(p1).equals( Line(Point(0, 0), Point(0, -1)) )
    assert Line.is_parallel(l1, l2)
    assert Line.is_parallel(l2, l3) is False
    assert Line.is_parallel(l2, l2.parallel_line(p1_1))
    assert Line.is_parallel(l2_1, l2_1.parallel_line(p1))

    # Intersection
    assert intersection(l1, p1) == [p1]
    assert intersection(l1, p5) == []
    assert intersection(l1, l2) in [[l1], [l2]]
    assert intersection(l1, l1.parallel_line(p5)) == []

    # Concurrency
    l3_1 = Line(Point(5, x1), Point(-Rational(3, 5), x1))
    assert Line.are_concurrent(l1) is False
    assert Line.are_concurrent(l1, l3)
    assert Line.are_concurrent(l1, l1, l1, l3)
    assert Line.are_concurrent(l1, l3, l3_1)
    assert Line.are_concurrent(l1, l1_1, l3) is False

    # Projection
    assert l2.projection(p4) == p4
    assert l1.projection(p1_1) == p1
    assert l3.projection(p2) == Point(x1, 1)
    raises(GeometryError, lambda: Line(Point(0, 0), Point(1, 0))
           .projection(Circle(Point(0, 0), 1)))

    # Finding angles
    l1_1 = Line(p1, Point(5, 0))
    assert feq(Line.angle_between(l1, l1_1).evalf(), pi.evalf()/4)
    a = Point(1, 2, 3, 4)
    b = a.orthogonal_direction
    o = a.origin
    assert Line(a, o).angle_between(Line(b, o)) == pi/2

    # Testing Rays and Segments (very similar to Lines)
    assert Ray((1, 1), angle=pi/4) == Ray((1, 1), (2, 2))
    assert Ray((1, 1), angle=pi/2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=-pi/2) == Ray((1, 1), (1, 0))
    assert Ray((1, 1), angle=-3*pi/2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5*pi/2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5.0*pi/2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1))
    assert Ray((1, 1), angle=3.0*pi) == Ray((1, 1), (0, 1))
    assert Ray((1, 1), angle=4.0*pi) == Ray((1, 1), (2, 1))
    assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1))
    assert Ray((1, 1), angle=4.05*pi) == Ray(Point(1, 1),
               Point(2, -sqrt(5)*sqrt(2*sqrt(5) + 10)/4 - sqrt(2*sqrt(5) + 10)/4 + 2 + sqrt(5)))
    assert Ray((1, 1), angle=4.02*pi) == Ray(Point(1, 1),
               Point(2, 1 + tan(4.02*pi)))
    assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + tan(5)))
    raises(TypeError, lambda: Ray((1, 1), 1))

    # issue 7963
    r = Ray((0, 0), angle=x)
    assert r.subs(x, 3*pi/4) == Ray((0, 0), (-1, 1))
    assert r.subs(x, 5*pi/4) == Ray((0, 0), (-1, -1))
    assert r.subs(x, -pi/4) == Ray((0, 0), (1, -1))
    assert r.subs(x, pi/2) == Ray((0, 0), (0, 1))
    assert r.subs(x, -pi/2) == Ray((0, 0), (0, -1))

    r1 = Ray(p1, Point(-1, 5))
    r2 = Ray(p1, Point(-1, 1))
    r3 = Ray(p3, p5)
    r4 = Ray(p1, p2)
    r5 = Ray(p2, p1)
    r6 = Ray(Point(0, 1), Point(1, 2))
    r7 = Ray(Point(0.5, 0.5), Point(1, 1))
    assert l1.projection(r1) == Ray(Point(0, 0), Point(2, 2))
    assert l1.projection(r2) == p1
    assert r3 != r1
    t = Symbol('t', real=True)
    assert Ray((1, 1), angle=pi/4).arbitrary_point() == \
        Point(t + 1, t + 1)
    r8 = Ray(Point(0, 0), Point(0, 4))
    r9 = Ray(Point(0, 1), Point(0, -1))
    assert r8.intersection(r9) == [Segment(Point(0, 0), Point(0, 1))]

    s1 = Segment(p1, p2)
    s2 = Segment(p1, p1_1)
    assert s1.midpoint == Point(Rational(1, 2), Rational(1, 2))
    assert s2.length == sqrt( 2*(x1**2) )
    assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2*t)
    aline = Line(Point(1/2, 1/2), Point(3/2, -1/2))
    assert s1.perpendicular_bisector().equals(aline)
    on_line = Segment(Point(1/2, 1/2), Point(3/2, -1/2)).midpoint
    assert s1.perpendicular_bisector(on_line) == Segment(s1.midpoint, on_line)
    assert s1.perpendicular_bisector(on_line + (1, 0)).equals(aline)
    # intersections
    assert s1.intersection(Line(p6, p9)) == []
    s3 = Segment(Point(0.25, 0.25), Point(0.5, 0.5))
    assert s1.intersection(s3) == [s3]
    assert s3.intersection(s1) == [s3]
    assert r4.intersection(s3) == [s3]
    assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == []
    assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == \
        [Segment(p1, Point(0.5, 0.5))]
    s3 = Segment(Point(1, 1), Point(2, 2))
    assert s1.intersection(s3) == [Point(1, 1)]
    s3 = Segment(Point(0.5, 0.5), Point(1.5, 1.5))
    assert s1.intersection(s3) == [Segment(Point(0.5, 0.5), p2)]
    assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == []
    assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1]
    assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == \
        [Segment(p1, Point(0.5, 0.5))]
    assert r4.intersection(r5) == [s1]
    assert r5.intersection(r6) == []
    assert r4.intersection(r7) == r7.intersection(r4) == [r7]

    # Segment contains
    a, b = symbols('a,b', real=True)
    s = Segment((0, a), (0, b))
    assert Point(0, (a + b)/2) in s
    s = Segment((a, 0), (b, 0))
    assert Point((a + b)/2, 0) in s

    raises(Undecidable, lambda: Point(2*a, 0) in s)

    # Testing distance from a Segment to an object
    s1 = Segment(Point(0, 0), Point(1, 1))
    s2 = Segment(Point(half, half), Point(1, 0))
    pt1 = Point(0, 0)
    pt2 = Point(Rational(3)/2, Rational(3)/2)
    assert s1.distance(pt1) == 0
    assert s1.distance((0, 0)) == 0
    assert s2.distance(pt1) == 2**(half)/2
    assert s2.distance(pt2) == 2**(half)
    # Line to point
    p1, p2 = Point(0, 0), Point(1, 1)
    s = Line(p1, p2)
    assert s.distance(Point(-1, 1)) == sqrt(2)
    assert s.distance(Point(1, -1)) == sqrt(2)
    assert s.distance(Point(2, 2)) == 0
    assert s.distance((-1, 1)) == sqrt(2)
    assert Line((0, 0), (0, 1)).distance(p1) == 0
    assert Line((0, 0), (0, 1)).distance(p2) == 1
    assert Line((0, 0), (1, 0)).distance(p1) == 0
    assert Line((0, 0), (1, 0)).distance(p2) == 1
    m = symbols('m', real=True)
    l = Line((0, 5), slope=m)
    p = Point(2, 3)
    assert (l.distance(p) - 2*abs(m + 1)/sqrt(m**2 + 1)).equals(0)
    # Ray to point
    r = Ray(p1, p2)
    assert r.distance(Point(-1, -1)) == sqrt(2)
    assert r.distance(Point(1, 1)) == 0
    assert r.distance(Point(-1, 1)) == sqrt(2)
    assert Ray((1, 1), (2, 2)).distance(Point(1.5, 3)) == 3*sqrt(2)/4
    assert r.distance((1, 1)) == 0

    #Line contains
    p1, p2 = Point(0, 1), Point(3, 4)
    l = Line(p1, p2)
    assert l.contains(p1) is True
    assert l.contains((0, 1)) is True
    assert l.contains((0, 0)) is False

    #Ray contains
    p1, p2 = Point(0, 0), Point(4, 4)
    r = Ray(p1, p2)
    assert r.contains(p1) is True
    assert r.contains((1, 1)) is True
    assert r.contains((1, 3)) is False
    s = Segment((1, 1), (2, 2))
    assert r.contains(s) is True
    s = Segment((1, 2), (2, 5))
    assert r.contains(s) is False
    r1 = Ray((2, 2), (3, 3))
    assert r.contains(r1) is True
    r1 = Ray((2, 2), (3, 5))
    assert r.contains(r1) is False


    # Special cases of projection and intersection
    r1 = Ray(Point(1, 1), Point(2, 2))
    r2 = Ray(Point(2, 2), Point(0, 0))
    r3 = Ray(Point(1, 1), Point(-1, -1))
    r4 = Ray(Point(0, 4), Point(-1, -5))
    r5 = Ray(Point(2, 2), Point(3, 3))
    assert intersection(r1, r2) == [Segment(Point(1, 1), Point(2, 2))]
    assert intersection(r1, r3) == [Point(1, 1)]
    assert r1.projection(r3) == Point(1, 1)
    assert r1.projection(r4) == Segment(Point(1, 1), Point(2, 2))

    r5 = Ray(Point(0, 0), Point(0, 1))
    r6 = Ray(Point(0, 0), Point(0, 2))
    assert r5 in r6
    assert r6 in r5

    s1 = Segment(Point(0, 0), Point(2, 2))
    s2 = Segment(Point(-1, 5), Point(-5, -10))
    s3 = Segment(Point(0, 4), Point(-2, 2))
    assert intersection(r1, s1) == [Segment(Point(1, 1), Point(2, 2))]
    assert r1.projection(s2) == Segment(Point(1, 1), Point(2, 2))
    assert s3.projection(r1) == Segment(Point(0, 4), Point(-1, 3))

    l1 = Line(Point(0, 0), Point(3, 4))
    r1 = Ray(Point(0, 0), Point(3, 4))
    s1 = Segment(Point(0, 0), Point(3, 4))
    assert intersection(l1, l1) == [l1]
    assert intersection(l1, r1) == [r1]
    assert intersection(l1, s1) == [s1]
    assert intersection(r1, l1) == [r1]
    assert intersection(s1, l1) == [s1]

    entity1 = Segment(Point(-10, 10), Point(10, 10))
    entity2 = Segment(Point(-5, -5), Point(-5, 5))
    assert intersection(entity1, entity2) == []

    r1 = Ray(p1, Point(0, 1))
    r2 = Ray(Point(0, 1), p1)
    r3 = Ray(p1, p2)
    r4 = Ray(p2, p1)
    s1 = Segment(p1, Point(0, 1))
    assert Line(r1.source, r1.random_point()).slope == r1.slope
    assert Line(r2.source, r2.random_point()).slope == r2.slope
    assert Segment(Point(0, -1), s1.random_point()).slope == s1.slope
    p_r3 = r3.random_point()
    p_r4 = r4.random_point()
    assert p_r3.x >= p1.x and p_r3.y >= p1.y
    assert p_r4.x <= p2.x and p_r4.y <= p2.y
    p10 = Point(2000, 2000)
    s1 = Segment(p1, p10)
    p_s1 = s1.random_point()
    assert p1.x <= p_s1.x and p_s1.x <= p10.x and \
        p1.y <= p_s1.y and p_s1.y <= p10.y
    s2 = Segment(p10, p1)
    assert hash(s1) == hash(s2)
    p11 = p10.scale(2, 2)
    assert s1.is_similar(Segment(p10, p11))
    assert s1.is_similar(r1) is False
    assert (r1 in s1) is False
    assert Segment(p1, p2) in s1
    assert s1.plot_interval() == [t, 0, 1]
    assert s1 in Line(p1, p10)
    assert Line(p1, p10) != Line(p10, p1)
    assert Line(p1, p10) != p1
    assert Line(p1, p10).plot_interval() == [t, -5, 5]
    assert Ray((0, 0), angle=pi/4).plot_interval() == \
        [t, 0, 10]
Exemple #13
0
def test_equals():
    p1 = Point(0, 0)
    p2 = Point(1, 1)

    l1 = Line(p1, p2)
    l2 = Line((0, 5), slope=m)
    l3 = Line(Point(x1, x1), Point(x1, 1 + x1))

    assert l1.perpendicular_line(p1.args).equals(Line(Point(0, 0), Point(1, -1)))
    assert l1.perpendicular_line(p1).equals(Line(Point(0, 0), Point(1, -1)))
    assert Line(Point(x1, x1), Point(y1, y1)).parallel_line(Point(-x1, x1)). \
        equals(Line(Point(-x1, x1), Point(-y1, 2 * x1 - y1)))
    assert l3.parallel_line(p1.args).equals(Line(Point(0, 0), Point(0, -1)))
    assert l3.parallel_line(p1).equals(Line(Point(0, 0), Point(0, -1)))
    assert (l2.distance(Point(2, 3)) - 2 * abs(m + 1) / sqrt(m ** 2 + 1)).equals(0)
    assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False
    assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals(Line3D(Point3D(-5, 0, 0), Point3D(-1, 0, 0))) is True
    assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals(Line3D(p1, Point3D(0, 1, 0))) is False
    assert Ray3D(p1, Point3D(0, 0, -1)).equals(Point(1.0, 1.0)) is False
    assert Ray3D(p1, Point3D(0, 0, -1)).equals(Ray3D(p1, Point3D(0, 0, -1))) is True
    assert Line3D((0, 0), (t, t)).perpendicular_line(Point(0, 1, 0)).equals(
        Line3D(Point3D(0, 1, 0), Point3D(1 / 2, 1 / 2, 0)))
    assert Line3D((0, 0), (t, t)).perpendicular_segment(Point(0, 1, 0)).equals(Segment3D((0, 1), (1 / 2, 1 / 2)))
    assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False
Exemple #14
0
def test_contains_nonreal_symbols():
    u, v, w, z = symbols('u, v, w, z')
    l = Segment(Point(u, w), Point(v, z))
    p = Point(2*u/3 + v/3, 2*w/3 + z/3)
    assert l.contains(p)
Exemple #15
0
def test_concyclic_doctest_bug():
    p1, p2 = Point(-1, 0), Point(1, 0)
    p3, p4 = Point(0, 1), Point(-1, 2)
    assert Point.is_concyclic(p1, p2, p3)
    assert not Point.is_concyclic(p1, p2, p3, p4)
def test_concyclic_doctest_bug():
    p1, p2 = Point(-1, 0), Point(1, 0)
    p3, p4 = Point(0, 1), Point(-1, 2)
    assert Point.is_concyclic(p1, p2, p3)
    assert not Point.is_concyclic(p1, p2, p3, p4)
def test_transform():
    p = Point(1, 1)
    assert p.transform(rotate(pi / 2)) == Point(-1, 1)
    assert p.transform(scale(3, 2)) == Point(3, 2)
    assert p.transform(translate(1, 2)) == Point(2, 3)
    assert Point(1, 1).scale(2, 3, (4, 5)) == \
        Point(-2, -7)
    assert Point(1, 1).translate(4, 5) == \
        Point(5, 6)
def test_point3D():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    x1 = Symbol('x1', real=True)
    x2 = Symbol('x2', real=True)
    x3 = Symbol('x3', real=True)
    y1 = Symbol('y1', real=True)
    y2 = Symbol('y2', real=True)
    y3 = Symbol('y3', real=True)
    half = Rational(1, 2)
    p1 = Point3D(x1, x2, x3)
    p2 = Point3D(y1, y2, y3)
    p3 = Point3D(0, 0, 0)
    p4 = Point3D(1, 1, 1)
    p5 = Point3D(0, 1, 2)

    assert p1 in p1
    assert p1 not in p2
    assert p2.y == y2
    assert (p3 + p4) == p4
    assert (p2 - p1) == Point3D(y1 - x1, y2 - x2, y3 - x3)
    assert p4 * 5 == Point3D(5, 5, 5)
    assert -p2 == Point3D(-y1, -y2, -y3)

    assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3))
    assert Point3D.midpoint(p3, p4) == Point3D(half, half, half)
    assert Point3D.midpoint(p1,
                            p4) == Point3D(half + half * x1, half + half * x2,
                                           half + half * x3)
    assert Point3D.midpoint(p2, p2) == p2
    assert p2.midpoint(p2) == p2

    assert Point3D.distance(p3, p4) == sqrt(3)
    assert Point3D.distance(p1, p1) == 0
    assert Point3D.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2 + p2.z**2)

    p1_1 = Point3D(x1, x1, x1)
    p1_2 = Point3D(y2, y2, y2)
    p1_3 = Point3D(x1 + 1, x1, x1)
    Point3D.are_collinear(p3)
    assert Point3D.are_collinear(p3, p4)
    assert Point3D.are_collinear(p3, p4, p1_1, p1_2)
    assert Point3D.are_collinear(p3, p4, p1_1, p1_3) is False
    assert Point3D.are_collinear(p3, p3, p4, p5) is False

    assert p3.intersection(Point3D(0, 0, 0)) == [p3]
    assert p3.intersection(p4) == []

    assert p4 * 5 == Point3D(5, 5, 5)
    assert p4 / 5 == Point3D(0.2, 0.2, 0.2)

    raises(ValueError, lambda: Point3D(0, 0, 0) + 10)

    # Point differences should be simplified
    assert Point3D(x*(x - 1), y, 2) - Point3D(x**2 - x, y + 1, 1) == \
        Point3D(0, -1, 1)

    a, b = Rational(1, 2), Rational(1, 3)
    assert Point(a, b).evalf(2) == \
        Point(a.n(2), b.n(2))
    raises(ValueError, lambda: Point(1, 2) + 1)

    # test transformations
    p = Point3D(1, 1, 1)
    assert p.scale(2, 3) == Point3D(2, 3, 1)
    assert p.translate(1, 2) == Point3D(2, 3, 1)
    assert p.translate(1) == Point3D(2, 1, 1)
    assert p.translate(z=1) == Point3D(1, 1, 2)
    assert p.translate(*p.args) == Point3D(2, 2, 2)

    # Test __new__
    assert Point3D(0.1, 0.2, evaluate=False,
                   on_morph='ignore').args[0].is_Float

    # Test length property returns correctly
    assert p.length == 0
    assert p1_1.length == 0
    assert p1_2.length == 0

    # Test are_colinear type error
    raises(TypeError, lambda: Point3D.are_collinear(p, x))

    # Test are_coplanar
    assert Point.are_coplanar()
    assert Point.are_coplanar((1, 2, 0), (1, 2, 0), (1, 3, 0))
    assert Point.are_coplanar((1, 2, 0), (1, 2, 3))
    with warnings.catch_warnings(record=True) as w:
        raises(ValueError, lambda: Point2D.are_coplanar((1, 2), (1, 2, 3)))
    assert Point3D.are_coplanar((1, 2, 0), (1, 2, 3))
    assert Point.are_coplanar((0, 0, 0), (1, 1, 0), (1, 1, 1),
                              (1, 2, 1)) is False
    planar2 = Point3D(1, -1, 1)
    planar3 = Point3D(-1, 1, 1)
    assert Point3D.are_coplanar(p, planar2, planar3) == True
    assert Point3D.are_coplanar(p, planar2, planar3, p3) == False
    assert Point.are_coplanar(p, planar2)
    planar2 = Point3D(1, 1, 2)
    planar3 = Point3D(1, 1, 3)
    assert Point3D.are_coplanar(p, planar2, planar3)  # line, not plane
    plane = Plane((1, 2, 1), (2, 1, 0), (3, 1, 2))
    assert Point.are_coplanar(
        *[plane.projection(((-1)**i, i)) for i in range(4)])

    # all 2D points are coplanar
    assert Point.are_coplanar(Point(x, y), Point(x, x + y), Point(
        y, x + 2)) is True

    # Test Intersection
    assert planar2.intersection(Line3D(p, planar3)) == [Point3D(1, 1, 2)]

    # Test Scale
    assert planar2.scale(1, 1, 1) == planar2
    assert planar2.scale(2, 2, 2, planar3) == Point3D(1, 1, 1)
    assert planar2.scale(1, 1, 1, p3) == planar2

    # Test Transform
    identity = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])
    assert p.transform(identity) == p
    trans = Matrix([[1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1], [0, 0, 0, 1]])
    assert p.transform(trans) == Point3D(2, 2, 2)
    raises(ValueError, lambda: p.transform(p))
    raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]])))

    # Test Equals
    assert p.equals(x1) == False

    # Test __sub__
    p_4d = Point(0, 0, 0, 1)
    with warnings.catch_warnings(record=True) as w:
        assert p - p_4d == Point(1, 1, 1, -1)
        assert len(w) == 1
    p_4d3d = Point(0, 0, 1, 0)
    with warnings.catch_warnings(record=True) as w:
        assert p - p_4d3d == Point(1, 1, 0, 0)
        assert len(w) == 1
Exemple #19
0
def test_issue_15259():
    assert Circle((1, 2), 0) == Point(1, 2)
Exemple #20
0
def test_ellipse_geom():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    t = Symbol('t', real=True)
    y1 = Symbol('y1', real=True)
    half = S.Half
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p4 = Point(0, 1)

    e1 = Ellipse(p1, 1, 1)
    e2 = Ellipse(p2, half, 1)
    e3 = Ellipse(p1, y1, y1)
    c1 = Circle(p1, 1)
    c2 = Circle(p2, 1)
    c3 = Circle(Point(sqrt(2), sqrt(2)), 1)
    l1 = Line(p1, p2)

    # Test creation with three points
    cen, rad = Point(3 * half, 2), 5 * half
    assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad)
    assert Circle(Point(0, 0), Point(1, 1),
                  Point(2, 2)) == Segment2D(Point2D(0, 0), Point2D(2, 2))

    raises(ValueError, lambda: Ellipse(None, None, None, 1))
    raises(GeometryError, lambda: Circle(Point(0, 0)))

    # Basic Stuff
    assert Ellipse(None, 1, 1).center == Point(0, 0)
    assert e1 == c1
    assert e1 != e2
    assert e1 != l1
    assert p4 in e1
    assert p2 not in e2
    assert e1.area == pi
    assert e2.area == pi / 2
    assert e3.area == pi * y1 * abs(y1)
    assert c1.area == e1.area
    assert c1.circumference == e1.circumference
    assert e3.circumference == 2 * pi * y1
    assert e1.plot_interval() == e2.plot_interval() == [t, -pi, pi]
    assert e1.plot_interval(x) == e2.plot_interval(x) == [x, -pi, pi]

    assert c1.minor == 1
    assert c1.major == 1
    assert c1.hradius == 1
    assert c1.vradius == 1

    assert Ellipse((1, 1), 0, 0) == Point(1, 1)
    assert Ellipse((1, 1), 1, 0) == Segment(Point(0, 1), Point(2, 1))
    assert Ellipse((1, 1), 0, 1) == Segment(Point(1, 0), Point(1, 2))

    # Private Functions
    assert hash(c1) == hash(Circle(Point(1, 0), Point(0, 1), Point(0, -1)))
    assert c1 in e1
    assert (Line(p1, p2) in e1) is False
    assert e1.__cmp__(e1) == 0
    assert e1.__cmp__(Point(0, 0)) > 0

    # Encloses
    assert e1.encloses(Segment(Point(-0.5, -0.5), Point(0.5, 0.5))) is True
    assert e1.encloses(Line(p1, p2)) is False
    assert e1.encloses(Ray(p1, p2)) is False
    assert e1.encloses(e1) is False
    assert e1.encloses(
        Polygon(Point(-0.5, -0.5), Point(-0.5, 0.5), Point(0.5, 0.5))) is True
    assert e1.encloses(RegularPolygon(p1, 0.5, 3)) is True
    assert e1.encloses(RegularPolygon(p1, 5, 3)) is False
    assert e1.encloses(RegularPolygon(p2, 5, 3)) is False

    assert e2.arbitrary_point() in e2

    # Foci
    f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0)
    ef = Ellipse(Point(0, 0), 4, 2)
    assert ef.foci in [(f1, f2), (f2, f1)]

    # Tangents
    v = sqrt(2) / 2
    p1_1 = Point(v, v)
    p1_2 = p2 + Point(half, 0)
    p1_3 = p2 + Point(0, 1)
    assert e1.tangent_lines(p4) == c1.tangent_lines(p4)
    assert e2.tangent_lines(p1_2) == [
        Line(Point(Rational(3, 2), 1), Point(Rational(3, 2), S.Half))
    ]
    assert e2.tangent_lines(p1_3) == [
        Line(Point(1, 2), Point(Rational(5, 4), 2))
    ]
    assert c1.tangent_lines(p1_1) != [Line(p1_1, Point(0, sqrt(2)))]
    assert c1.tangent_lines(p1) == []
    assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1)))
    assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1)))
    assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2))))
    assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) is False
    assert c1.is_tangent(e1) is True
    assert c1.is_tangent(Ellipse(Point(2, 0), 1, 1)) is True
    assert c1.is_tangent(Polygon(Point(1, 1), Point(1, -1), Point(2,
                                                                  0))) is True
    assert c1.is_tangent(Polygon(Point(1, 1), Point(1, 0), Point(2,
                                                                 0))) is False
    assert Circle(Point(5, 5), 3).is_tangent(Circle(Point(0, 5), 1)) is False

    assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == \
        [Line(Point(0, 0), Point(Rational(77, 25), Rational(132, 25))),
     Line(Point(0, 0), Point(Rational(33, 5), Rational(22, 5)))]
    assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(3, 4)) == \
        [Line(Point(3, 4), Point(4, 4)), Line(Point(3, 4), Point(3, 5))]
    assert Circle(Point(5, 5), 2).tangent_lines(Point(3, 3)) == \
        [Line(Point(3, 3), Point(4, 3)), Line(Point(3, 3), Point(3, 4))]
    assert Circle(Point(5, 5), 2).tangent_lines(Point(5 - 2*sqrt(2), 5)) == \
        [Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 - sqrt(2))),
     Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 + sqrt(2))), ]

    # for numerical calculations, we shouldn't demand exact equality,
    # so only test up to the desired precision
    def lines_close(l1, l2, prec):
        """ tests whether l1 and 12 are within 10**(-prec)
        of each other """
        return abs(l1.p1 - l2.p1) < 10**(-prec) and abs(l1.p2 -
                                                        l2.p2) < 10**(-prec)

    def line_list_close(ll1, ll2, prec):
        return all(lines_close(l1, l2, prec) for l1, l2 in zip(ll1, ll2))

    e = Ellipse(Point(0, 0), 2, 1)
    assert e.normal_lines(Point(0, 0)) == \
        [Line(Point(0, 0), Point(0, 1)), Line(Point(0, 0), Point(1, 0))]
    assert e.normal_lines(Point(1, 0)) == \
        [Line(Point(0, 0), Point(1, 0))]
    assert e.normal_lines((0, 1)) == \
        [Line(Point(0, 0), Point(0, 1))]
    assert line_list_close(e.normal_lines(Point(1, 1), 2), [
        Line(Point(Rational(-51, 26), Rational(-1, 5)),
             Point(Rational(-25, 26), Rational(17, 83))),
        Line(Point(Rational(28, 29), Rational(-7, 8)),
             Point(Rational(57, 29), Rational(-9, 2)))
    ], 2)
    # test the failure of Poly.intervals and checks a point on the boundary
    p = Point(sqrt(3), S.Half)
    assert p in e
    assert line_list_close(e.normal_lines(p, 2), [
        Line(Point(Rational(-341, 171), Rational(-1, 13)),
             Point(Rational(-170, 171), Rational(5, 64))),
        Line(Point(Rational(26, 15), Rational(-1, 2)),
             Point(Rational(41, 15), Rational(-43, 26)))
    ], 2)
    # be sure to use the slope that isn't undefined on boundary
    e = Ellipse((0, 0), 2, 2 * sqrt(3) / 3)
    assert line_list_close(e.normal_lines((1, 1), 2), [
        Line(Point(Rational(-64, 33), Rational(-20, 71)),
             Point(Rational(-31, 33), Rational(2, 13))),
        Line(Point(1, -1), Point(2, -4))
    ], 2)
    # general ellipse fails except under certain conditions
    e = Ellipse((0, 0), x, 1)
    assert e.normal_lines((x + 1, 0)) == [Line(Point(0, 0), Point(1, 0))]
    raises(NotImplementedError, lambda: e.normal_lines((x + 1, 1)))
    # Properties
    major = 3
    minor = 1
    e4 = Ellipse(p2, minor, major)
    assert e4.focus_distance == sqrt(major**2 - minor**2)
    ecc = e4.focus_distance / major
    assert e4.eccentricity == ecc
    assert e4.periapsis == major * (1 - ecc)
    assert e4.apoapsis == major * (1 + ecc)
    assert e4.semilatus_rectum == major * (1 - ecc**2)
    # independent of orientation
    e4 = Ellipse(p2, major, minor)
    assert e4.focus_distance == sqrt(major**2 - minor**2)
    ecc = e4.focus_distance / major
    assert e4.eccentricity == ecc
    assert e4.periapsis == major * (1 - ecc)
    assert e4.apoapsis == major * (1 + ecc)

    # Intersection
    l1 = Line(Point(1, -5), Point(1, 5))
    l2 = Line(Point(-5, -1), Point(5, -1))
    l3 = Line(Point(-1, -1), Point(1, 1))
    l4 = Line(Point(-10, 0), Point(0, 10))
    pts_c1_l3 = [
        Point(sqrt(2) / 2,
              sqrt(2) / 2),
        Point(-sqrt(2) / 2, -sqrt(2) / 2)
    ]

    assert intersection(e2, l4) == []
    assert intersection(c1, Point(1, 0)) == [Point(1, 0)]
    assert intersection(c1, l1) == [Point(1, 0)]
    assert intersection(c1, l2) == [Point(0, -1)]
    assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]]
    assert intersection(c1, c2) == [Point(0, 1), Point(1, 0)]
    assert intersection(c1, c3) == [Point(sqrt(2) / 2, sqrt(2) / 2)]
    assert e1.intersection(l1) == [Point(1, 0)]
    assert e2.intersection(l4) == []
    assert e1.intersection(Circle(Point(0, 2), 1)) == [Point(0, 1)]
    assert e1.intersection(Circle(Point(5, 0), 1)) == []
    assert e1.intersection(Ellipse(Point(2, 0), 1, 1)) == [Point(1, 0)]
    assert e1.intersection(Ellipse(Point(5, 0), 1, 1)) == []
    assert e1.intersection(Point(2, 0)) == []
    assert e1.intersection(e1) == e1
    assert intersection(Ellipse(Point(0, 0), 2, 1),
                        Ellipse(Point(3, 0), 1, 2)) == [Point(2, 0)]
    assert intersection(Circle(Point(0, 0), 2), Circle(Point(3, 0),
                                                       1)) == [Point(2, 0)]
    assert intersection(Circle(Point(0, 0), 2), Circle(Point(7, 0), 1)) == []
    assert intersection(Ellipse(Point(0, 0), 5, 17),
                        Ellipse(Point(4, 0), 1, 0.2)) == [Point(5, 0)]
    assert intersection(Ellipse(Point(0, 0), 5, 17),
                        Ellipse(Point(4, 0), 0.999, 0.2)) == []
    assert Circle(
        (0, 0), S.Half).intersection(Triangle(
            (-1, 0), (1, 0),
            (0, 1))) == [Point(Rational(-1, 2), 0),
                         Point(S.Half, 0)]
    raises(TypeError, lambda: intersection(e2, Line((0, 0, 0), (0, 0, 1))))
    raises(TypeError, lambda: intersection(e2, Rational(12)))
    # some special case intersections
    csmall = Circle(p1, 3)
    cbig = Circle(p1, 5)
    cout = Circle(Point(5, 5), 1)
    # one circle inside of another
    assert csmall.intersection(cbig) == []
    # separate circles
    assert csmall.intersection(cout) == []
    # coincident circles
    assert csmall.intersection(csmall) == csmall

    v = sqrt(2)
    t1 = Triangle(Point(0, v), Point(0, -v), Point(v, 0))
    points = intersection(t1, c1)
    assert len(points) == 4
    assert Point(0, 1) in points
    assert Point(0, -1) in points
    assert Point(v / 2, v / 2) in points
    assert Point(v / 2, -v / 2) in points

    circ = Circle(Point(0, 0), 5)
    elip = Ellipse(Point(0, 0), 5, 20)
    assert intersection(circ, elip) in \
        [[Point(5, 0), Point(-5, 0)], [Point(-5, 0), Point(5, 0)]]
    assert elip.tangent_lines(Point(0, 0)) == []
    elip = Ellipse(Point(0, 0), 3, 2)
    assert elip.tangent_lines(Point(3, 0)) == \
        [Line(Point(3, 0), Point(3, -12))]

    e1 = Ellipse(Point(0, 0), 5, 10)
    e2 = Ellipse(Point(2, 1), 4, 8)
    a = Rational(53, 17)
    c = 2 * sqrt(3991) / 17
    ans = [Point(a - c / 8, a / 2 + c), Point(a + c / 8, a / 2 - c)]
    assert e1.intersection(e2) == ans
    e2 = Ellipse(Point(x, y), 4, 8)
    c = sqrt(3991)
    ans = [
        Point(-c / 68 + a,
              c * Rational(2, 17) + a / 2),
        Point(c / 68 + a,
              c * Rational(-2, 17) + a / 2)
    ]
    assert [p.subs({x: 2, y: 1}) for p in e1.intersection(e2)] == ans

    # Combinations of above
    assert e3.is_tangent(e3.tangent_lines(p1 + Point(y1, 0))[0])

    e = Ellipse((1, 2), 3, 2)
    assert e.tangent_lines(Point(10, 0)) == \
        [Line(Point(10, 0), Point(1, 0)),
        Line(Point(10, 0), Point(Rational(14, 5), Rational(18, 5)))]

    # encloses_point
    e = Ellipse((0, 0), 1, 2)
    assert e.encloses_point(e.center)
    assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
    assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
    assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
    assert e.encloses_point(e.center +
                            Point(e.hradius + Rational(1, 10), 0)) is False
    e = Ellipse((0, 0), 2, 1)
    assert e.encloses_point(e.center)
    assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
    assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
    assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
    assert e.encloses_point(e.center +
                            Point(e.hradius + Rational(1, 10), 0)) is False
    assert c1.encloses_point(Point(1, 0)) is False
    assert c1.encloses_point(Point(0.3, 0.4)) is True

    assert e.scale(2, 3) == Ellipse((0, 0), 4, 3)
    assert e.scale(3, 6) == Ellipse((0, 0), 6, 6)
    assert e.rotate(pi) == e
    assert e.rotate(pi, (1, 2)) == Ellipse(Point(2, 4), 2, 1)
    raises(NotImplementedError, lambda: e.rotate(pi / 3))

    # Circle rotation tests (Issue #11743)
    # Link - https://github.com/sympy/sympy/issues/11743
    cir = Circle(Point(1, 0), 1)
    assert cir.rotate(pi / 2) == Circle(Point(0, 1), 1)
    assert cir.rotate(pi / 3) == Circle(Point(S.Half, sqrt(3) / 2), 1)
    assert cir.rotate(pi / 3, Point(1, 0)) == Circle(Point(1, 0), 1)
    assert cir.rotate(pi / 3, Point(0, 1)) == Circle(
        Point(S.Half + sqrt(3) / 2, S.Half + sqrt(3) / 2), 1)
Exemple #21
0
def test_parameter_value():
    t = Symbol('t')
    e = Ellipse(Point(0, 0), 3, 5)
    assert e.parameter_value((3, 0), t) == {t: 0}
    raises(ValueError, lambda: e.parameter_value((4, 0), t))
Exemple #22
0
def test_Geometry():
    assert sstr(Point(0, 0)) == 'Point2D(0, 0)'
    assert sstr(Circle(Point(0, 0), 3)) == 'Circle(Point2D(0, 0), 3)'
    assert sstr(Ellipse(Point(1, 2), 3, 4)) == 'Ellipse(Point2D(1, 2), 3, 4)'
    assert sstr(Triangle(Point(1, 1), Point(7, 8), Point(0, -1))) == \
        'Triangle(Point2D(1, 1), Point2D(7, 8), Point2D(0, -1))'
    assert sstr(Polygon(Point(5, 6), Point(-2, -3), Point(0, 0), Point(4, 7))) == \
        'Polygon(Point2D(5, 6), Point2D(-2, -3), Point2D(0, 0), Point2D(4, 7))'
    assert sstr(Triangle(Point(0, 0), Point(1, 0), Point(0, 1)), sympy_integers=True) == \
        'Triangle(Point2D(S(0), S(0)), Point2D(S(1), S(0)), Point2D(S(0), S(1)))'
    assert sstr(Ellipse(Point(1, 2), 3, 4), sympy_integers=True) == \
        'Ellipse(Point2D(S(1), S(2)), S(3), S(4))'
Exemple #23
0
def test_subs():
    p = Point(x, 2)
    q = Point(1, 1)
    r = Point(3, 4)
    for o in [
            p,
            Segment(p, q),
            Ray(p, q),
            Line(p, q),
            Triangle(p, q, r),
            RegularPolygon(p, 3, 6),
            Polygon(p, q, r, Point(5, 4)),
            Circle(p, 3),
            Ellipse(p, 3, 4)
    ]:
        assert 'y' in str(o.subs(x, y))
    assert p.subs({x: 1}) == Point(1, 2)
    assert Point(1, 2).subs(Point(1, 2), Point(3, 4)) == Point(3, 4)
    assert Point(1, 2).subs((1, 2), Point(3, 4)) == Point(3, 4)
    assert Point(1, 2).subs(Point(1, 2), Point(3, 4)) == Point(3, 4)
    assert Point(1, 2).subs(set([(1, 2)])) == Point(2, 2)
    raises(ValueError, lambda: Point(1, 2).subs(1))
    raises(ValueError, lambda: Point(1, 1).subs(
        (Point(1, 1), Point(1, 2)), 1, 2))
Exemple #24
0
def test_line():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x1)
    p4 = Point(y1, y1)
    p5 = Point(x1, 1 + x1)
    p6 = Point(1, 0)
    p7 = Point(0, 1)
    p8 = Point(2, 0)
    p9 = Point(2, 1)

    l1 = Line(p1, p2)
    l2 = Line(p3, p4)
    l3 = Line(p3, p5)
    l4 = Line(p1, p6)
    l5 = Line(p1, p7)
    l6 = Line(p8, p9)
    l7 = Line(p2, p9)
    raises(ValueError, lambda: Line(Point(0, 0), Point(0, 0)))

    # Basic stuff
    assert Line((1, 1), slope=1) == Line((1, 1), (2, 2))
    assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2))
    assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2))
    raises(ValueError, lambda: Line((1, 1), 1))
    assert Line(p1, p2) == Line(p2, p1)
    assert l1 == l2
    assert l1 != l3
    assert l1.slope == 1
    assert l1.length == oo
    assert l3.slope == oo
    assert l4.slope == 0
    assert l4.coefficients == (0, 1, 0)
    assert l4.equation(x=x, y=y) == y
    assert l5.slope == oo
    assert l5.coefficients == (1, 0, 0)
    assert l5.equation() == x
    assert l6.equation() == x - 2
    assert l7.equation() == y - 1
    assert p1 in l1  # is p1 on the line l1?
    assert p1 not in l3
    assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0)

    assert simplify(l1.equation()) in (x - y, y - x)
    assert simplify(l3.equation()) in (x - x1, x1 - x)

    assert Line(p1, p2).scale(2, 1) == Line(p1, p9)

    assert l2.arbitrary_point() in l2
    for ind in xrange(0, 5):
        assert l3.random_point() in l3

    # Orthogonality
    p1_1 = Point(-x1, x1)
    l1_1 = Line(p1, p1_1)
    assert l1.perpendicular_line(p1) == l1_1
    assert Line.is_perpendicular(l1, l1_1)
    assert Line.is_perpendicular(l1, l2) == False
    p = l1.random_point()
    assert l1.perpendicular_segment(p) == p

    # Parallelity
    p2_1 = Point(-2 * x1, 0)
    l2_1 = Line(p3, p5)
    assert l2.parallel_line(p1_1) == Line(p2_1, p1_1)
    assert l2_1.parallel_line(p1) == Line(p1, Point(0, 2))
    assert Line.is_parallel(l1, l2)
    assert Line.is_parallel(l2, l3) == False
    assert Line.is_parallel(l2, l2.parallel_line(p1_1))
    assert Line.is_parallel(l2_1, l2_1.parallel_line(p1))

    # Intersection
    assert intersection(l1, p1) == [p1]
    assert intersection(l1, p5) == []
    assert intersection(l1, l2) in [[l1], [l2]]
    assert intersection(l1, l1.parallel_line(p5)) == []

    # Concurrency
    l3_1 = Line(Point(5, x1), Point(-Rational(3, 5), x1))
    assert Line.is_concurrent(l1) == False
    assert Line.is_concurrent(l1, l3)
    assert Line.is_concurrent(l1, l3, l3_1)
    assert Line.is_concurrent(l1, l1_1, l3) == False

    # Projection
    assert l2.projection(p4) == p4
    assert l1.projection(p1_1) == p1
    assert l3.projection(p2) == Point(x1, 1)
    raises(GeometryError, lambda: Line(Point(0, 0), Point(1, 0)).projection(Circle(Point(0, 0), 1)))

    # Finding angles
    l1_1 = Line(p1, Point(5, 0))
    assert feq(Line.angle_between(l1, l1_1).evalf(), pi.evalf() / 4)

    # Testing Rays and Segments (very similar to Lines)
    assert Ray((1, 1), angle=pi / 4) == Ray((1, 1), (2, 2))
    assert Ray((1, 1), angle=pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=-pi / 2) == Ray((1, 1), (1, 0))
    assert Ray((1, 1), angle=-3 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5.0 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1))
    assert Ray((1, 1), angle=3.0 * pi) == Ray((1, 1), (0, 1))
    assert Ray((1, 1), angle=4.0 * pi) == Ray((1, 1), (2, 1))
    assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1))
    # XXX don't know why this fails without str
    assert str(Ray((1, 1), angle=4.2 * pi)) == str(Ray(Point(1, 1), Point(2, 1 + C.tan(0.2 * pi))))
    assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + C.tan(5)))
    raises(ValueError, lambda: Ray((1, 1), 1))

    r1 = Ray(p1, Point(-1, 5))
    r2 = Ray(p1, Point(-1, 1))
    r3 = Ray(p3, p5)
    r4 = Ray(p1, p2)
    r5 = Ray(p2, p1)
    r6 = Ray(Point(0, 1), Point(1, 2))
    r7 = Ray(Point(0.5, 0.5), Point(1, 1))
    assert l1.projection(r1) == Ray(p1, p2)
    assert l1.projection(r2) == p1
    assert r3 != r1
    t = Symbol("t", real=True)
    assert Ray((1, 1), angle=pi / 4).arbitrary_point() == Point(1 / (1 - t), 1 / (1 - t))

    s1 = Segment(p1, p2)
    s2 = Segment(p1, p1_1)
    assert s1.midpoint == Point(Rational(1, 2), Rational(1, 2))
    assert s2.length == sqrt(2 * (x1 ** 2))
    assert s1.perpendicular_bisector() == Line(Point(0, 1), Point(1, 0))
    assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2 * t)

    # intersections
    assert s1.intersection(Line(p6, p9)) == []
    s3 = Segment(Point(0.25, 0.25), Point(0.5, 0.5))
    assert s1.intersection(s3) == [s1]
    assert s3.intersection(s1) == [s3]
    assert r4.intersection(s3) == [s3]
    assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == []
    assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
    s3 = Segment(Point(1, 1), Point(2, 2))
    assert s1.intersection(s3) == [Point(1, 1)]
    s3 = Segment(Point(0.5, 0.5), Point(1.5, 1.5))
    assert s1.intersection(s3) == [Segment(Point(0.5, 0.5), p2)]
    assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == []
    assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1]
    assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
    assert r4.intersection(r5) == [s1]
    assert r5.intersection(r6) == []
    assert r4.intersection(r7) == r7.intersection(r4) == [r7]

    # Segment contains
    a, b = symbols("a,b")
    s = Segment((0, a), (0, b))
    assert Point(0, (a + b) / 2) in s
    s = Segment((a, 0), (b, 0))
    assert Point((a + b) / 2, 0) in s

    raises(Undecidable, lambda: Point(2 * a, 0) in s)

    # Testing distance from a Segment to an object
    s1 = Segment(Point(0, 0), Point(1, 1))
    s2 = Segment(Point(half, half), Point(1, 0))
    pt1 = Point(0, 0)
    pt2 = Point(Rational(3) / 2, Rational(3) / 2)
    assert s1.distance(pt1) == 0
    assert s2.distance(pt1) == 2 ** (half) / 2
    assert s2.distance(pt2) == 2 ** (half)

    # Special cases of projection and intersection
    r1 = Ray(Point(1, 1), Point(2, 2))
    r2 = Ray(Point(2, 2), Point(0, 0))
    r3 = Ray(Point(1, 1), Point(-1, -1))
    r4 = Ray(Point(0, 4), Point(-1, -5))
    r5 = Ray(Point(2, 2), Point(3, 3))
    assert intersection(r1, r2) == [Segment(Point(1, 1), Point(2, 2))]
    assert intersection(r1, r3) == [Point(1, 1)]
    assert r1.projection(r3) == Point(1, 1)
    assert r1.projection(r4) == Segment(Point(1, 1), Point(2, 2))

    r5 = Ray(Point(0, 0), Point(0, 1))
    r6 = Ray(Point(0, 0), Point(0, 2))
    assert r5 in r6
    assert r6 in r5

    s1 = Segment(Point(0, 0), Point(2, 2))
    s2 = Segment(Point(-1, 5), Point(-5, -10))
    s3 = Segment(Point(0, 4), Point(-2, 2))
    assert intersection(r1, s1) == [Segment(Point(1, 1), Point(2, 2))]
    assert r1.projection(s2) == Segment(Point(1, 1), Point(2, 2))
    assert s3.projection(r1) == Segment(Point(0, 4), Point(-1, 3))

    l1 = Line(Point(0, 0), Point(3, 4))
    r1 = Ray(Point(0, 0), Point(3, 4))
    s1 = Segment(Point(0, 0), Point(3, 4))
    assert intersection(l1, l1) == [l1]
    assert intersection(l1, r1) == [r1]
    assert intersection(l1, s1) == [s1]
    assert intersection(r1, l1) == [r1]
    assert intersection(s1, l1) == [s1]

    entity1 = Segment(Point(-10, 10), Point(10, 10))
    entity2 = Segment(Point(-5, -5), Point(-5, 5))
    assert intersection(entity1, entity2) == []

    r1 = Ray(p1, Point(0, 1))
    r2 = Ray(Point(0, 1), p1)
    r3 = Ray(p1, p2)
    r4 = Ray(p2, p1)
    s1 = Segment(p1, Point(0, 1))
    assert Line(r1.source, r1.random_point()).slope == r1.slope
    assert Line(r2.source, r2.random_point()).slope == r2.slope
    assert Segment(Point(0, -1), s1.random_point()).slope == s1.slope
    p_r3 = r3.random_point()
    p_r4 = r4.random_point()
    assert p_r3.x >= p1.x and p_r3.y >= p1.y
    assert p_r4.x <= p2.x and p_r4.y <= p2.y
    p10 = Point(2000, 2000)
    s1 = Segment(p1, p10)
    p_s1 = s1.random_point()
    assert p1.x <= p_s1.x and p_s1.x <= p10.x and p1.y <= p_s1.y and p_s1.y <= p10.y
    s2 = Segment(p10, p1)

    assert hash(s1) == hash(s2)
    p11 = p10.scale(2, 2)
    assert s1.is_similar(Segment(p10, p11))
    assert s1.is_similar(r1) == False
    assert (r1 in s1) == False
    assert Segment(p1, p2) in s1
    assert s1.plot_interval() == [t, 0, 1]
    assert s1 in Line(p1, p10)
    assert Line(p1, p10) == Line(p10, p1)
    assert Line(p1, p10) != p1
    assert Line(p1, p10).plot_interval() == [t, -5, 5]
    assert Ray((0, 0), angle=pi / 4).plot_interval() == [t, 0, 5 * sqrt(2) / (1 + 5 * sqrt(2))]
def test_point():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    x1 = Symbol('x1', real=True)
    x2 = Symbol('x2', real=True)
    y1 = Symbol('y1', real=True)
    y2 = Symbol('y2', real=True)
    half = Rational(1, 2)
    p1 = Point(x1, x2)
    p2 = Point(y1, y2)
    p3 = Point(0, 0)
    p4 = Point(1, 1)
    p5 = Point(0, 1)

    assert p1 in p1
    assert p1 not in p2
    assert p2.y == y2
    assert (p3 + p4) == p4
    assert (p2 - p1) == Point(y1 - x1, y2 - x2)
    assert p4 * 5 == Point(5, 5)
    assert -p2 == Point(-y1, -y2)
    raises(ValueError, lambda: Point(3, I))
    raises(ValueError, lambda: Point(2 * I, I))
    raises(ValueError, lambda: Point(3 + I, I))

    assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3))
    assert Point.midpoint(p3, p4) == Point(half, half)
    assert Point.midpoint(p1, p4) == Point(half + half * x1, half + half * x2)
    assert Point.midpoint(p2, p2) == p2
    assert p2.midpoint(p2) == p2

    assert Point.distance(p3, p4) == sqrt(2)
    assert Point.distance(p1, p1) == 0
    assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2)

    assert Point.taxicab_distance(p4, p3) == 2

    assert Point.canberra_distance(p4, p5) == 1

    p1_1 = Point(x1, x1)
    p1_2 = Point(y2, y2)
    p1_3 = Point(x1 + 1, x1)
    assert Point.is_collinear(p3)

    with warnings.catch_warnings(record=True) as w:
        assert Point.is_collinear(p3, Point(p3, dim=4))
        assert len(w) == 1
    assert p3.is_collinear()
    assert Point.is_collinear(p3, p4)
    assert Point.is_collinear(p3, p4, p1_1, p1_2)
    assert Point.is_collinear(p3, p4, p1_1, p1_3) is False
    assert Point.is_collinear(p3, p3, p4, p5) is False
    line = Line(Point(1, 0), slope=1)
    raises(TypeError, lambda: Point.is_collinear(line))
    raises(TypeError, lambda: p1_1.is_collinear(line))

    assert p3.intersection(Point(0, 0)) == [p3]
    assert p3.intersection(p4) == []

    x_pos = Symbol('x', real=True, positive=True)
    p2_1 = Point(x_pos, 0)
    p2_2 = Point(0, x_pos)
    p2_3 = Point(-x_pos, 0)
    p2_4 = Point(0, -x_pos)
    p2_5 = Point(x_pos, 5)
    assert Point.is_concyclic(p2_1)
    assert Point.is_concyclic(p2_1, p2_2)
    assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4)
    for pts in permutations((p2_1, p2_2, p2_3, p2_5)):
        assert Point.is_concyclic(*pts) is False
    assert Point.is_concyclic(p4, p4 * 2, p4 * 3) is False
    assert Point(0, 0).is_concyclic((1, 1), (2, 2), (2, 1)) is False

    assert p4.scale(2, 3) == Point(2, 3)
    assert p3.scale(2, 3) == p3

    assert p4.rotate(pi, Point(0.5, 0.5)) == p3
    assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2)
    assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2)

    assert p4 * 5 == Point(5, 5)
    assert p4 / 5 == Point(0.2, 0.2)

    raises(ValueError, lambda: Point(0, 0) + 10)

    # Point differences should be simplified
    assert Point(x * (x - 1), y) - Point(x**2 - x, y + 1) == Point(0, -1)

    a, b = Rational(1, 2), Rational(1, 3)
    assert Point(a, b).evalf(2) == \
        Point(a.n(2), b.n(2))
    raises(ValueError, lambda: Point(1, 2) + 1)

    # test transformations
    p = Point(1, 0)
    assert p.rotate(pi / 2) == Point(0, 1)
    assert p.rotate(pi / 2, p) == p
    p = Point(1, 1)
    assert p.scale(2, 3) == Point(2, 3)
    assert p.translate(1, 2) == Point(2, 3)
    assert p.translate(1) == Point(2, 1)
    assert p.translate(y=1) == Point(1, 2)
    assert p.translate(*p.args) == Point(2, 2)

    # Check invalid input for transform
    raises(ValueError, lambda: p3.transform(p3))
    raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]])))
Exemple #26
0
def test_transform():
    p = Point(1, 1)
    assert p.transform(rotate(pi / 2)) == Point(-1, 1)
    assert p.transform(scale(3, 2)) == Point(3, 2)
    assert p.transform(translate(1, 2)) == Point(2, 3)
def test_arguments():
    """Functions accepting `Point` objects in `geometry`
    should also accept tuples and lists and
    automatically convert them to points."""

    singles2d = ((1, 2), [1, 2], Point(1, 2))
    singles2d2 = ((1, 3), [1, 3], Point(1, 3))
    doubles2d = cartes(singles2d, singles2d2)
    p2d = Point2D(1, 2)
    singles3d = ((1, 2, 3), [1, 2, 3], Point(1, 2, 3))
    doubles3d = subsets(singles3d, 2)
    p3d = Point3D(1, 2, 3)
    singles4d = ((1, 2, 3, 4), [1, 2, 3, 4], Point(1, 2, 3, 4))
    doubles4d = subsets(singles4d, 2)
    p4d = Point(1, 2, 3, 4)

    # test 2D
    test_single = [
        'distance', 'is_scalar_multiple', 'taxicab_distance', 'midpoint',
        'intersection', 'dot', 'equals', '__add__', '__sub__'
    ]
    test_double = ['is_concyclic', 'is_collinear']
    for p in singles2d:
        Point2D(p)
    for func in test_single:
        for p in singles2d:
            getattr(p2d, func)(p)
    for func in test_double:
        for p in doubles2d:
            getattr(p2d, func)(*p)

    # test 3D
    test_double = ['is_collinear']
    for p in singles3d:
        Point3D(p)
    for func in test_single:
        for p in singles3d:
            getattr(p3d, func)(p)
    for func in test_double:
        for p in doubles2d:
            getattr(p3d, func)(*p)

    # test 4D
    test_double = ['is_collinear']
    for p in singles4d:
        Point(p)
    for func in test_single:
        for p in singles4d:
            getattr(p4d, func)(p)
    for func in test_double:
        for p in doubles4d:
            getattr(p4d, func)(*p)

    # test evaluate=False for ops
    x = Symbol('x')
    a = Point(0, 1)
    assert a + (0.1, x) == Point(0.1, 1 + x)
    a = Point(0, 1)
    assert a / 10.0 == Point(0.0, 0.1)
    a = Point(0, 1)
    assert a * 10.0 == Point(0.0, 10.0)

    # test evaluate=False when changing dimensions
    u = Point(.1, .2, evaluate=False)
    u4 = Point(u, dim=4, on_morph='ignore')
    assert u4.args == (.1, .2, 0, 0)
    assert all(i.is_Float for i in u4.args[:2])
    # and even when *not* changing dimensions
    assert all(i.is_Float for i in Point(u).args)

    # never raise error if creating an origin
    assert Point(dim=3, on_morph='error')
Exemple #28
0
def test_distance_2d():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    half = Rational(1, 2)

    s1 = Segment(Point(0, 0), Point(1, 1))
    s2 = Segment(Point(half, half), Point(1, 0))

    r = Ray(p1, p2)

    assert s1.distance(Point(0, 0)) == 0
    assert s1.distance((0, 0)) == 0
    assert s2.distance(Point(0, 0)) == 2 ** half / 2
    assert s2.distance(Point(Rational(3) / 2, Rational(3) / 2)) == 2 ** half
    assert Line(p1, p2).distance(Point(-1, 1)) == sqrt(2)
    assert Line(p1, p2).distance(Point(1, -1)) == sqrt(2)
    assert Line(p1, p2).distance(Point(2, 2)) == 0
    assert Line(p1, p2).distance((-1, 1)) == sqrt(2)
    assert Line((0, 0), (0, 1)).distance(p1) == 0
    assert Line((0, 0), (0, 1)).distance(p2) == 1
    assert Line((0, 0), (1, 0)).distance(p1) == 0
    assert Line((0, 0), (1, 0)).distance(p2) == 1
    assert r.distance(Point(-1, -1)) == sqrt(2)
    assert r.distance(Point(1, 1)) == 0
    assert r.distance(Point(-1, 1)) == sqrt(2)
    assert Ray((1, 1), (2, 2)).distance(Point(1.5, 3)) == 3 * sqrt(2) / 4
    assert r.distance((1, 1)) == 0
def test_unit():
    assert Point(1, 1).unit == Point(sqrt(2) / 2, sqrt(2) / 2)
Exemple #30
0
def test_ellipse():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p4 = Point(0, 1)

    e1 = Ellipse(p1, 1, 1)
    e2 = Ellipse(p2, half, 1)
    e3 = Ellipse(p1, y1, y1)
    c1 = Circle(p1, 1)
    c2 = Circle(p2, 1)
    c3 = Circle(Point(sqrt(2), sqrt(2)), 1)

    # Test creation with three points
    cen, rad = Point(3 * half, 2), 5 * half
    assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad)
    raises(GeometryError,
           lambda: Circle(Point(0, 0), Point(1, 1), Point(2, 2)))

    raises(ValueError, lambda: Ellipse(None, None, None, 1))
    raises(GeometryError, lambda: Circle(Point(0, 0)))

    # Basic Stuff
    assert Ellipse(None, 1, 1).center == Point(0, 0)
    assert e1 == c1
    assert e1 != e2
    assert p4 in e1
    assert p2 not in e2
    assert e1.area == pi
    assert e2.area == pi / 2
    assert e3.area == pi * y1 * abs(y1)
    assert c1.area == e1.area
    assert c1.circumference == e1.circumference
    assert e3.circumference == 2 * pi * y1
    assert e1.plot_interval() == e2.plot_interval() == [t, -pi, pi]
    assert e1.plot_interval(x) == e2.plot_interval(x) == [x, -pi, pi]
    assert Ellipse(None, 1, None, 1).circumference == 2 * pi
    assert c1.minor == 1
    assert c1.major == 1
    assert c1.hradius == 1
    assert c1.vradius == 1

    # Private Functions
    assert hash(c1) == hash(Circle(Point(1, 0), Point(0, 1), Point(0, -1)))
    assert c1 in e1
    assert (Line(p1, p2) in e1) is False
    assert e1.__cmp__(e1) == 0
    assert e1.__cmp__(Point(0, 0)) > 0

    # Encloses
    assert e1.encloses(Segment(Point(-0.5, -0.5), Point(0.5, 0.5))) is True
    assert e1.encloses(Line(p1, p2)) is False
    assert e1.encloses(Ray(p1, p2)) is False
    assert e1.encloses(e1) is False
    assert e1.encloses(
        Polygon(Point(-0.5, -0.5), Point(-0.5, 0.5), Point(0.5, 0.5))) is True
    assert e1.encloses(RegularPolygon(p1, 0.5, 3)) is True
    assert e1.encloses(RegularPolygon(p1, 5, 3)) is False
    assert e1.encloses(RegularPolygon(p2, 5, 3)) is False

    # with generic symbols, the hradius is assumed to contain the major radius
    M = Symbol('M')
    m = Symbol('m')
    c = Ellipse(p1, M, m).circumference
    _x = c.atoms(Dummy).pop()
    assert c == 4 * M * C.Integral(
        sqrt((1 - _x**2 * (M**2 - m**2) / M**2) / (1 - _x**2)), (_x, 0, 1))

    assert e2.arbitrary_point() in e2

    # Foci
    f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0)
    ef = Ellipse(Point(0, 0), 4, 2)
    assert ef.foci in [(f1, f2), (f2, f1)]

    # Tangents
    v = sqrt(2) / 2
    p1_1 = Point(v, v)
    p1_2 = p2 + Point(half, 0)
    p1_3 = p2 + Point(0, 1)
    assert e1.tangent_lines(p4) == c1.tangent_lines(p4)
    assert e2.tangent_lines(p1_2) == [Line(p1_2, p2 + Point(half, 1))]
    assert e2.tangent_lines(p1_3) == [Line(p1_3, p2 + Point(half, 1))]
    assert c1.tangent_lines(p1_1) == [Line(p1_1, Point(0, sqrt(2)))]
    assert c1.tangent_lines(p1) == []
    assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1)))
    assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1)))
    assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2))))
    assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) is False
    assert c1.is_tangent(e1) is False
    assert c1.is_tangent(Ellipse(Point(2, 0), 1, 1)) is True
    assert c1.is_tangent(Polygon(Point(1, 1), Point(1, -1), Point(2,
                                                                  0))) is True
    assert c1.is_tangent(Polygon(Point(1, 1), Point(1, 0), Point(2,
                                                                 0))) is False

    assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == \
        [Line(Point(0, 0), Point(S(77)/25, S(132)/25)),
     Line(Point(0, 0), Point(S(33)/5, S(22)/5))]
    assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(3, 4)) == \
        [Line(Point(3, 4), Point(3, 5)), Line(Point(3, 4), Point(5, 4))]
    assert Circle(Point(5, 5), 2).tangent_lines(Point(3, 3)) == \
        [Line(Point(3, 3), Point(3, 5)), Line(Point(3, 3), Point(5, 3))]
    assert Circle(Point(5, 5), 2).tangent_lines(Point(5 - 2*sqrt(2), 5)) == \
        [Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 - sqrt(2))),
     Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 + sqrt(2))), ]

    # Properties
    major = 3
    minor = 1
    e4 = Ellipse(p2, minor, major)
    assert e4.focus_distance == sqrt(major**2 - minor**2)
    ecc = e4.focus_distance / major
    assert e4.eccentricity == ecc
    assert e4.periapsis == major * (1 - ecc)
    assert e4.apoapsis == major * (1 + ecc)
    # independent of orientation
    e4 = Ellipse(p2, major, minor)
    assert e4.focus_distance == sqrt(major**2 - minor**2)
    ecc = e4.focus_distance / major
    assert e4.eccentricity == ecc
    assert e4.periapsis == major * (1 - ecc)
    assert e4.apoapsis == major * (1 + ecc)

    # Intersection
    l1 = Line(Point(1, -5), Point(1, 5))
    l2 = Line(Point(-5, -1), Point(5, -1))
    l3 = Line(Point(-1, -1), Point(1, 1))
    l4 = Line(Point(-10, 0), Point(0, 10))
    pts_c1_l3 = [
        Point(sqrt(2) / 2,
              sqrt(2) / 2),
        Point(-sqrt(2) / 2, -sqrt(2) / 2)
    ]

    assert intersection(e2, l4) == []
    assert intersection(c1, Point(1, 0)) == [Point(1, 0)]
    assert intersection(c1, l1) == [Point(1, 0)]
    assert intersection(c1, l2) == [Point(0, -1)]
    assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]]
    assert intersection(c1, c2) == [Point(0, 1), Point(1, 0)]
    assert intersection(c1, c3) == [Point(sqrt(2) / 2, sqrt(2) / 2)]
    assert e1.intersection(l1) == [Point(1, 0)]
    assert e2.intersection(l4) == []
    assert e1.intersection(Circle(Point(0, 2), 1)) == [Point(0, 1)]
    assert e1.intersection(Circle(Point(5, 0), 1)) == []
    assert e1.intersection(Ellipse(Point(2, 0), 1, 1)) == [Point(1, 0)]
    assert e1.intersection(Ellipse(
        Point(5, 0),
        1,
        1,
    )) == []
    assert e1.intersection(Point(2, 0)) == []
    assert e1.intersection(e1) == e1

    # some special case intersections
    csmall = Circle(p1, 3)
    cbig = Circle(p1, 5)
    cout = Circle(Point(5, 5), 1)
    # one circle inside of another
    assert csmall.intersection(cbig) == []
    # separate circles
    assert csmall.intersection(cout) == []
    # coincident circles
    assert csmall.intersection(csmall) == csmall

    v = sqrt(2)
    t1 = Triangle(Point(0, v), Point(0, -v), Point(v, 0))
    points = intersection(t1, c1)
    assert len(points) == 4
    assert Point(0, 1) in points
    assert Point(0, -1) in points
    assert Point(v / 2, v / 2) in points
    assert Point(v / 2, -v / 2) in points

    circ = Circle(Point(0, 0), 5)
    elip = Ellipse(Point(0, 0), 5, 20)
    assert intersection(circ, elip) in \
        [[Point(5, 0), Point(-5, 0)], [Point(-5, 0), Point(5, 0)]]
    assert elip.tangent_lines(Point(0, 0)) == []
    elip = Ellipse(Point(0, 0), 3, 2)
    assert elip.tangent_lines(Point(3, 0)) == \
        [Line(Point(3, 0), Point(3, -12))]

    e1 = Ellipse(Point(0, 0), 5, 10)
    e2 = Ellipse(Point(2, 1), 4, 8)
    a = S(53) / 17
    c = 2 * sqrt(3991) / 17
    ans = [Point(a - c / 8, a / 2 + c), Point(a + c / 8, a / 2 - c)]
    assert e1.intersection(e2) == ans
    e2 = Ellipse(Point(x, y), 4, 8)
    c = sqrt(3991)
    ans = [
        Point(c / 68 + a, -2 * c / 17 + a / 2),
        Point(-c / 68 + a, 2 * c / 17 + a / 2)
    ]
    assert [p.subs({x: 2, y: 1}) for p in e1.intersection(e2)] == ans

    # Combinations of above
    assert e3.is_tangent(e3.tangent_lines(p1 + Point(y1, 0))[0])

    e = Ellipse((1, 2), 3, 2)
    assert e.tangent_lines(Point(10, 0)) == \
        [Line(Point(10, 0), Point(1, 0)),
        Line(Point(10, 0), Point(S(14)/5, S(18)/5))]

    # encloses_point
    e = Ellipse((0, 0), 1, 2)
    assert e.encloses_point(e.center)
    assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
    assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
    assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
    assert e.encloses_point(e.center +
                            Point(e.hradius + Rational(1, 10), 0)) is False
    e = Ellipse((0, 0), 2, 1)
    assert e.encloses_point(e.center)
    assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
    assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
    assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
    assert e.encloses_point(e.center +
                            Point(e.hradius + Rational(1, 10), 0)) is False
    assert c1.encloses_point(Point(1, 0)) is False
    assert c1.encloses_point(Point(0.3, 0.4)) is True

    assert e.scale(2, 3) == Ellipse((0, 0), 4, 3)
    assert e.scale(3, 6) == Ellipse((0, 0), 6, 6)
    assert e.rotate(pi / 3) == e
    assert e.rotate(pi/3, (1, 2)) == \
        Ellipse(Point(S(1)/2 + sqrt(3), -sqrt(3)/2 + 1), 2, 1)

    # transformations
    c = Circle((1, 1), 2)
    assert c.scale(-1) == Circle((-1, 1), 2)
    assert c.scale(y=-1) == Circle((1, -1), 2)
    assert c.scale(2) == Ellipse((2, 1), 4, 2)
Exemple #31
0
def test_point():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    x1 = Symbol('x1', real=True)
    x2 = Symbol('x2', real=True)
    y1 = Symbol('y1', real=True)
    y2 = Symbol('y2', real=True)
    half = Rational(1, 2)
    p1 = Point(x1, x2)
    p2 = Point(y1, y2)
    p3 = Point(0, 0)
    p4 = Point(1, 1)
    p5 = Point(0, 1)

    assert p1 in p1
    assert p1 not in p2
    assert p2.y == y2
    assert (p3 + p4) == p4
    assert (p2 - p1) == Point(y1 - x1, y2 - x2)
    assert p4*5 == Point(5, 5)
    assert -p2 == Point(-y1, -y2)
    raises(ValueError, lambda: Point(3, I))
    raises(ValueError, lambda: Point(2*I, I))
    raises(ValueError, lambda: Point(3 + I, I))

    assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3))
    assert Point.midpoint(p3, p4) == Point(half, half)
    assert Point.midpoint(p1, p4) == Point(half + half*x1, half + half*x2)
    assert Point.midpoint(p2, p2) == p2
    assert p2.midpoint(p2) == p2

    assert Point.distance(p3, p4) == sqrt(2)
    assert Point.distance(p1, p1) == 0
    assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2)

    assert Point.taxicab_distance(p4, p3) == 2

    p1_1 = Point(x1, x1)
    p1_2 = Point(y2, y2)
    p1_3 = Point(x1 + 1, x1)
    assert Point.is_collinear(p3)
    assert Point.is_collinear(p3, p4)
    assert Point.is_collinear(p3, p4, p1_1, p1_2)
    assert Point.is_collinear(p3, p4, p1_1, p1_3) is False
    assert Point.is_collinear(p3, p3, p4, p5) is False
    line = Line(Point(1,0), slope = 1)
    raises(TypeError, lambda: Point.is_collinear(line))
    raises(TypeError, lambda: p1_1.is_collinear(line))

    assert p3.intersection(Point(0, 0)) == [p3]
    assert p3.intersection(p4) == []

    assert p1.dot(p4) == x1 + x2
    assert p3.dot(p4) == 0
    assert p4.dot(p5) == 1

    x_pos = Symbol('x', real=True, positive=True)
    p2_1 = Point(x_pos, 0)
    p2_2 = Point(0, x_pos)
    p2_3 = Point(-x_pos, 0)
    p2_4 = Point(0, -x_pos)
    p2_5 = Point(x_pos, 5)
    assert Point.is_concyclic(p2_1)
    assert Point.is_concyclic(p2_1, p2_2)
    assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4)
    assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_5) is False
    assert Point.is_concyclic(p4, p4 * 2, p4 * 3) is False

    assert p4.scale(2, 3) == Point(2, 3)
    assert p3.scale(2, 3) == p3

    assert p4.rotate(pi, Point(0.5, 0.5)) == p3
    assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2)
    assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2)

    assert p4 * 5 == Point(5, 5)
    assert p4 / 5 == Point(0.2, 0.2)

    raises(ValueError, lambda: Point(0, 0) + 10)

    # Point differences should be simplified
    assert Point(x*(x - 1), y) - Point(x**2 - x, y + 1) == Point(0, -1)

    a, b = Rational(1, 2), Rational(1, 3)
    assert Point(a, b).evalf(2) == \
        Point(a.n(2), b.n(2))
    raises(ValueError, lambda: Point(1, 2) + 1)

    # test transformations
    p = Point(1, 0)
    assert p.rotate(pi/2) == Point(0, 1)
    assert p.rotate(pi/2, p) == p
    p = Point(1, 1)
    assert p.scale(2, 3) == Point(2, 3)
    assert p.translate(1, 2) == Point(2, 3)
    assert p.translate(1) == Point(2, 1)
    assert p.translate(y=1) == Point(1, 2)
    assert p.translate(*p.args) == Point(2, 2)

    # Check invalid input for transform
    raises(ValueError, lambda: p3.transform(p3))
    raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]])))
Exemple #32
0
def test_line():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x1)
    p4 = Point(y1, y1)
    p5 = Point(x1, 1 + x1)
    p6 = Point(1, 0)
    p7 = Point(0, 1)
    p8 = Point(2, 0)
    p9 = Point(2, 1)

    l1 = Line(p1, p2)
    l2 = Line(p3, p4)
    l3 = Line(p3, p5)
    l4 = Line(p1, p6)
    l5 = Line(p1, p7)
    l6 = Line(p8, p9)
    l7 = Line(p2, p9)
    raises(ValueError, lambda: Line(Point(0, 0), Point(0, 0)))

    # Basic stuff
    assert Line((1, 1), slope=1) == Line((1, 1), (2, 2))
    assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2))
    assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2))
    raises(ValueError, lambda: Line((1, 1), 1))
    assert Line(p1, p2) == Line(p2, p1)
    assert l1 == l2
    assert l1 != l3
    assert l1.slope == 1
    assert l1.length == oo
    assert l3.slope == oo
    assert l4.slope == 0
    assert l4.coefficients == (0, 1, 0)
    assert l4.equation(x=x, y=y) == y
    assert l5.slope == oo
    assert l5.coefficients == (1, 0, 0)
    assert l5.equation() == x
    assert l6.equation() == x - 2
    assert l7.equation() == y - 1
    assert p1 in l1  # is p1 on the line l1?
    assert p1 not in l3
    assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0)

    assert simplify(l1.equation()) in (x - y, y - x)
    assert simplify(l3.equation()) in (x - x1, x1 - x)

    assert Line(p1, p2).scale(2, 1) == Line(p1, p9)

    assert l2.arbitrary_point() in l2
    for ind in xrange(0, 5):
        assert l3.random_point() in l3

    # Orthogonality
    p1_1 = Point(-x1, x1)
    l1_1 = Line(p1, p1_1)
    assert l1.perpendicular_line(p1) == l1_1
    assert Line.is_perpendicular(l1, l1_1)
    assert Line.is_perpendicular(l1, l2) is False
    p = l1.random_point()
    assert l1.perpendicular_segment(p) == p

    # Parallelity
    p2_1 = Point(-2 * x1, 0)
    l2_1 = Line(p3, p5)
    assert l2.parallel_line(p1_1) == Line(p2_1, p1_1)
    assert l2_1.parallel_line(p1) == Line(p1, Point(0, 2))
    assert Line.is_parallel(l1, l2)
    assert Line.is_parallel(l2, l3) is False
    assert Line.is_parallel(l2, l2.parallel_line(p1_1))
    assert Line.is_parallel(l2_1, l2_1.parallel_line(p1))

    # Intersection
    assert intersection(l1, p1) == [p1]
    assert intersection(l1, p5) == []
    assert intersection(l1, l2) in [[l1], [l2]]
    assert intersection(l1, l1.parallel_line(p5)) == []

    # Concurrency
    l3_1 = Line(Point(5, x1), Point(-Rational(3, 5), x1))
    assert Line.is_concurrent(l1) is False
    assert Line.is_concurrent(l1, l3)
    assert Line.is_concurrent(l1, l3, l3_1)
    assert Line.is_concurrent(l1, l1_1, l3) is False

    # Projection
    assert l2.projection(p4) == p4
    assert l1.projection(p1_1) == p1
    assert l3.projection(p2) == Point(x1, 1)
    raises(
        GeometryError, lambda: Line(Point(0, 0), Point(1, 0)).projection(
            Circle(Point(0, 0), 1)))

    # Finding angles
    l1_1 = Line(p1, Point(5, 0))
    assert feq(Line.angle_between(l1, l1_1).evalf(), pi.evalf() / 4)

    # Testing Rays and Segments (very similar to Lines)
    assert Ray((1, 1), angle=pi / 4) == Ray((1, 1), (2, 2))
    assert Ray((1, 1), angle=pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=-pi / 2) == Ray((1, 1), (1, 0))
    assert Ray((1, 1), angle=-3 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5.0 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1))
    assert Ray((1, 1), angle=3.0 * pi) == Ray((1, 1), (0, 1))
    assert Ray((1, 1), angle=4.0 * pi) == Ray((1, 1), (2, 1))
    assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1))
    assert Ray((1, 1), angle=4.05 * pi) == Ray(Point(1, 1),
                                               Point(2, 1 + C.tan(4.05 * pi)))
    assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + C.tan(5)))
    raises(ValueError, lambda: Ray((1, 1), 1))

    r1 = Ray(p1, Point(-1, 5))
    r2 = Ray(p1, Point(-1, 1))
    r3 = Ray(p3, p5)
    r4 = Ray(p1, p2)
    r5 = Ray(p2, p1)
    r6 = Ray(Point(0, 1), Point(1, 2))
    r7 = Ray(Point(0.5, 0.5), Point(1, 1))
    assert l1.projection(r1) == Ray(p1, p2)
    assert l1.projection(r2) == p1
    assert r3 != r1
    t = Symbol('t', real=True)
    assert Ray((1, 1), angle=pi/4).arbitrary_point() == \
        Point(t + 1, t + 1)

    s1 = Segment(p1, p2)
    s2 = Segment(p1, p1_1)
    assert s1.midpoint == Point(Rational(1, 2), Rational(1, 2))
    assert s2.length == sqrt(2 * (x1**2))
    assert s1.perpendicular_bisector() == Line(Point(0, 1), Point(1, 0))
    assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2 * t)

    # intersections
    assert s1.intersection(Line(p6, p9)) == []
    s3 = Segment(Point(0.25, 0.25), Point(0.5, 0.5))
    assert s1.intersection(s3) == [s1]
    assert s3.intersection(s1) == [s3]
    assert r4.intersection(s3) == [s3]
    assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == []
    assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == \
        [Segment(p1, Point(0.5, 0.5))]
    s3 = Segment(Point(1, 1), Point(2, 2))
    assert s1.intersection(s3) == [Point(1, 1)]
    s3 = Segment(Point(0.5, 0.5), Point(1.5, 1.5))
    assert s1.intersection(s3) == [Segment(Point(0.5, 0.5), p2)]
    assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == []
    assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1]
    assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == \
        [Segment(p1, Point(0.5, 0.5))]
    assert r4.intersection(r5) == [s1]
    assert r5.intersection(r6) == []
    assert r4.intersection(r7) == r7.intersection(r4) == [r7]

    # Segment contains
    a, b = symbols('a,b')
    s = Segment((0, a), (0, b))
    assert Point(0, (a + b) / 2) in s
    s = Segment((a, 0), (b, 0))
    assert Point((a + b) / 2, 0) in s

    raises(Undecidable, lambda: Point(2 * a, 0) in s)

    # Testing distance from a Segment to an object
    s1 = Segment(Point(0, 0), Point(1, 1))
    s2 = Segment(Point(half, half), Point(1, 0))
    pt1 = Point(0, 0)
    pt2 = Point(Rational(3) / 2, Rational(3) / 2)
    assert s1.distance(pt1) == 0
    assert s2.distance(pt1) == 2**(half) / 2
    assert s2.distance(pt2) == 2**(half)

    # Special cases of projection and intersection
    r1 = Ray(Point(1, 1), Point(2, 2))
    r2 = Ray(Point(2, 2), Point(0, 0))
    r3 = Ray(Point(1, 1), Point(-1, -1))
    r4 = Ray(Point(0, 4), Point(-1, -5))
    r5 = Ray(Point(2, 2), Point(3, 3))
    assert intersection(r1, r2) == [Segment(Point(1, 1), Point(2, 2))]
    assert intersection(r1, r3) == [Point(1, 1)]
    assert r1.projection(r3) == Point(1, 1)
    assert r1.projection(r4) == Segment(Point(1, 1), Point(2, 2))

    r5 = Ray(Point(0, 0), Point(0, 1))
    r6 = Ray(Point(0, 0), Point(0, 2))
    assert r5 in r6
    assert r6 in r5

    s1 = Segment(Point(0, 0), Point(2, 2))
    s2 = Segment(Point(-1, 5), Point(-5, -10))
    s3 = Segment(Point(0, 4), Point(-2, 2))
    assert intersection(r1, s1) == [Segment(Point(1, 1), Point(2, 2))]
    assert r1.projection(s2) == Segment(Point(1, 1), Point(2, 2))
    assert s3.projection(r1) == Segment(Point(0, 4), Point(-1, 3))

    l1 = Line(Point(0, 0), Point(3, 4))
    r1 = Ray(Point(0, 0), Point(3, 4))
    s1 = Segment(Point(0, 0), Point(3, 4))
    assert intersection(l1, l1) == [l1]
    assert intersection(l1, r1) == [r1]
    assert intersection(l1, s1) == [s1]
    assert intersection(r1, l1) == [r1]
    assert intersection(s1, l1) == [s1]

    entity1 = Segment(Point(-10, 10), Point(10, 10))
    entity2 = Segment(Point(-5, -5), Point(-5, 5))
    assert intersection(entity1, entity2) == []

    r1 = Ray(p1, Point(0, 1))
    r2 = Ray(Point(0, 1), p1)
    r3 = Ray(p1, p2)
    r4 = Ray(p2, p1)
    s1 = Segment(p1, Point(0, 1))
    assert Line(r1.source, r1.random_point()).slope == r1.slope
    assert Line(r2.source, r2.random_point()).slope == r2.slope
    assert Segment(Point(0, -1), s1.random_point()).slope == s1.slope
    p_r3 = r3.random_point()
    p_r4 = r4.random_point()
    assert p_r3.x >= p1.x and p_r3.y >= p1.y
    assert p_r4.x <= p2.x and p_r4.y <= p2.y
    p10 = Point(2000, 2000)
    s1 = Segment(p1, p10)
    p_s1 = s1.random_point()
    assert p1.x <= p_s1.x and p_s1.x <= p10.x and p1.y <= p_s1.y and p_s1.y <= p10.y
    s2 = Segment(p10, p1)

    assert hash(s1) == hash(s2)
    p11 = p10.scale(2, 2)
    assert s1.is_similar(Segment(p10, p11))
    assert s1.is_similar(r1) is False
    assert (r1 in s1) is False
    assert Segment(p1, p2) in s1
    assert s1.plot_interval() == [t, 0, 1]
    assert s1 in Line(p1, p10)
    assert Line(p1, p10) == Line(p10, p1)
    assert Line(p1, p10) != p1
    assert Line(p1, p10).plot_interval() == [t, -5, 5]
    assert Ray((0, 0), angle=pi/4).plot_interval() == \
        [t, 0, 10]
def generate_map(): 
 

	screen.fill((0, 0, 0))

	points = generate_random_points(num_points, width, height, buf)


	#for x, y in points:
	#	pygame.draw.circle(screen, WHITE, (x,y), 2, 1)

	voronoi_context = voronoi(points)

	voronoi_point_dict = {}
	point_to_segment_dict = {}
	segments = []
	vertices = []

	top_l =  Point(0,0)
	top_r = Point(width,0)
	bottom_l = Point(0, height)
	bottom_r = Point(width, height) 

	top = Line(top_l, top_r) 
	left = Line(top_l, bottom_l) 
	right = Line(top_r, bottom_r) 
	bottom = Line(bottom_l, bottom_r) 

	boundaries = [top, right, bottom, left]

	for edge in voronoi_context.edges:
		il, i1, i2 = edge # index of line, index of vertex 1, index of vertex 2

		line_color = RED 

		vert1 = None
		vert2 = None
		print_line = True

		if i1 is not -1 and i2 is not -1:
			vert1 = voronoi_context.vertices[i1]
			vert2 = voronoi_context.vertices[i2]

		else:
			line_point = None

			if i1 is -1:
				line_p = voronoi_context.vertices[i2]
			if i2 is -1: 
				line_p = voronoi_context.vertices[i1]

			line_point = Point(line_p[0], line_p[1])
			line = voronoi_context.lines[il] 

			p1 = None
			p2 = None
			if line[1] == 0:
				p1 = line_point
				p2 = Point(line[0]/line[2], 1)
			else: 
				p1 = Point(0, line[2]/line[1])
				p2 = line_point

			l = Line(p1, p2)

			top_intersect = l.intersection(top)
			bottom_intersect = l.intersection(bottom)
			right_intersect = l.intersection(right)
			left_intersect = l.intersection(left)

			distances = []

			top_dist = None
			bottom_dist = None
			right_dist = None
			left_dist = None

			if len(top_intersect) != 0: 
				top_dist = abs(line_point.distance(top_intersect[0]))
				distances.append(top_dist)
			if len(bottom_intersect) != 0 : 
				bottom_dist = abs(line_point.distance(bottom_intersect[0]))
				distances.append(bottom_dist)
			if len(right_intersect) != 0:
				right_dist = abs(line_point.distance(right_intersect[0]))
				distances.append(right_dist)
			if len(left_intersect) != 0: 
				left_dist = abs(line_point.distance(left_intersect[0]))
				distances.append(left_dist)

			vert1 = line_p 
			v2 = None

			if top_dist == min(distances):
				v2 = top_intersect[0]
			elif bottom_dist == min(distances):
				v2 = bottom_intersect[0]
			elif right_dist == min(distances):
				v2 = right_intersect[0]
			elif left_dist == min(distances):
				v2 = left_intersect[0]
			else: 
				v2 = Point(0, 0)
			
			vert2 = (v2.x, v2.y)

			if vert1[0] < 0 or vert1[1] < 0 or vert2[0] < 0 or vert2[1] < 0 or vert1[0] > width or vert1[1] > height or vert2[0] > width or vert2[1] > height:
				print_line = False

		if print_line:
			vert1, vert2 = adjust_out_of_bounds_points(vert1, vert2, boundaries)

		seg = None
		if vert1 == None or vert2 == None:
			print_line = False 
		if print_line: 
			vert1_p = Point(vert1)
			vert2_p = Point(vert2)
			seg = Segment(vert1_p, vert2_p)
			segments.append(seg)
		
			if not vert1_p in voronoi_point_dict:
				voronoi_point_dict[vert1_p] = []
			if not vert2_p in voronoi_point_dict:
				voronoi_point_dict[vert2_p] = []	

	 		voronoi_point_dict[vert1_p].append(vert2_p)
	 		voronoi_point_dict[vert2_p].append(vert1_p) 

	 		if not vert1_p in point_to_segment_dict:
	 			point_to_segment_dict[vert1_p] = []
	 		if not vert2_p in point_to_segment_dict:
	 			point_to_segment_dict[vert2_p] = []

	 		point_to_segment_dict[vert1_p].append(seg)
	 		point_to_segment_dict[vert2_p].append(seg)
	 	
			pygame.draw.line(screen, line_color, vert1, vert2, 1)

	pygame.display.flip()

	top_intersects = []
	bottom_intersects = [] 
	right_intersects = [] 
	left_intersects = [] 

	for seg in segments:
		if seg.p1.y <= 1:
			top_intersects.append(seg.p1)
		if seg.p2.y <= 1:
			top_intersects.append(seg.p2)
		if seg.p1.x >= width -1: 
			right_intersects.append(seg.p1)
		if seg.p2.x >= width-1: 
			right_intersects.append(seg.p2)
		if seg.p1.x <= 1:
			left_intersects.append(seg.p1)
		if seg.p2.x <= 1:
			left_intersects.append(seg.p2)
		if seg.p1.y >= height-1: 
			bottom_intersects.append(seg.p1)
		if seg.p2.y >= height-1: 
			bottom_intersects.append(seg.p2)

	top_intersects = sorted(top_intersects, key=lambda point: point.x)
	bottom_intersects = sorted(bottom_intersects, key=lambda point: point.x)
	left_intersects = sorted(left_intersects, key=lambda point: point.y)
	right_intersects = sorted(right_intersects, key=lambda point: point.y)

	for i in range(0, 4):
		intersect = None
		prev_vertex = None
		final_vertex = None

		if i == 0:
			prev_vertex = top_l
			intersect = top_intersects
			intersect.append(top_r)
		if i == 1:
			prev_vertex = bottom_l
			intersect = bottom_intersects
			intersect.append(bottom_r)
		if i == 2:
			prev_vertex = top_l
			intersect = left_intersects
			intersect.append(bottom_l)
		if i == 3:
			prev_vertex = top_r
			intersect = right_intersects
			intersect.append(bottom_r)

		if not prev_vertex in voronoi_point_dict:
			voronoi_point_dict[prev_vertex] = []
		if not final_vertex in voronoi_point_dict:
			voronoi_point_dict[final_vertex] = []

		if not prev_vertex in point_to_segment_dict:
	 		point_to_segment_dict[prev_vertex] = []
	 	if not final_vertex in point_to_segment_dict:
	 		point_to_segment_dict[final_vertex] = []

	 		

		for vertex in intersect:
			if not vertex in voronoi_point_dict:
				voronoi_point_dict[vertex] = []
			if not prev_vertex in voronoi_point_dict:
				voronoi_point_dict[prev_vertex] = []	
			s = Segment(prev_vertex, vertex)
		 	voronoi_point_dict[vertex].append(prev_vertex)
		 	voronoi_point_dict[prev_vertex].append(vertex)

		 	if not vertex in point_to_segment_dict:
	 			point_to_segment_dict[vertex] = []
	 		if not prev_vertex in point_to_segment_dict:
	 			point_to_segment_dict[prev_vertex] = []

	 		point_to_segment_dict[vertex].append(s)
	 		point_to_segment_dict[prev_vertex].append(s)

		 	prev_vertex = vertex
	 
	try: 
		polygons, segments_to_polygons = generate_polygons(voronoi_point_dict, segments, points, point_to_segment_dict)
	except Exception as e:
		print e 
		print "crashed"
		while 1:
			""" helllo"""
	for seg, gons in segments_to_polygons.iteritems():
		for gon in gons:
			gon.connect_adjacent_nodes(gons)

	for polygon in polygons:
		for node in polygon.adjacent_nodes:
			s = Segment(node.center, polygon.center)
			draw_segment(s, WHITE)

	highest_points_of_elevation = []
	frontiers = []

	for i in range(0, number_of_peaks):
		p = random.choice(polygons)
		p.elevation = max_elevation
		highest_points_of_elevation.append(p)

		frontiers.append(set(p.adjacent_nodes))

	marked_polygons = set([])	

	elevation = max_elevation
	while len(marked_polygons) < num_points:
		elevation -= 1 
		for i in range(0, number_of_peaks):
			new_frontier = set([])

			while len(frontiers[i]) > 0:
				node = frontiers[i].pop()
				node.elevation = elevation
				draw_point(node.center, ORANGE)

				for n in node.adjacent_nodes:
					if n not in marked_polygons:
						new_frontier.add(n)

				marked_polygons.add(node)
			frontiers[i] = new_frontier


	for polygon in polygons:
		if polygon.elevation <= 0:
			vertices = []
			for edge in polygon.edge_list:
				p = (edge.x, edge.y)
				vertices.append(p)
			pygame.draw.polygon(screen, BLUE, vertices, 0)
			pygame.display.flip()
	pygame.display.flip()
Exemple #34
0
def test_point():
    p1 = Point(x1, x2)
    p2 = Point(y1, y2)
    p3 = Point(0, 0)
    p4 = Point(1, 1)

    assert p1 in p1
    assert p1 not in p2
    assert p2.y == y2
    assert (p3 + p4) == p4
    assert (p2 - p1) == Point(y1 - x1, y2 - x2)
    assert p4 * 5 == Point(5, 5)
    assert -p2 == Point(-y1, -y2)

    assert Point.midpoint(p3, p4) == Point(half, half)
    assert Point.midpoint(p1, p4) == Point(half + half * x1, half + half * x2)
    assert Point.midpoint(p2, p2) == p2
    assert p2.midpoint(p2) == p2

    assert Point.distance(p3, p4) == sqrt(2)
    assert Point.distance(p1, p1) == 0
    assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2)

    p1_1 = Point(x1, x1)
    p1_2 = Point(y2, y2)
    p1_3 = Point(x1 + 1, x1)
    assert Point.is_collinear(p3)
    assert Point.is_collinear(p3, p4)
    assert Point.is_collinear(p3, p4, p1_1, p1_2)
    assert Point.is_collinear(p3, p4, p1_1, p1_3) is False

    assert p3.intersection(Point(0, 0)) == [p3]
    assert p3.intersection(p4) == []

    x_pos = Symbol('x', real=True, positive=True)
    p2_1 = Point(x_pos, 0)
    p2_2 = Point(0, x_pos)
    p2_3 = Point(-x_pos, 0)
    p2_4 = Point(0, -x_pos)
    p2_5 = Point(x_pos, 5)
    assert Point.is_concyclic(p2_1)
    assert Point.is_concyclic(p2_1, p2_2)
    assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4)
    assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_5) is False
    assert Point.is_concyclic(p4, p4 * 2, p4 * 3) is False

    assert p4.scale(2, 3) == Point(2, 3)
    assert p3.scale(2, 3) == p3

    assert p4.rotate(pi, Point(0.5, 0.5)) == p3
    assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2)
    assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2)

    assert p4 * 5 == Point(5, 5)
    assert p4 / 5 == Point(0.2, 0.2)

    raises(ValueError, lambda: Point(0, 0) + 10)

    # Point differences should be simplified
    assert Point(x * (x - 1), y) - Point(x**2 - x, y + 1) == Point(0, -1)

    a, b = Rational(1, 2), Rational(1, 3)
    assert Point(a, b).evalf(2) == \
        Point(a.n(2), b.n(2))
    raises(ValueError, lambda: Point(1, 2) + 1)

    # test transformations
    p = Point(1, 0)
    assert p.rotate(pi / 2) == Point(0, 1)
    assert p.rotate(pi / 2, p) == p
    p = Point(1, 1)
    assert p.scale(2, 3) == Point(2, 3)
    assert p.translate(1, 2) == Point(2, 3)
    assert p.translate(1) == Point(2, 1)
    assert p.translate(y=1) == Point(1, 2)
    assert p.translate(*p.args) == Point(2, 2)
Exemple #35
0
def test_polygon():
    t = Triangle(Point(0, 0), Point(2, 0), Point(3, 3))
    assert Polygon(Point(0, 0), Point(1, 0), Point(2, 0), Point(3, 3)) == t
    assert Polygon(Point(1, 0), Point(2, 0), Point(3, 3), Point(0, 0)) == t
    assert Polygon(Point(2, 0), Point(3, 3), Point(0, 0), Point(1, 0)) == t

    p1 = Polygon(Point(0, 0), Point(3, -1), Point(6, 0), Point(4, 5),
                 Point(2, 3), Point(0, 3))
    p2 = Polygon(Point(6, 0), Point(3, -1), Point(0, 0), Point(0, 3),
                 Point(2, 3), Point(4, 5))
    p3 = Polygon(Point(0, 0), Point(3, 0), Point(5, 2), Point(4, 4))
    p4 = Polygon(Point(0, 0), Point(4, 4), Point(5, 2), Point(3, 0))
    p5 = Polygon(Point(0, 0), Point(4, 4), Point(0, 4))

    #
    # General polygon
    #
    assert p1 == p2
    assert len(p1.args) == 6
    assert len(p1.sides) == 6
    assert p1.perimeter == 5 + 2 * sqrt(10) + sqrt(29) + sqrt(8)
    assert p1.area == 22
    assert not p1.is_convex()
    # ensure convex for both CW and CCW point specification
    assert p3.is_convex()
    assert p4.is_convex()
    dict5 = p5.angles
    assert dict5[Point(0, 0)] == pi / 4
    assert dict5[Point(0, 4)] == pi / 2
    assert p5.encloses_point(Point(x, y)) is None
    assert p5.encloses_point(Point(1, 3))
    assert p5.encloses_point(Point(0, 0)) is False
    assert p5.encloses_point(Point(4, 0)) is False
    p5.plot_interval('x') == [x, 0, 1]
    assert p5.distance(Polygon(Point(10, 10), Point(14, 14),
                               Point(10, 14))) == 6 * sqrt(2)
    assert p5.distance(
        Polygon(Point(1, 8), Point(5, 8), Point(8, 12), Point(1, 12))) == 4
    raises(
        UserWarning,
        lambda: Polygon(Point(0, 0), Point(1, 0), Point(1, 1)).distance(
            Polygon(Point(0, 0), Point(0, 1), Point(1, 1))))
    assert hash(p5) == hash(Polygon(Point(0, 0), Point(4, 4), Point(0, 4)))
    assert p5 == Polygon(Point(4, 4), Point(0, 4), Point(0, 0))
    assert Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) in p5
    assert p5 != Point(0, 4)
    assert Point(0, 1) in p5
    assert p5.arbitrary_point('t').subs(Symbol('t', real=True), 0) == \
        Point(0, 0)
    raises(
        ValueError, lambda: Polygon(Point(x, 0), Point(0, y), Point(x, y)).
        arbitrary_point('x'))

    #
    # Regular polygon
    #
    p1 = RegularPolygon(Point(0, 0), 10, 5)
    p2 = RegularPolygon(Point(0, 0), 5, 5)
    raises(GeometryError,
           lambda: RegularPolygon(Point(0, 0), Point(0, 1), Point(1, 1)))
    raises(GeometryError, lambda: RegularPolygon(Point(0, 0), 1, 2))
    raises(ValueError, lambda: RegularPolygon(Point(0, 0), 1, 2.5))

    assert p1 != p2
    assert p1.interior_angle == 3 * pi / 5
    assert p1.exterior_angle == 2 * pi / 5
    assert p2.apothem == 5 * cos(pi / 5)
    assert p2.circumcenter == p1.circumcenter == Point(0, 0)
    assert p1.circumradius == p1.radius == 10
    assert p2.circumcircle == Circle(Point(0, 0), 5)
    assert p2.incircle == Circle(Point(0, 0), p2.apothem)
    assert p2.inradius == p2.apothem == (5 * (1 + sqrt(5)) / 4)
    p2.spin(pi / 10)
    dict1 = p2.angles
    assert dict1[Point(0, 5)] == 3 * pi / 5
    assert p1.is_convex()
    assert p1.rotation == 0
    assert p1.encloses_point(Point(0, 0))
    assert p1.encloses_point(Point(11, 0)) is False
    assert p2.encloses_point(Point(0, 4.9))
    p1.spin(pi / 3)
    assert p1.rotation == pi / 3
    assert p1.vertices[0] == Point(5, 5 * sqrt(3))
    for var in p1.args:
        if isinstance(var, Point):
            assert var == Point(0, 0)
        else:
            assert var == 5 or var == 10 or var == pi / 3
    assert p1 != Point(0, 0)
    assert p1 != p5

    # while spin works in place (notice that rotation is 2pi/3 below)
    # rotate returns a new object
    p1_old = p1
    assert p1.rotate(pi / 3) == RegularPolygon(Point(0, 0), 10, 5, 2 * pi / 3)
    assert p1 == p1_old

    assert p1.area == (-250 * sqrt(5) + 1250) / (4 * tan(pi / 5))
    assert p1.length == 20 * sqrt(-sqrt(5) / 8 + S(5) / 8)
    assert p1.scale(2, 2) == \
        RegularPolygon(p1.center, p1.radius*2, p1._n, p1.rotation)
    assert RegularPolygon((0, 0), 1, 4).scale(2, 3) == \
        Polygon(Point(2, 0), Point(0, 3), Point(-2, 0), Point(0, -3))

    assert repr(p1) == str(p1)

    #
    # Angles
    #
    angles = p4.angles
    assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
    assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
    assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
    assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))

    angles = p3.angles
    assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
    assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
    assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
    assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))

    #
    # Triangle
    #
    p1 = Point(0, 0)
    p2 = Point(5, 0)
    p3 = Point(0, 5)
    t1 = Triangle(p1, p2, p3)
    t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4))))
    t3 = Triangle(p1, Point(x1, 0), Point(0, x1))
    s1 = t1.sides
    assert Triangle(p1, p2, p1) == Polygon(p1, p2, p1) == Segment(p1, p2)
    raises(GeometryError, lambda: Triangle(Point(0, 0)))

    # Basic stuff
    assert Triangle(p1, p1, p1) == p1
    assert Triangle(p2, p2 * 2, p2 * 3) == Segment(p2, p2 * 3)
    assert t1.area == Rational(25, 2)
    assert t1.is_right()
    assert t2.is_right() is False
    assert t3.is_right()
    assert p1 in t1
    assert t1.sides[0] in t1
    assert Segment((0, 0), (1, 0)) in t1
    assert Point(5, 5) not in t2
    assert t1.is_convex()
    assert feq(t1.angles[p1].evalf(), pi.evalf() / 2)

    assert t1.is_equilateral() is False
    assert t2.is_equilateral()
    assert t3.is_equilateral() is False
    assert are_similar(t1, t2) is False
    assert are_similar(t1, t3)
    assert are_similar(t2, t3) is False
    assert t1.is_similar(Point(0, 0)) is False

    # Bisectors
    bisectors = t1.bisectors()
    assert bisectors[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    ic = (250 - 125 * sqrt(2)) / 50
    assert t1.incenter == Point(ic, ic)

    # Inradius
    assert t1.inradius == t1.incircle.radius == 5 - 5 * sqrt(2) / 2
    assert t2.inradius == t2.incircle.radius == 5 * sqrt(3) / 6
    assert t3.inradius == t3.incircle.radius == x1**2 / (
        (2 + sqrt(2)) * Abs(x1))

    # Circumcircle
    assert t1.circumcircle.center == Point(2.5, 2.5)

    # Medians + Centroid
    m = t1.medians
    assert t1.centroid == Point(Rational(5, 3), Rational(5, 3))
    assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    assert t3.medians[p1] == Segment(p1, Point(x1 / 2, x1 / 2))
    assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid]
    assert t1.medial == Triangle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5))

    # Perpendicular
    altitudes = t1.altitudes
    assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    assert altitudes[p2] == s1[0]
    assert altitudes[p3] == s1[2]
    assert t1.orthocenter == p1
    t = S('''Triangle(
    Point(100080156402737/5000000000000, 79782624633431/500000000000),
    Point(39223884078253/2000000000000, 156345163124289/1000000000000),
    Point(31241359188437/1250000000000, 338338270939941/1000000000000000))''')
    assert t.orthocenter == S(
        '''Point(-780660869050599840216997'''
        '''79471538701955848721853/80368430960602242240789074233100000000000000,'''
        '''20151573611150265741278060334545897615974257/16073686192120448448157'''
        '''8148466200000000000)''')

    # Ensure
    assert len(intersection(*bisectors.values())) == 1
    assert len(intersection(*altitudes.values())) == 1
    assert len(intersection(*m.values())) == 1

    # Distance
    p1 = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1))
    p2 = Polygon(Point(0,
                       Rational(5) / 4), Point(1,
                                               Rational(5) / 4),
                 Point(1,
                       Rational(9) / 4), Point(0,
                                               Rational(9) / 4))
    p3 = Polygon(Point(1, 2), Point(2, 2), Point(2, 1))
    p4 = Polygon(Point(1, 1), Point(Rational(6) / 5, 1),
                 Point(1,
                       Rational(6) / 5))
    pt1 = Point(half, half)
    pt2 = Point(1, 1)
    '''Polygon to Point'''
    assert p1.distance(pt1) == half
    assert p1.distance(pt2) == 0
    assert p2.distance(pt1) == Rational(3) / 4
    assert p3.distance(pt2) == sqrt(2) / 2
Exemple #36
0
def test_point3D():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    x1 = Symbol('x1', real=True)
    x2 = Symbol('x2', real=True)
    x3 = Symbol('x3', real=True)
    y1 = Symbol('y1', real=True)
    y2 = Symbol('y2', real=True)
    y3 = Symbol('y3', real=True)
    half = Rational(1, 2)
    p1 = Point3D(x1, x2, x3)
    p2 = Point3D(y1, y2, y3)
    p3 = Point3D(0, 0, 0)
    p4 = Point3D(1, 1, 1)
    p5 = Point3D(0, 1, 2)

    assert p1 in p1
    assert p1 not in p2
    assert p2.y == y2
    assert (p3 + p4) == p4
    assert (p2 - p1) == Point3D(y1 - x1, y2 - x2, y3 - x3)
    assert p4*5 == Point3D(5, 5, 5)
    assert -p2 == Point3D(-y1, -y2, -y3)

    assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3))
    assert Point3D.midpoint(p3, p4) == Point3D(half, half, half)
    assert Point3D.midpoint(p1, p4) == Point3D(half + half*x1, half + half*x2,
                                         half + half*x3)
    assert Point3D.midpoint(p2, p2) == p2
    assert p2.midpoint(p2) == p2

    assert Point3D.distance(p3, p4) == sqrt(3)
    assert Point3D.distance(p1, p1) == 0
    assert Point3D.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2 + p2.z**2)

    p1_1 = Point3D(x1, x1, x1)
    p1_2 = Point3D(y2, y2, y2)
    p1_3 = Point3D(x1 + 1, x1, x1)
    Point3D.are_collinear(p3)
    assert Point3D.are_collinear(p3, p4)
    assert Point3D.are_collinear(p3, p4, p1_1, p1_2)
    assert Point3D.are_collinear(p3, p4, p1_1, p1_3) is False
    assert Point3D.are_collinear(p3, p3, p4, p5) is False

    assert p3.intersection(Point3D(0, 0, 0)) == [p3]
    assert p3.intersection(p4) == []


    assert p4 * 5 == Point3D(5, 5, 5)
    assert p4 / 5 == Point3D(0.2, 0.2, 0.2)

    raises(ValueError, lambda: Point3D(0, 0, 0) + 10)

    # Point differences should be simplified
    assert Point3D(x*(x - 1), y, 2) - Point3D(x**2 - x, y + 1, 1) == \
        Point3D(0, -1, 1)

    a, b = Rational(1, 2), Rational(1, 3)
    assert Point(a, b).evalf(2) == \
        Point(a.n(2), b.n(2))
    raises(ValueError, lambda: Point(1, 2) + 1)

    # test transformations
    p = Point3D(1, 1, 1)
    assert p.scale(2, 3) == Point3D(2, 3, 1)
    assert p.translate(1, 2) == Point3D(2, 3, 1)
    assert p.translate(1) == Point3D(2, 1, 1)
    assert p.translate(z=1) == Point3D(1, 1, 2)
    assert p.translate(*p.args) == Point3D(2, 2, 2)

    # Test __new__
    assert Point3D(0.1, 0.2, evaluate=False, on_morph='ignore').args[0].is_Float


    # Test length property returns correctly
    assert p.length == 0
    assert p1_1.length == 0
    assert p1_2.length == 0

    # Test are_colinear type error
    raises(TypeError, lambda: Point3D.are_collinear(p, x))

    # Test are_coplanar
    assert Point.are_coplanar()
    assert Point.are_coplanar((1, 2, 0), (1, 2, 0), (1, 3, 0))
    assert Point.are_coplanar((1, 2, 0), (1, 2, 3))
    with warnings.catch_warnings(record=True) as w:
        raises(ValueError, lambda: Point2D.are_coplanar((1, 2), (1, 2, 3)))
    assert Point3D.are_coplanar((1, 2, 0), (1, 2, 3))
    assert Point.are_coplanar((0, 0, 0), (1, 1, 0), (1, 1, 1), (1, 2, 1)) is False
    planar2 = Point3D(1, -1, 1)
    planar3 = Point3D(-1, 1, 1)
    assert Point3D.are_coplanar(p, planar2, planar3) == True
    assert Point3D.are_coplanar(p, planar2, planar3, p3) == False
    assert Point.are_coplanar(p, planar2)
    planar2 = Point3D(1, 1, 2)
    planar3 = Point3D(1, 1, 3)
    assert Point3D.are_coplanar(p, planar2, planar3)  # line, not plane
    plane = Plane((1, 2, 1), (2, 1, 0), (3, 1, 2))
    assert Point.are_coplanar(*[plane.projection(((-1)**i, i)) for i in range(4)])

    # all 2D points are coplanar
    assert Point.are_coplanar(Point(x, y), Point(x, x + y), Point(y, x + 2)) is True

    # Test Intersection
    assert planar2.intersection(Line3D(p, planar3)) == [Point3D(1, 1, 2)]

    # Test Scale
    assert planar2.scale(1, 1, 1) == planar2
    assert planar2.scale(2, 2, 2, planar3) == Point3D(1, 1, 1)
    assert planar2.scale(1, 1, 1, p3) == planar2

    # Test Transform
    identity = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])
    assert p.transform(identity) == p
    trans = Matrix([[1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1], [0, 0, 0, 1]])
    assert p.transform(trans) == Point3D(2, 2, 2)
    raises(ValueError, lambda: p.transform(p))
    raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]])))

    # Test Equals
    assert p.equals(x1) == False

    # Test __sub__
    p_4d = Point(0, 0, 0, 1)
    with warnings.catch_warnings(record=True) as w:
        assert p - p_4d == Point(1, 1, 1, -1)
        assert len(w) == 1
    p_4d3d = Point(0, 0, 1, 0)
    with warnings.catch_warnings(record=True) as w:
        assert p - p_4d3d == Point(1, 1, 0, 0)
        assert len(w) == 1
Exemple #37
0
def test_point():
    p1 = Point(x1, x2)
    p2 = Point(y1, y2)
    p3 = Point(0, 0)
    p4 = Point(1, 1)

    assert p3.x == 0
    assert p3.y == 0

    assert p4.x == 1
    assert p4.y == 1

    assert len(p1) == 2
    assert p2[1] == y2
    assert (p3+p4) == p4
    assert (p2-p1) == Point(y1-x1, y2-x2)
    assert p4*5 == Point(5, 5)
    assert -p2 == Point(-y1, -y2)

    assert Point.midpoint(p3, p4) == Point(half, half)
    assert Point.midpoint(p1, p4) == Point(half + half*x1, half + half*x2)
    assert Point.midpoint(p2, p2) == p2

    assert Point.distance(p3, p4) == sqrt(2)
    assert Point.distance(p1, p1) == 0
    #assert Point.distance(p3, p2) == abs(p2)

    p1_1 = Point(x1, x1)
    p1_2 = Point(y2, y2)
    p1_3 = Point(x1 + 1, x1)
    assert Point.is_collinear(p3)
    assert Point.is_collinear(p3, p4)
    assert Point.is_collinear(p3, p4, p1_1, p1_2)
    assert Point.is_collinear(p3, p4, p1_1, p1_3) == False

    x_pos = Symbol('x', real=True, positive=True)
    p2_1 = Point(x_pos, 0)
    p2_2 = Point(0, x_pos)
    p2_3 = Point(-x_pos, 0)
    p2_4 = Point(0, -x_pos)
    p2_5 = Point(x_pos, 5)
    assert Point.is_concyclic(p2_1)
    assert Point.is_concyclic(p2_1, p2_2)
    assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4)
    assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_5) == False
def test_dot():
    raises(TypeError, lambda: Point(1, 2).dot(Line((0, 0), (1, 1))))
Exemple #39
0
def test_convex_hull():
    p = [
        Point(-5, -1),
        Point(-2, 1),
        Point(-2, -1),
        Point(-1, -3),
        Point(0, 0),
        Point(1, 1),
        Point(2, 2),
        Point(2, -1),
        Point(3, 1),
        Point(4, -1),
        Point(6, 2)
    ]
    ch = Polygon(p[0], p[3], p[9], p[10], p[6], p[1])
    #test handling of duplicate points
    p.append(p[3])

    #more than 3 collinear points
    another_p = [
        Point(-45, -85),
        Point(-45, 85),
        Point(-45, 26),
        Point(-45, -24)
    ]
    ch2 = Segment(another_p[0], another_p[1])

    assert convex_hull(*another_p) == ch2
    assert convex_hull(*p) == ch
    assert convex_hull(p[0]) == p[0]
    assert convex_hull(p[0], p[1]) == Segment(p[0], p[1])

    # no unique points
    assert convex_hull(*[p[-1]] * 3) == p[-1]

    # collection of items
    assert convex_hull(*[Point(0, 0),
                        Segment(Point(1, 0), Point(1, 1)),
                        RegularPolygon(Point(2, 0), 2, 4)]) == \
        Polygon(Point(0, 0), Point(2, -2), Point(4, 0), Point(2, 2))
Exemple #40
0
def test_point():
    p1 = Point(x1, x2)
    p2 = Point(y1, y2)
    p3 = Point(0, 0)
    p4 = Point(1, 1)

    assert len(p1) == 1
    assert p1 in p1
    assert p1 not in p2
    assert p2[1] == y2
    assert (p3+p4) == p4
    assert (p2-p1) == Point(y1-x1, y2-x2)
    assert p4*5 == Point(5, 5)
    assert -p2 == Point(-y1, -y2)

    assert Point.midpoint(p3, p4) == Point(half, half)
    assert Point.midpoint(p1, p4) == Point(half + half*x1, half + half*x2)
    assert Point.midpoint(p2, p2) == p2
    assert p2.midpoint(p2) == p2

    assert Point.distance(p3, p4) == sqrt(2)
    assert Point.distance(p1, p1) == 0
    assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2)

    p1_1 = Point(x1, x1)
    p1_2 = Point(y2, y2)
    p1_3 = Point(x1 + 1, x1)
    assert Point.is_collinear(p3)
    assert Point.is_collinear(p3, p4)
    assert Point.is_collinear(p3, p4, p1_1, p1_2)
    assert Point.is_collinear(p3, p4, p1_1, p1_3) == False

    assert p3.intersection(Point(0, 0)) == [p3]
    assert p3.intersection(p4) == []

    x_pos = Symbol('x', real=True, positive=True)
    p2_1 = Point(x_pos, 0)
    p2_2 = Point(0, x_pos)
    p2_3 = Point(-x_pos, 0)
    p2_4 = Point(0, -x_pos)
    p2_5 = Point(x_pos, 5)
    assert Point.is_concyclic(p2_1)
    assert Point.is_concyclic(p2_1, p2_2)
    assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4)
    assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_5) == False
    assert Point.is_concyclic(p4, p4 * 2, p4 * 3) == False

    assert p4.scale(2, 3) == Point(2, 3)
    assert p3.scale(2, 3) == p3

    assert p4.rotate(pi, Point(0.5, 0.5)) == p3
    assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2)
    assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2)

    assert p4 * 5 == Point(5, 5)
    assert p4 / 5 == Point(0.2, 0.2)

    raises(ValueError, 'Point(0,0) + 10')
                cl = mt.constraints.new('COPY_LOCATION')
                cl.target = _obj
                cl.subtarget = name

                cr = mt.constraints.new('COPY_ROTATION')
                cr.target = _obj
                cr.subtarget = name
                # print(mt.matrix_world)

bpy.ops.object.mode_set(mode='OBJECT')

l_eye = bpy.data.objects[emptyList[1]]
r_eye = bpy.data.objects[emptyList[0]]

l_eye_pos = Point(l_eye.matrix_world.translation)
r_eye_pos = Point(r_eye.matrix_world.translation)

global_location = map_tuple_gen(float, l_eye_pos.midpoint(r_eye_pos))

scn = bpy.context.scene

# --- Set Scene camera ---- #

camera = Camera()
camera.set_perspective(focal_length=render_focal_length,
                       sensor=render_sensor_size)

bpy.data.scenes["Scene"].render.resolution_x = final_image_resolution_x
bpy.data.scenes["Scene"].render.resolution_y = final_image_resolution_y
bpy.data.scenes[
Exemple #42
0
def test_ellipse():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p4 = Point(0, 1)

    e1 = Ellipse(p1, 1, 1)
    e2 = Ellipse(p2, half, 1)
    e3 = Ellipse(p1, y1, y1)
    c1 = Circle(p1, 1)
    c2 = Circle(p2, 1)
    c3 = Circle(Point(sqrt(2), sqrt(2)), 1)

    # Test creation with three points
    cen, rad = Point(3*half, 2), 5*half
    assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad)
    raises(
        GeometryError, lambda: Circle(Point(0, 0), Point(1, 1), Point(2, 2)))

    raises(ValueError, lambda: Ellipse(None, None, None, 1))
    raises(GeometryError, lambda: Circle(Point(0, 0)))

    # Basic Stuff
    assert Ellipse(None, 1, 1).center == Point(0, 0)
    assert e1 == c1
    assert e1 != e2
    assert p4 in e1
    assert p2 not in e2
    assert e1.area == pi
    assert e2.area == pi/2
    assert e3.area == pi*y1*abs(y1)
    assert c1.area == e1.area
    assert c1.circumference == e1.circumference
    assert e3.circumference == 2*pi*y1
    assert e1.plot_interval() == e2.plot_interval() == [t, -pi, pi]
    assert e1.plot_interval(x) == e2.plot_interval(x) == [x, -pi, pi]
    assert Ellipse(None, 1, None, 1).circumference == 2*pi
    assert c1.minor == 1
    assert c1.major == 1
    assert c1.hradius == 1
    assert c1.vradius == 1

    # Private Functions
    assert hash(c1) == hash(Circle(Point(1, 0), Point(0, 1), Point(0, -1)))
    assert c1 in e1
    assert (Line(p1, p2) in e1) is False
    assert e1.__cmp__(e1) == 0
    assert e1.__cmp__(Point(0, 0)) > 0

    # Encloses
    assert e1.encloses(Segment(Point(-0.5, -0.5), Point(0.5, 0.5))) is True
    assert e1.encloses(Line(p1, p2)) is False
    assert e1.encloses(Ray(p1, p2)) is False
    assert e1.encloses(e1) is False
    assert e1.encloses(
        Polygon(Point(-0.5, -0.5), Point(-0.5, 0.5), Point(0.5, 0.5))) is True
    assert e1.encloses(RegularPolygon(p1, 0.5, 3)) is True
    assert e1.encloses(RegularPolygon(p1, 5, 3)) is False
    assert e1.encloses(RegularPolygon(p2, 5, 3)) is False

    # with generic symbols, the hradius is assumed to contain the major radius
    M = Symbol('M')
    m = Symbol('m')
    c = Ellipse(p1, M, m).circumference
    _x = c.atoms(Dummy).pop()
    assert c == 4*M*C.Integral(
        sqrt((1 - _x**2*(M**2 - m**2)/M**2)/(1 - _x**2)), (_x, 0, 1))

    assert e2.arbitrary_point() in e2

    # Foci
    f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0)
    ef = Ellipse(Point(0, 0), 4, 2)
    assert ef.foci in [(f1, f2), (f2, f1)]

    # Tangents
    v = sqrt(2) / 2
    p1_1 = Point(v, v)
    p1_2 = p2 + Point(half, 0)
    p1_3 = p2 + Point(0, 1)
    assert e1.tangent_lines(p4) == c1.tangent_lines(p4)
    assert e2.tangent_lines(p1_2) == [Line(p1_2, p2 + Point(half, 1))]
    assert e2.tangent_lines(p1_3) == [Line(p1_3, p2 + Point(half, 1))]
    assert c1.tangent_lines(p1_1) == [Line(p1_1, Point(0, sqrt(2)))]
    assert c1.tangent_lines(p1) == []
    assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1)))
    assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1)))
    assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2))))
    assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) is False
    assert c1.is_tangent(e1) is False
    assert c1.is_tangent(Ellipse(Point(2, 0), 1, 1)) is True
    assert c1.is_tangent(
        Polygon(Point(1, 1), Point(1, -1), Point(2, 0))) is True
    assert c1.is_tangent(
        Polygon(Point(1, 1), Point(1, 0), Point(2, 0))) is False

    assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == \
        [Line(Point(0, 0), Point(77/25, 132/25)),
     Line(Point(0, 0), Point(33/5, 22/5))]
    assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(3, 4)) == \
        [Line(Point(3, 4), Point(3, 5)), Line(Point(3, 4), Point(5, 4))]
    assert Circle(Point(5, 5), 2).tangent_lines(Point(3, 3)) == \
        [Line(Point(3, 3), Point(3, 5)), Line(Point(3, 3), Point(5, 3))]
    assert Circle(Point(5, 5), 2).tangent_lines(Point(5 - 2*sqrt(2), 5)) == \
        [Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 - sqrt(2))),
     Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 + sqrt(2))), ]

    e = Ellipse(Point(0, 0), 2, 1)
    assert e.normal_lines(Point(0, 0)) == \
        [Line(Point(0, 0), Point(0, 1)), Line(Point(0, 0), Point(1, 0))]
    assert e.normal_lines(Point(1, 0)) == \
        [Line(Point(0, 0), Point(1, 0))]
    assert e.normal_lines((0, 1)) == \
        [Line(Point(0, 0), Point(0, 1))]
    assert e.normal_lines(Point(1, 1), 1) == \
        [Line(Point(-2, -1/5), Point(-1, 1/5)),
         Line(Point(1, -9/10), Point(2, -43/11))]
    # test the failure of Poly.intervals and checks a point on the boundary
    p = Point(sqrt(3), S.Half)
    assert p in e
    assert e.normal_lines(p, 1) == \
        [Line(Point(7/4, 1/2), Point(11/4, 3/2)),
        Line(Point(-2, -26/337), Point(-1, 1/8))]
    # be sure to use the slope that isn't undefined on boundary
    e = Ellipse((0, 0), 2, 2*sqrt(3)/3)
    assert e.normal_lines((1, 1), 1) == \
        [Line(Point(-2, -1/3), Point(-1, 1/6)),
        Line(Point(1, -1), Point(2, -4))]

    # Properties
    major = 3
    minor = 1
    e4 = Ellipse(p2, minor, major)
    assert e4.focus_distance == sqrt(major**2 - minor**2)
    ecc = e4.focus_distance / major
    assert e4.eccentricity == ecc
    assert e4.periapsis == major*(1 - ecc)
    assert e4.apoapsis == major*(1 + ecc)
    # independent of orientation
    e4 = Ellipse(p2, major, minor)
    assert e4.focus_distance == sqrt(major**2 - minor**2)
    ecc = e4.focus_distance / major
    assert e4.eccentricity == ecc
    assert e4.periapsis == major*(1 - ecc)
    assert e4.apoapsis == major*(1 + ecc)

    # Intersection
    l1 = Line(Point(1, -5), Point(1, 5))
    l2 = Line(Point(-5, -1), Point(5, -1))
    l3 = Line(Point(-1, -1), Point(1, 1))
    l4 = Line(Point(-10, 0), Point(0, 10))
    pts_c1_l3 = [Point(sqrt(2)/2, sqrt(2)/2), Point(-sqrt(2)/2, -sqrt(2)/2)]

    assert intersection(e2, l4) == []
    assert intersection(c1, Point(1, 0)) == [Point(1, 0)]
    assert intersection(c1, l1) == [Point(1, 0)]
    assert intersection(c1, l2) == [Point(0, -1)]
    assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]]
    assert intersection(c1, c2) == [Point(0, 1), Point(1, 0)]
    assert intersection(c1, c3) == [Point(sqrt(2)/2, sqrt(2)/2)]
    assert e1.intersection(l1) == [Point(1, 0)]
    assert e2.intersection(l4) == []
    assert e1.intersection(Circle(Point(0, 2), 1)) == [Point(0, 1)]
    assert e1.intersection(Circle(Point(5, 0), 1)) == []
    assert e1.intersection(Ellipse(Point(2, 0), 1, 1)) == [Point(1, 0)]
    assert e1.intersection(Ellipse(Point(5, 0), 1, 1,)) == []
    assert e1.intersection(Point(2, 0)) == []
    assert e1.intersection(e1) == e1

    # some special case intersections
    csmall = Circle(p1, 3)
    cbig = Circle(p1, 5)
    cout = Circle(Point(5, 5), 1)
    # one circle inside of another
    assert csmall.intersection(cbig) == []
    # separate circles
    assert csmall.intersection(cout) == []
    # coincident circles
    assert csmall.intersection(csmall) == csmall

    v = sqrt(2)
    t1 = Triangle(Point(0, v), Point(0, -v), Point(v, 0))
    points = intersection(t1, c1)
    assert len(points) == 4
    assert Point(0, 1) in points
    assert Point(0, -1) in points
    assert Point(v/2, v/2) in points
    assert Point(v/2, -v/2) in points

    circ = Circle(Point(0, 0), 5)
    elip = Ellipse(Point(0, 0), 5, 20)
    assert intersection(circ, elip) in \
        [[Point(5, 0), Point(-5, 0)], [Point(-5, 0), Point(5, 0)]]
    assert elip.tangent_lines(Point(0, 0)) == []
    elip = Ellipse(Point(0, 0), 3, 2)
    assert elip.tangent_lines(Point(3, 0)) == \
        [Line(Point(3, 0), Point(3, -12))]

    e1 = Ellipse(Point(0, 0), 5, 10)
    e2 = Ellipse(Point(2, 1), 4, 8)
    a = 53/17
    c = 2*sqrt(3991)/17
    ans = [Point(a - c/8, a/2 + c), Point(a + c/8, a/2 - c)]
    assert e1.intersection(e2) == ans
    e2 = Ellipse(Point(x, y), 4, 8)
    c = sqrt(3991)
    ans = [Point(c/68 + a, -2*c/17 + a/2), Point(-c/68 + a, 2*c/17 + a/2)]
    assert [p.subs({x: 2, y:1}) for p in e1.intersection(e2)] == ans

    # Combinations of above
    assert e3.is_tangent(e3.tangent_lines(p1 + Point(y1, 0))[0])

    e = Ellipse((1, 2), 3, 2)
    assert e.tangent_lines(Point(10, 0)) == \
        [Line(Point(10, 0), Point(1, 0)),
        Line(Point(10, 0), Point(14/5, 18/5))]

    # encloses_point
    e = Ellipse((0, 0), 1, 2)
    assert e.encloses_point(e.center)
    assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
    assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
    assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
    assert e.encloses_point(
        e.center + Point(e.hradius + Rational(1, 10), 0)) is False
    e = Ellipse((0, 0), 2, 1)
    assert e.encloses_point(e.center)
    assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
    assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
    assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
    assert e.encloses_point(
        e.center + Point(e.hradius + Rational(1, 10), 0)) is False
    assert c1.encloses_point(Point(1, 0)) is False
    assert c1.encloses_point(Point(0.3, 0.4)) is True

    assert e.scale(2, 3) == Ellipse((0, 0), 4, 3)
    assert e.scale(3, 6) == Ellipse((0, 0), 6, 6)
    assert e.rotate(pi/3) == e
    assert e.rotate(pi/3, (1, 2)) == \
        Ellipse(Point(1/2 + sqrt(3), -sqrt(3)/2 + 1), 2, 1)

    # transformations
    c = Circle((1, 1), 2)
    assert c.scale(-1) == Circle((-1, 1), 2)
    assert c.scale(y=-1) == Circle((1, -1), 2)
    assert c.scale(2) == Ellipse((2, 1), 4, 2)
Exemple #43
0
def test_geometry():
    p = sympify(Point(0, 1))
    assert p == Point(0, 1) and isinstance(p, Point)
    L = sympify(Line(p, (1, 0)))
    assert L == Line((0, 1), (1, 0)) and isinstance(L, Line)
Exemple #44
0
def test_geometry():
    p = sympify(Point(0, 1))
    assert p == Point(0, 1) and type(p) == Point
    L = sympify(Line(p, (1, 0)))
    assert L == Line((0, 1), (1, 0)) and type(L) == Line
Exemple #45
0
def test_plane():
    x, y, z, u, v = symbols('x y z u v', real=True)
    p1 = Point3D(0, 0, 0)
    p2 = Point3D(1, 1, 1)
    p3 = Point3D(1, 2, 3)
    pl3 = Plane(p1, p2, p3)
    pl4 = Plane(p1, normal_vector=(1, 1, 1))
    pl4b = Plane(p1, p2)
    pl5 = Plane(p3, normal_vector=(1, 2, 3))
    pl6 = Plane(Point3D(2, 3, 7), normal_vector=(2, 2, 2))
    pl7 = Plane(Point3D(1, -5, -6), normal_vector=(1, -2, 1))
    pl8 = Plane(p1, normal_vector=(0, 0, 1))
    pl9 = Plane(p1, normal_vector=(0, 12, 0))
    pl10 = Plane(p1, normal_vector=(-2, 0, 0))
    pl11 = Plane(p2, normal_vector=(0, 0, 1))
    l1 = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1))
    l2 = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1))
    l3 = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9))

    assert Plane(p1, p2, p3) != Plane(p1, p3, p2)
    assert Plane(p1, p2, p3).is_coplanar(Plane(p1, p3, p2))
    assert pl3 == Plane(Point3D(0, 0, 0), normal_vector=(1, -2, 1))
    assert pl3 != pl4
    assert pl4 == pl4b
    assert pl5 == Plane(Point3D(1, 2, 3), normal_vector=(1, 2, 3))

    assert pl5.equation(x, y, z) == x + 2 * y + 3 * z - 14
    assert pl3.equation(x, y, z) == x - 2 * y + z

    assert pl3.p1 == p1
    assert pl4.p1 == p1
    assert pl5.p1 == p3

    assert pl4.normal_vector == (1, 1, 1)
    assert pl5.normal_vector == (1, 2, 3)

    assert p1 in pl3
    assert p1 in pl4
    assert p3 in pl5

    assert pl3.projection(Point(0, 0)) == p1
    p = pl3.projection(Point3D(1, 1, 0))
    assert p == Point3D(Rational(7, 6), Rational(2, 3), Rational(1, 6))
    assert p in pl3

    l = pl3.projection_line(Line(Point(0, 0), Point(1, 1)))
    assert l == Line3D(Point3D(0, 0, 0),
                       Point3D(Rational(7, 6), Rational(2, 3), Rational(1, 6)))
    assert l in pl3
    # get a segment that does not intersect the plane which is also
    # parallel to pl3's normal veector
    t = Dummy()
    r = pl3.random_point()
    a = pl3.perpendicular_line(r).arbitrary_point(t)
    s = Segment3D(a.subs(t, 1), a.subs(t, 2))
    assert s.p1 not in pl3 and s.p2 not in pl3
    assert pl3.projection_line(s).equals(r)
    assert pl3.projection_line(Segment(Point(1, 0), Point(1, 1))) == \
               Segment3D(Point3D(Rational(5, 6), Rational(1, 3), Rational(-1, 6)), Point3D(Rational(7, 6), Rational(2, 3), Rational(1, 6)))
    assert pl6.projection_line(Ray(Point(1, 0), Point(1, 1))) == \
               Ray3D(Point3D(Rational(14, 3), Rational(11, 3), Rational(11, 3)), Point3D(Rational(13, 3), Rational(13, 3), Rational(10, 3)))
    assert pl3.perpendicular_line(r.args) == pl3.perpendicular_line(r)

    assert pl3.is_parallel(pl6) is False
    assert pl4.is_parallel(pl6)
    assert pl6.is_parallel(l1) is False

    assert pl3.is_perpendicular(pl6)
    assert pl4.is_perpendicular(pl7)
    assert pl6.is_perpendicular(pl7)
    assert pl6.is_perpendicular(l1) is False

    assert pl6.distance(pl6.arbitrary_point(u, v)) == 0
    assert pl7.distance(pl7.arbitrary_point(u, v)) == 0
    assert pl6.distance(pl6.arbitrary_point(t)) == 0
    assert pl7.distance(pl7.arbitrary_point(t)) == 0
    assert pl6.p1.distance(pl6.arbitrary_point(t)).simplify() == 1
    assert pl7.p1.distance(pl7.arbitrary_point(t)).simplify() == 1
    assert pl3.arbitrary_point(t) == Point3D(-sqrt(30)*sin(t)/30 + \
        2*sqrt(5)*cos(t)/5, sqrt(30)*sin(t)/15 + sqrt(5)*cos(t)/5, sqrt(30)*sin(t)/6)
    assert pl3.arbitrary_point(u, v) == Point3D(2 * u - v, u + 2 * v, 5 * v)

    assert pl7.distance(Point3D(1, 3, 5)) == 5 * sqrt(6) / 6
    assert pl6.distance(Point3D(0, 0, 0)) == 4 * sqrt(3)
    assert pl6.distance(pl6.p1) == 0
    assert pl7.distance(pl6) == 0
    assert pl7.distance(l1) == 0
    assert pl6.distance(Segment3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == \
        pl6.distance(Point3D(1, 3, 4)) == 4*sqrt(3)/3
    assert pl6.distance(Segment3D(Point3D(1, 3, 4), Point3D(0, 3, 7))) == \
        pl6.distance(Point3D(0, 3, 7)) == 2*sqrt(3)/3
    assert pl6.distance(Segment3D(Point3D(0, 3, 7), Point3D(-1, 3, 10))) == 0
    assert pl6.distance(Segment3D(Point3D(-1, 3, 10), Point3D(-2, 3, 13))) == 0
    assert pl6.distance(Segment3D(Point3D(-2, 3, 13), Point3D(-3, 3, 16))) == \
        pl6.distance(Point3D(-2, 3, 13)) == 2*sqrt(3)/3
    assert pl6.distance(Plane(Point3D(5, 5, 5),
                              normal_vector=(8, 8, 8))) == sqrt(3)
    assert pl6.distance(Ray3D(Point3D(1, 3, 4),
                              direction_ratio=[1, 0, -3])) == 4 * sqrt(3) / 3
    assert pl6.distance(Ray3D(Point3D(2, 3, 1), direction_ratio=[-1, 0,
                                                                 3])) == 0

    assert pl6.angle_between(pl3) == pi / 2
    assert pl6.angle_between(pl6) == 0
    assert pl6.angle_between(pl4) == 0
    assert pl7.angle_between(Line3D(Point3D(2, 3, 5), Point3D(2, 4, 6))) == \
        -asin(sqrt(3)/6)
    assert pl6.angle_between(Ray3D(Point3D(2, 4, 1), Point3D(6, 5, 3))) == \
        asin(sqrt(7)/3)
    assert pl7.angle_between(Segment3D(Point3D(5, 6, 1), Point3D(1, 2, 4))) == \
        asin(7*sqrt(246)/246)

    assert are_coplanar(l1, l2, l3) is False
    assert are_coplanar(l1) is False
    assert are_coplanar(Point3D(2, 7, 2), Point3D(0, 0, 2), Point3D(1, 1, 2),
                        Point3D(1, 2, 2))
    assert are_coplanar(Plane(p1, p2, p3), Plane(p1, p3, p2))
    assert Plane.are_concurrent(pl3, pl4, pl5) is False
    assert Plane.are_concurrent(pl6) is False
    raises(ValueError, lambda: Plane.are_concurrent(Point3D(0, 0, 0)))
    raises(ValueError, lambda: Plane((1, 2, 3), normal_vector=(0, 0, 0)))

    assert pl3.parallel_plane(Point3D(1, 2, 5)) == Plane(Point3D(1, 2, 5), \
                                                      normal_vector=(1, -2, 1))

    # perpendicular_plane
    p = Plane((0, 0, 0), (1, 0, 0))
    # default
    assert p.perpendicular_plane() == Plane(Point3D(0, 0, 0), (0, 1, 0))
    # 1 pt
    assert p.perpendicular_plane(Point3D(1, 0, 1)) == \
        Plane(Point3D(1, 0, 1), (0, 1, 0))
    # pts as tuples
    assert p.perpendicular_plane((1, 0, 1), (1, 1, 1)) == \
        Plane(Point3D(1, 0, 1), (0, 0, -1))

    a, b = Point3D(0, 0, 0), Point3D(0, 1, 0)
    Z = (0, 0, 1)
    p = Plane(a, normal_vector=Z)
    # case 4
    assert p.perpendicular_plane(a, b) == Plane(a, (1, 0, 0))
    n = Point3D(*Z)
    # case 1
    assert p.perpendicular_plane(a, n) == Plane(a, (-1, 0, 0))
    # case 2
    assert Plane(a, normal_vector=b.args).perpendicular_plane(a, a + b) == \
        Plane(Point3D(0, 0, 0), (1, 0, 0))
    # case 1&3
    assert Plane(b, normal_vector=Z).perpendicular_plane(b, b + n) == \
        Plane(Point3D(0, 1, 0), (-1, 0, 0))
    # case 2&3
    assert Plane(b, normal_vector=b.args).perpendicular_plane(n, n + b) == \
        Plane(Point3D(0, 0, 1), (1, 0, 0))

    assert pl6.intersection(pl6) == [pl6]
    assert pl4.intersection(pl4.p1) == [pl4.p1]
    assert pl3.intersection(pl6) == [
        Line3D(Point3D(8, 4, 0), Point3D(2, 4, 6))
    ]
    assert pl3.intersection(Line3D(Point3D(1, 2, 4), Point3D(
        4, 4, 2))) == [Point3D(2, Rational(8, 3), Rational(10, 3))]
    assert pl3.intersection(Plane(Point3D(6, 0, 0),
                                  normal_vector=(2, -5, 3))) == [
                                      Line3D(Point3D(-24, -12, 0),
                                             Point3D(-25, -13, -1))
                                  ]
    assert pl6.intersection(Ray3D(Point3D(2, 3, 1),
                                  Point3D(1, 3, 4))) == [Point3D(-1, 3, 10)]
    assert pl6.intersection(Segment3D(Point3D(2, 3, 1), Point3D(1, 3,
                                                                4))) == []
    assert pl7.intersection(Line(Point(2, 3), Point(
        4, 2))) == [Point3D(Rational(13, 2), Rational(3, 4), 0)]
    r = Ray(Point(2, 3), Point(4, 2))
    assert Plane((1, 2, 0), normal_vector=(0, 0, 1)).intersection(r) == [
        Ray3D(Point(2, 3), Point(4, 2))
    ]
    assert pl9.intersection(pl8) == [
        Line3D(Point3D(0, 0, 0), Point3D(12, 0, 0))
    ]
    assert pl10.intersection(pl11) == [
        Line3D(Point3D(0, 0, 1), Point3D(0, 2, 1))
    ]
    assert pl4.intersection(pl8) == [
        Line3D(Point3D(0, 0, 0), Point3D(1, -1, 0))
    ]
    assert pl11.intersection(pl8) == []
    assert pl9.intersection(pl11) == [
        Line3D(Point3D(0, 0, 1), Point3D(12, 0, 1))
    ]
    assert pl9.intersection(pl4) == [
        Line3D(Point3D(0, 0, 0), Point3D(12, 0, -12))
    ]
    assert pl3.random_point() in pl3

    # test geometrical entity using equals
    assert pl4.intersection(pl4.p1)[0].equals(pl4.p1)
    assert pl3.intersection(pl6)[0].equals(
        Line3D(Point3D(8, 4, 0), Point3D(2, 4, 6)))
    pl8 = Plane((1, 2, 0), normal_vector=(0, 0, 1))
    assert pl8.intersection(Line3D(p1, (1, 12, 0)))[0].equals(
        Line((0, 0, 0), (0.1, 1.2, 0)))
    assert pl8.intersection(Ray3D(p1, (1, 12, 0)))[0].equals(
        Ray((0, 0, 0), (1, 12, 0)))
    assert pl8.intersection(Segment3D(p1, (21, 1, 0)))[0].equals(
        Segment3D(p1, (21, 1, 0)))
    assert pl8.intersection(Plane(p1,
                                  normal_vector=(0, 0, 112)))[0].equals(pl8)
    assert pl8.intersection(Plane(p1, normal_vector=(0, 12, 0)))[0].equals(
        Line3D(p1, direction_ratio=(112 * pi, 0, 0)))
    assert pl8.intersection(Plane(p1, normal_vector=(11, 0, 1)))[0].equals(
        Line3D(p1, direction_ratio=(0, -11, 0)))
    assert pl8.intersection(Plane(p1, normal_vector=(1, 0, 11)))[0].equals(
        Line3D(p1, direction_ratio=(0, 11, 0)))
    assert pl8.intersection(Plane(p1, normal_vector=(-1, -1, -11)))[0].equals(
        Line3D(p1, direction_ratio=(1, -1, 0)))
    assert pl3.random_point() in pl3
    assert len(pl8.intersection(Ray3D(Point3D(0, 2, 3), Point3D(1, 0,
                                                                3)))) == 0
    # check if two plane are equals
    assert pl6.intersection(pl6)[0].equals(pl6)
    assert pl8.equals(Plane(p1, normal_vector=(0, 12, 0))) is False
    assert pl8.equals(pl8)
    assert pl8.equals(Plane(p1, normal_vector=(0, 0, -12)))
    assert pl8.equals(Plane(p1, normal_vector=(0, 0, -12 * sqrt(3))))

    # issue 8570
    l2 = Line3D(
        Point3D(Rational(50000004459633, 5000000000000),
                Rational(-891926590718643, 1000000000000000),
                Rational(231800966893633, 100000000000000)),
        Point3D(Rational(50000004459633, 50000000000000),
                Rational(-222981647679771, 250000000000000),
                Rational(231800966893633, 100000000000000)))

    p2 = Plane(
        Point3D(Rational(402775636372767, 100000000000000),
                Rational(-97224357654973, 100000000000000),
                Rational(216793600814789, 100000000000000)),
        (-S('9.00000087501922'), -S('4.81170658872543e-13'), S('0.0')))

    assert str([i.n(2) for i in p2.intersection(l2)]) == \
           '[Point3D(4.0, -0.89, 2.3)]'
Exemple #46
0
def centroid(*args):
    """Find the centroid (center of mass) of the collection containing only Points,
    Segments or Polygons. The centroid is the weighted average of the individual centroid
    where the weights are the lengths (of segments) or areas (of polygons).
    Overlapping regions will add to the weight of that region.

    If there are no objects (or a mixture of objects) then None is returned.

    See Also
    ========

    sympy.geometry.point.Point, sympy.geometry.line.Segment,
    sympy.geometry.polygon.Polygon

    Examples
    ========

    >>> from sympy import Point, Segment, Polygon
    >>> from sympy.geometry.util import centroid
    >>> p = Polygon((0, 0), (10, 0), (10, 10))
    >>> q = p.translate(0, 20)
    >>> p.centroid, q.centroid
    (Point2D(20/3, 10/3), Point2D(20/3, 70/3))
    >>> centroid(p, q)
    Point2D(20/3, 40/3)
    >>> p, q = Segment((0, 0), (2, 0)), Segment((0, 0), (2, 2))
    >>> centroid(p, q)
    Point2D(1, 2 - sqrt(2))
    >>> centroid(Point(0, 0), Point(2, 0))
    Point2D(1, 0)

    Stacking 3 polygons on top of each other effectively triples the
    weight of that polygon:

    >>> p = Polygon((0, 0), (1, 0), (1, 1), (0, 1))
    >>> q = Polygon((1, 0), (3, 0), (3, 1), (1, 1))
    >>> centroid(p, q)
    Point2D(3/2, 1/2)
    >>> centroid(p, p, p, q) # centroid x-coord shifts left
    Point2D(11/10, 1/2)

    Stacking the squares vertically above and below p has the same
    effect:

    >>> centroid(p, p.translate(0, 1), p.translate(0, -1), q)
    Point2D(11/10, 1/2)

    """

    from sympy.geometry import Polygon, Segment, Point
    if args:
        if all(isinstance(g, Point) for g in args):
            c = Point(0, 0)
            for g in args:
                c += g
            den = len(args)
        elif all(isinstance(g, Segment) for g in args):
            c = Point(0, 0)
            L = 0
            for g in args:
                l = g.length
                c += g.midpoint*l
                L += l
            den = L
        elif all(isinstance(g, Polygon) for g in args):
            c = Point(0, 0)
            A = 0
            for g in args:
                a = g.area
                c += g.centroid*a
                A += a
            den = A
        c /= den
        return c.func(*[i.simplify() for i in c.args])
Exemple #47
0
def test_Geometry():
    sT(Point(0, 0), "Point2D(Integer(0), Integer(0))")
    sT(Ellipse(Point(0, 0), 5, 1),
       "Ellipse(Point2D(Integer(0), Integer(0)), Integer(5), Integer(1))")
Exemple #48
0
def test_ellipse_geom():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    t = Symbol('t', real=True)
    y1 = Symbol('y1', real=True)
    half = Rational(1, 2)
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p4 = Point(0, 1)

    e1 = Ellipse(p1, 1, 1)
    e2 = Ellipse(p2, half, 1)
    e3 = Ellipse(p1, y1, y1)
    c1 = Circle(p1, 1)
    c2 = Circle(p2, 1)
    c3 = Circle(Point(sqrt(2), sqrt(2)), 1)
    l1 = Line(p1, p2)

    # Test creation with three points
    cen, rad = Point(3*half, 2), 5*half
    assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad)
    assert Circle(Point(0, 0), Point(1, 1), Point(2, 2)) == Segment2D(Point2D(0, 0), Point2D(2, 2))

    raises(ValueError, lambda: Ellipse(None, None, None, 1))
    raises(GeometryError, lambda: Circle(Point(0, 0)))

    # Basic Stuff
    assert Ellipse(None, 1, 1).center == Point(0, 0)
    assert e1 == c1
    assert e1 != e2
    assert e1 != l1
    assert p4 in e1
    assert p2 not in e2
    assert e1.area == pi
    assert e2.area == pi/2
    assert e3.area == pi*y1*abs(y1)
    assert c1.area == e1.area
    assert c1.circumference == e1.circumference
    assert e3.circumference == 2*pi*y1
    assert e1.plot_interval() == e2.plot_interval() == [t, -pi, pi]
    assert e1.plot_interval(x) == e2.plot_interval(x) == [x, -pi, pi]

    assert c1.minor == 1
    assert c1.major == 1
    assert c1.hradius == 1
    assert c1.vradius == 1

    assert Ellipse((1, 1), 0, 0) == Point(1, 1)
    assert Ellipse((1, 1), 1, 0) == Segment(Point(0, 1), Point(2, 1))
    assert Ellipse((1, 1), 0, 1) == Segment(Point(1, 0), Point(1, 2))

    # Private Functions
    assert hash(c1) == hash(Circle(Point(1, 0), Point(0, 1), Point(0, -1)))
    assert c1 in e1
    assert (Line(p1, p2) in e1) is False
    assert e1.__cmp__(e1) == 0
    assert e1.__cmp__(Point(0, 0)) > 0

    # Encloses
    assert e1.encloses(Segment(Point(-0.5, -0.5), Point(0.5, 0.5))) is True
    assert e1.encloses(Line(p1, p2)) is False
    assert e1.encloses(Ray(p1, p2)) is False
    assert e1.encloses(e1) is False
    assert e1.encloses(
        Polygon(Point(-0.5, -0.5), Point(-0.5, 0.5), Point(0.5, 0.5))) is True
    assert e1.encloses(RegularPolygon(p1, 0.5, 3)) is True
    assert e1.encloses(RegularPolygon(p1, 5, 3)) is False
    assert e1.encloses(RegularPolygon(p2, 5, 3)) is False

    assert e2.arbitrary_point() in e2

    # Foci
    f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0)
    ef = Ellipse(Point(0, 0), 4, 2)
    assert ef.foci in [(f1, f2), (f2, f1)]

    # Tangents
    v = sqrt(2) / 2
    p1_1 = Point(v, v)
    p1_2 = p2 + Point(half, 0)
    p1_3 = p2 + Point(0, 1)
    assert e1.tangent_lines(p4) == c1.tangent_lines(p4)
    assert e2.tangent_lines(p1_2) == [Line(Point(S(3)/2, 1), Point(S(3)/2, S(1)/2))]
    assert e2.tangent_lines(p1_3) == [Line(Point(1, 2), Point(S(5)/4, 2))]
    assert c1.tangent_lines(p1_1) != [Line(p1_1, Point(0, sqrt(2)))]
    assert c1.tangent_lines(p1) == []
    assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1)))
    assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1)))
    assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2))))
    assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) is False
    assert c1.is_tangent(e1) is True
    assert c1.is_tangent(Ellipse(Point(2, 0), 1, 1)) is True
    assert c1.is_tangent(
        Polygon(Point(1, 1), Point(1, -1), Point(2, 0))) is True
    assert c1.is_tangent(
        Polygon(Point(1, 1), Point(1, 0), Point(2, 0))) is False
    assert Circle(Point(5, 5), 3).is_tangent(Circle(Point(0, 5), 1)) is False

    assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == \
        [Line(Point(0, 0), Point(S(77)/25, S(132)/25)),
     Line(Point(0, 0), Point(S(33)/5, S(22)/5))]
    assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(3, 4)) == \
        [Line(Point(3, 4), Point(4, 4)), Line(Point(3, 4), Point(3, 5))]
    assert Circle(Point(5, 5), 2).tangent_lines(Point(3, 3)) == \
        [Line(Point(3, 3), Point(4, 3)), Line(Point(3, 3), Point(3, 4))]
    assert Circle(Point(5, 5), 2).tangent_lines(Point(5 - 2*sqrt(2), 5)) == \
        [Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 - sqrt(2))),
     Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 + sqrt(2))), ]

    # for numerical calculations, we shouldn't demand exact equality,
    # so only test up to the desired precision
    def lines_close(l1, l2, prec):
        """ tests whether l1 and 12 are within 10**(-prec)
        of each other """
        return abs(l1.p1 - l2.p1) < 10**(-prec) and abs(l1.p2 - l2.p2) < 10**(-prec)
    def line_list_close(ll1, ll2, prec):
        return all(lines_close(l1, l2, prec) for l1, l2 in zip(ll1, ll2))

    e = Ellipse(Point(0, 0), 2, 1)
    assert e.normal_lines(Point(0, 0)) == \
        [Line(Point(0, 0), Point(0, 1)), Line(Point(0, 0), Point(1, 0))]
    assert e.normal_lines(Point(1, 0)) == \
        [Line(Point(0, 0), Point(1, 0))]
    assert e.normal_lines((0, 1)) == \
        [Line(Point(0, 0), Point(0, 1))]
    assert line_list_close(e.normal_lines(Point(1, 1), 2), [
        Line(Point(-S(51)/26, -S(1)/5), Point(-S(25)/26, S(17)/83)),
        Line(Point(S(28)/29, -S(7)/8), Point(S(57)/29, -S(9)/2))], 2)
    # test the failure of Poly.intervals and checks a point on the boundary
    p = Point(sqrt(3), S.Half)
    assert p in e
    assert line_list_close(e.normal_lines(p, 2), [
        Line(Point(-S(341)/171, -S(1)/13), Point(-S(170)/171, S(5)/64)),
        Line(Point(S(26)/15, -S(1)/2), Point(S(41)/15, -S(43)/26))], 2)
    # be sure to use the slope that isn't undefined on boundary
    e = Ellipse((0, 0), 2, 2*sqrt(3)/3)
    assert line_list_close(e.normal_lines((1, 1), 2), [
        Line(Point(-S(64)/33, -S(20)/71), Point(-S(31)/33, S(2)/13)),
        Line(Point(1, -1), Point(2, -4))], 2)
    # general ellipse fails except under certain conditions
    e = Ellipse((0, 0), x, 1)
    assert e.normal_lines((x + 1, 0)) == [Line(Point(0, 0), Point(1, 0))]
    raises(NotImplementedError, lambda: e.normal_lines((x + 1, 1)))
    # Properties
    major = 3
    minor = 1
    e4 = Ellipse(p2, minor, major)
    assert e4.focus_distance == sqrt(major**2 - minor**2)
    ecc = e4.focus_distance / major
    assert e4.eccentricity == ecc
    assert e4.periapsis == major*(1 - ecc)
    assert e4.apoapsis == major*(1 + ecc)
    assert e4.semilatus_rectum == major*(1 - ecc ** 2)
    # independent of orientation
    e4 = Ellipse(p2, major, minor)
    assert e4.focus_distance == sqrt(major**2 - minor**2)
    ecc = e4.focus_distance / major
    assert e4.eccentricity == ecc
    assert e4.periapsis == major*(1 - ecc)
    assert e4.apoapsis == major*(1 + ecc)

    # Intersection
    l1 = Line(Point(1, -5), Point(1, 5))
    l2 = Line(Point(-5, -1), Point(5, -1))
    l3 = Line(Point(-1, -1), Point(1, 1))
    l4 = Line(Point(-10, 0), Point(0, 10))
    pts_c1_l3 = [Point(sqrt(2)/2, sqrt(2)/2), Point(-sqrt(2)/2, -sqrt(2)/2)]

    assert intersection(e2, l4) == []
    assert intersection(c1, Point(1, 0)) == [Point(1, 0)]
    assert intersection(c1, l1) == [Point(1, 0)]
    assert intersection(c1, l2) == [Point(0, -1)]
    assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]]
    assert intersection(c1, c2) == [Point(0, 1), Point(1, 0)]
    assert intersection(c1, c3) == [Point(sqrt(2)/2, sqrt(2)/2)]
    assert e1.intersection(l1) == [Point(1, 0)]
    assert e2.intersection(l4) == []
    assert e1.intersection(Circle(Point(0, 2), 1)) == [Point(0, 1)]
    assert e1.intersection(Circle(Point(5, 0), 1)) == []
    assert e1.intersection(Ellipse(Point(2, 0), 1, 1)) == [Point(1, 0)]
    assert e1.intersection(Ellipse(Point(5, 0), 1, 1)) == []
    assert e1.intersection(Point(2, 0)) == []
    assert e1.intersection(e1) == e1
    assert intersection(Ellipse(Point(0, 0), 2, 1), Ellipse(Point(3, 0), 1, 2)) == [Point(2, 0)]
    assert intersection(Circle(Point(0, 0), 2), Circle(Point(3, 0), 1)) == [Point(2, 0)]
    assert intersection(Circle(Point(0, 0), 2), Circle(Point(7, 0), 1)) == []
    assert intersection(Ellipse(Point(0, 0), 5, 17), Ellipse(Point(4, 0), 1, 0.2)) == [Point(5, 0)]
    assert intersection(Ellipse(Point(0, 0), 5, 17), Ellipse(Point(4, 0), 0.999, 0.2)) == []
    assert Circle((0, 0), S(1)/2).intersection(
        Triangle((-1, 0), (1, 0), (0, 1))) == [
        Point(-S(1)/2, 0), Point(S(1)/2, 0)]
    raises(TypeError, lambda: intersection(e2, Line((0, 0, 0), (0, 0, 1))))
    raises(TypeError, lambda: intersection(e2, Rational(12)))
    # some special case intersections
    csmall = Circle(p1, 3)
    cbig = Circle(p1, 5)
    cout = Circle(Point(5, 5), 1)
    # one circle inside of another
    assert csmall.intersection(cbig) == []
    # separate circles
    assert csmall.intersection(cout) == []
    # coincident circles
    assert csmall.intersection(csmall) == csmall

    v = sqrt(2)
    t1 = Triangle(Point(0, v), Point(0, -v), Point(v, 0))
    points = intersection(t1, c1)
    assert len(points) == 4
    assert Point(0, 1) in points
    assert Point(0, -1) in points
    assert Point(v/2, v/2) in points
    assert Point(v/2, -v/2) in points

    circ = Circle(Point(0, 0), 5)
    elip = Ellipse(Point(0, 0), 5, 20)
    assert intersection(circ, elip) in \
        [[Point(5, 0), Point(-5, 0)], [Point(-5, 0), Point(5, 0)]]
    assert elip.tangent_lines(Point(0, 0)) == []
    elip = Ellipse(Point(0, 0), 3, 2)
    assert elip.tangent_lines(Point(3, 0)) == \
        [Line(Point(3, 0), Point(3, -12))]

    e1 = Ellipse(Point(0, 0), 5, 10)
    e2 = Ellipse(Point(2, 1), 4, 8)
    a = S(53)/17
    c = 2*sqrt(3991)/17
    ans = [Point(a - c/8, a/2 + c), Point(a + c/8, a/2 - c)]
    assert e1.intersection(e2) == ans
    e2 = Ellipse(Point(x, y), 4, 8)
    c = sqrt(3991)
    ans = [Point(-c/68 + a, 2*c/17 + a/2), Point(c/68 + a, -2*c/17 + a/2)]
    assert [p.subs({x: 2, y:1}) for p in e1.intersection(e2)] == ans

    # Combinations of above
    assert e3.is_tangent(e3.tangent_lines(p1 + Point(y1, 0))[0])

    e = Ellipse((1, 2), 3, 2)
    assert e.tangent_lines(Point(10, 0)) == \
        [Line(Point(10, 0), Point(1, 0)),
        Line(Point(10, 0), Point(S(14)/5, S(18)/5))]

    # encloses_point
    e = Ellipse((0, 0), 1, 2)
    assert e.encloses_point(e.center)
    assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
    assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
    assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
    assert e.encloses_point(
        e.center + Point(e.hradius + Rational(1, 10), 0)) is False
    e = Ellipse((0, 0), 2, 1)
    assert e.encloses_point(e.center)
    assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
    assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
    assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
    assert e.encloses_point(
        e.center + Point(e.hradius + Rational(1, 10), 0)) is False
    assert c1.encloses_point(Point(1, 0)) is False
    assert c1.encloses_point(Point(0.3, 0.4)) is True

    assert e.scale(2, 3) == Ellipse((0, 0), 4, 3)
    assert e.scale(3, 6) == Ellipse((0, 0), 6, 6)
    assert e.rotate(pi) == e
    assert e.rotate(pi, (1, 2)) == Ellipse(Point(2, 4), 2, 1)
    raises(NotImplementedError, lambda: e.rotate(pi/3))

    # Circle rotation tests (Issue #11743)
    # Link - https://github.com/sympy/sympy/issues/11743
    cir = Circle(Point(1, 0), 1)
    assert cir.rotate(pi/2) == Circle(Point(0, 1), 1)
    assert cir.rotate(pi/3) == Circle(Point(S(1)/2, sqrt(3)/2), 1)
    assert cir.rotate(pi/3, Point(1, 0)) == Circle(Point(1, 0), 1)
    assert cir.rotate(pi/3, Point(0, 1)) == Circle(Point(S(1)/2 + sqrt(3)/2, S(1)/2 + sqrt(3)/2), 1)
Exemple #49
0
def test_Geometry():
    assert sstr(Point(0, 0)) == 'Point(0, 0)'
    assert sstr(Circle(Point(0, 0), 3)) == 'Circle(Point(0, 0), 3)'
Exemple #50
0
def test_point():
    p1 = Point(x1, x2)
    p2 = Point(y1, y2)
    p3 = Point(0, 0)
    p4 = Point(1, 1)

    assert p1 in p1
    assert p1 not in p2
    assert p2.y == y2
    assert (p3 + p4) == p4
    assert (p2 - p1) == Point(y1 - x1, y2 - x2)
    assert p4 * 5 == Point(5, 5)
    assert -p2 == Point(-y1, -y2)

    assert Point.midpoint(p3, p4) == Point(half, half)
    assert Point.midpoint(p1, p4) == Point(half + half * x1, half + half * x2)
    assert Point.midpoint(p2, p2) == p2
    assert p2.midpoint(p2) == p2

    assert Point.distance(p3, p4) == sqrt(2)
    assert Point.distance(p1, p1) == 0
    assert Point.distance(p3, p2) == sqrt(p2.x ** 2 + p2.y ** 2)

    p1_1 = Point(x1, x1)
    p1_2 = Point(y2, y2)
    p1_3 = Point(x1 + 1, x1)
    assert Point.is_collinear(p3)
    assert Point.is_collinear(p3, p4)
    assert Point.is_collinear(p3, p4, p1_1, p1_2)
    assert Point.is_collinear(p3, p4, p1_1, p1_3) == False

    assert p3.intersection(Point(0, 0)) == [p3]
    assert p3.intersection(p4) == []

    x_pos = Symbol("x", real=True, positive=True)
    p2_1 = Point(x_pos, 0)
    p2_2 = Point(0, x_pos)
    p2_3 = Point(-x_pos, 0)
    p2_4 = Point(0, -x_pos)
    p2_5 = Point(x_pos, 5)
    assert Point.is_concyclic(p2_1)
    assert Point.is_concyclic(p2_1, p2_2)
    assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4)
    assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_5) == False
    assert Point.is_concyclic(p4, p4 * 2, p4 * 3) == False

    assert p4.scale(2, 3) == Point(2, 3)
    assert p3.scale(2, 3) == p3

    assert p4.rotate(pi, Point(0.5, 0.5)) == p3
    assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2)
    assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2)

    assert p4 * 5 == Point(5, 5)
    assert p4 / 5 == Point(0.2, 0.2)

    raises(ValueError, lambda: Point(0, 0) + 10)

    # Point differences should be simplified
    assert Point(x * (x - 1), y) - Point(x ** 2 - x, y + 1) == Point(0, -1)

    a, b = Rational(1, 2), Rational(1, 3)
    assert Point(a, b).evalf(2) == Point(a.n(2), b.n(2))
    raises(ValueError, lambda: Point(1, 2) + 1)

    # test transformations
    p = Point(1, 0)
    assert p.rotate(pi / 2) == Point(0, 1)
    assert p.rotate(pi / 2, p) == p
    p = Point(1, 1)
    assert p.scale(2, 3) == Point(2, 3)
    assert p.translate(1, 2) == Point(2, 3)
    assert p.translate(1) == Point(2, 1)
    assert p.translate(y=1) == Point(1, 2)
    assert p.translate(*p.args) == Point(2, 2)
Exemple #51
0
def test_basic_properties_2d():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p10 = Point(2000, 2000)
    p_r3 = Ray(p1, p2).random_point()
    p_r4 = Ray(p2, p1).random_point()

    l1 = Line(p1, p2)
    l3 = Line(Point(x1, x1), Point(x1, 1 + x1))
    l4 = Line(p1, Point(1, 0))

    r1 = Ray(p1, Point(0, 1))
    r2 = Ray(Point(0, 1), p1)

    s1 = Segment(p1, p10)
    p_s1 = s1.random_point()

    assert Line((1, 1), slope=1) == Line((1, 1), (2, 2))
    assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2))
    assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2))
    assert Line(p1, p2).scale(2, 1) == Line(p1, Point(2, 1))
    assert Line(p1, p2) == Line(p1, p2)
    assert Line(p1, p2) != Line(p2, p1)
    assert l1 != Line(Point(x1, x1), Point(y1, y1))
    assert l1 != l3
    assert Line(p1, p10) != Line(p10, p1)
    assert Line(p1, p10) != p1
    assert p1 in l1  # is p1 on the line l1?
    assert p1 not in l3
    assert s1 in Line(p1, p10)
    assert Ray(Point(0, 0), Point(0, 1)) in Ray(Point(0, 0), Point(0, 2))
    assert Ray(Point(0, 0), Point(0, 2)) in Ray(Point(0, 0), Point(0, 1))
    assert (r1 in s1) is False
    assert Segment(p1, p2) in s1
    assert Ray(Point(x1, x1), Point(x1, 1 + x1)) != Ray(p1, Point(-1, 5))
    assert Segment(p1, p2).midpoint == Point(Rational(1, 2), Rational(1, 2))
    assert Segment(p1, Point(-x1, x1)).length == sqrt(2 * (x1 ** 2))

    assert l1.slope == 1
    assert l3.slope == oo
    assert l4.slope == 0
    assert Line(p1, Point(0, 1)).slope == oo
    assert Line(r1.source, r1.random_point()).slope == r1.slope
    assert Line(r2.source, r2.random_point()).slope == r2.slope
    assert Segment(Point(0, -1), Segment(p1, Point(0, 1)).random_point()).slope == Segment(p1, Point(0, 1)).slope

    assert l4.coefficients == (0, 1, 0)
    assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0)
    assert Line(p1, Point(0, 1)).coefficients == (1, 0, 0)
    # issue 7963
    r = Ray((0, 0), angle=x)
    assert r.subs(x, 3 * pi / 4) == Ray((0, 0), (-1, 1))
    assert r.subs(x, 5 * pi / 4) == Ray((0, 0), (-1, -1))
    assert r.subs(x, -pi / 4) == Ray((0, 0), (1, -1))
    assert r.subs(x, pi / 2) == Ray((0, 0), (0, 1))
    assert r.subs(x, -pi / 2) == Ray((0, 0), (0, -1))

    for ind in range(0, 5):
        assert l3.random_point() in l3

    assert p_r3.x >= p1.x and p_r3.y >= p1.y
    assert p_r4.x <= p2.x and p_r4.y <= p2.y
    assert p1.x <= p_s1.x <= p10.x and p1.y <= p_s1.y <= p10.y
    assert hash(s1) == hash(Segment(p10, p1))

    assert s1.plot_interval() == [t, 0, 1]
    assert Line(p1, p10).plot_interval() == [t, -5, 5]
    assert Ray((0, 0), angle=pi / 4).plot_interval() == [t, 0, 10]
Exemple #52
0
def test_transform():
    p = Point(1, 1)
    assert p.transform(rotate(pi / 2)) == Point(-1, 1)
    assert p.transform(scale(3, 2)) == Point(3, 2)
    assert p.transform(translate(1, 2)) == Point(2, 3)
Exemple #53
0
def test_util():
    # coverage for some leftover functions in sympy.geometry.util
    assert intersection(Point(0, 0)) == []
    raises(ValueError, lambda: intersection(Point(0, 0), 3))
    raises(ValueError, lambda: convex_hull(Point(0, 0), 3))