def npartitions(n, verbose=False): """ Calculate the partition function P(n), i.e. the number of ways that n can be written as a sum of positive integers. P(n) is computed using the Hardy-Ramanujan-Rademacher formula, described e.g. at http://mathworld.wolfram.com/PartitionFunctionP.html The correctness of this implementation has been tested for 10**n up to n = 8. """ n = int(n) if n < 0: return 0 if n <= 5: return [1, 1, 2, 3, 5, 7][n] # Estimate number of bits in p(n). This formula could be tidied pbits = int((math.pi*(2*n/3.)**0.5-math.log(4*n))/math.log(10)+1)*\ math.log(10,2) prec = p = int(pbits*1.1 + 100) s = fzero M = max(6, int(0.24*n**0.5+4)) sq23pi = mpf_mul(mpf_sqrt(from_rational(2,3,p), p), mpf_pi(p), p) sqrt8 = mpf_sqrt(from_int(8), p) for q in xrange(1, M): a = A(n,q,p) d = D(n,q,p, sq23pi, sqrt8) s = mpf_add(s, mpf_mul(a, d), prec) if verbose: print "step", q, "of", M, to_str(a, 10), to_str(d, 10) # On average, the terms decrease rapidly in magnitude. Dynamically # reducing the precision greatly improves performance. p = bitcount(abs(to_int(d))) + 50 np = to_int(mpf_add(s, fhalf, prec)) return int(np)
def __add__(self, other): if (other is S.NaN) or (self is NaN): return S.NaN if isinstance(other, Number): rhs, prec = other._as_mpf_op(self._prec) return Real._new(mlib.mpf_add(self._mpf_, rhs, prec, rnd), prec) return Number.__add__(self, other)
def evalf_log(expr, prec, options): arg = expr.args[0] workprec = prec+10 xre, xim, xacc, _ = evalf(arg, workprec, options) if xim: # XXX: use get_abs etc instead re = evalf_log(C.log(C.abs(arg, evaluate=False), evaluate=False), prec, options) im = mpf_atan2(xim, xre or fzero, prec) return re[0], im, re[2], prec imaginary_term = (mpf_cmp(xre, fzero) < 0) re = mpf_log(mpf_abs(xre), prec, round_nearest) size = fastlog(re) if prec - size > workprec: # We actually need to compute 1+x accurately, not x arg = C.Add(S.NegativeOne,arg,evaluate=False) xre, xim, xre_acc, xim_acc = evalf_add(arg, prec, options) prec2 = workprec - fastlog(xre) re = mpf_log(mpf_add(xre, fone, prec2), prec, round_nearest) re_acc = prec if imaginary_term: return re, mpf_pi(prec), re_acc, prec else: return re, None, re_acc, None
def __add__(self, other): try: other = _sympify(other) except SympifyError: return NotImplemented if (other is S.NaN) or (self is NaN): return S.NaN if isinstance(other, Number): rhs, prec = other._as_mpf_op(self._prec) return Real._new(mlib.mpf_add(self._mpf_, rhs, prec, rnd), prec) return Number.__add__(self, other)
def A(n, j, prec): """Compute the inner sum in the HRR formula.""" if j == 1: return fone s = fzero pi = pi_fixed(prec) for h in xrange(1, j): if igcd(h,j) != 1: continue # & with mask to compute fractional part of fixed-point number one = 1 << prec onemask = one - 1 half = one >> 1 g = 0 if j >= 3: for k in xrange(1, j): t = h*k*one//j if t > 0: frac = t & onemask else: frac = -((-t) & onemask) g += k*(frac - half) g = ((g - 2*h*n*one)*pi//j) >> prec s = mpf_add(s, mpf_cos(from_man_exp(g, -prec), prec), prec) return s