Exemple #1
0
def test_dup_mul_ground():
    f = dup_normal([], ZZ)

    assert dup_mul_ground(f, ZZ(2), ZZ) == dup_normal([], ZZ)

    f = dup_normal([1,2,3], ZZ)

    assert dup_mul_ground(f, ZZ(0), ZZ) == dup_normal([], ZZ)
    assert dup_mul_ground(f, ZZ(2), ZZ) == dup_normal([2,4,6], ZZ)
Exemple #2
0
def dup_legendre(n, K):
    """Low-level implementation of Legendre polynomials. """
    seq = [[K.one], [K.one, K.zero]]

    for i in range(2, n + 1):
        a = dup_mul_ground(dup_lshift(seq[-1], 1, K), K(2*i - 1, i), K)
        b = dup_mul_ground(seq[-2], K(i - 1, i), K)

        seq.append(dup_sub(a, b, K))

    return seq[n]
Exemple #3
0
def dup_gegenbauer(n, a, K):
    """Low-level implementation of Gegenbauer polynomials. """
    seq = [[K.one], [K(2)*a, K.zero]]

    for i in range(2, n + 1):
        f1 = K(2) * (i + a - K.one) / i
        f2 = (i + K(2)*a - K(2)) / i
        p1 = dup_mul_ground(dup_lshift(seq[-1], 1, K), f1, K)
        p2 = dup_mul_ground(seq[-2], f2, K)
        seq.append(dup_sub(p1, p2, K))

    return seq[n]
Exemple #4
0
def dup_hermite(n, K):
    """Low-level implementation of Hermite polynomials. """
    seq = [[K.one], [K(2), K.zero]]

    for i in range(2, n + 1):
        a = dup_lshift(seq[-1], 1, K)
        b = dup_mul_ground(seq[-2], K(i - 1), K)

        c = dup_mul_ground(dup_sub(a, b, K), K(2), K)

        seq.append(c)

    return seq[n]
Exemple #5
0
def dup_hermite(n, K):
    """Low-level implementation of Hermite polynomials. """
    seq = [[K.one], [K(2), K.zero]]

    for i in range(2, n + 1):
        a = dup_lshift(seq[-1], 1, K)
        b = dup_mul_ground(seq[-2], K(i - 1), K)

        c = dup_mul_ground(dup_sub(a, b, K), K(2), K)

        seq.append(c)

    return seq[n]
def dup_jacobi(n, a, b, K):
    """Low-level implementation of Jacobi polynomials. """
    seq = [[K.one], [(a + b + K(2))/K(2), (a - b)/K(2)]]

    for i in range(2, n + 1):
        den = K(i)*(a + b + i)*(a + b + K(2)*i - K(2))
        f0 = (a + b + K(2)*i - K.one) * (a*a - b*b) / (K(2)*den)
        f1 = (a + b + K(2)*i - K.one) * (a + b + K(2)*i - K(2)) * (a + b + K(2)*i) / (K(2)*den)
        f2 = (a + i - K.one)*(b + i - K.one)*(a + b + K(2)*i) / den
        p0 = dup_mul_ground(seq[-1], f0, K)
        p1 = dup_mul_ground(dup_lshift(seq[-1], 1, K), f1, K)
        p2 = dup_mul_ground(seq[-2], f2, K)
        seq.append(dup_sub(dup_add(p0, p1, K), p2, K))

    return seq[n]
Exemple #7
0
def dup_jacobi(n, a, b, K):
    """Low-level implementation of Jacobi polynomials. """
    seq = [[K.one], [(a + b + K(2))/K(2), (a - b)/K(2)]]

    for i in range(2, n + 1):
        den = K(i)*(a + b + i)*(a + b + K(2)*i - K(2))
        f0 = (a + b + K(2)*i - K.one) * (a*a - b*b) / (K(2)*den)
        f1 = (a + b + K(2)*i - K.one) * (a + b + K(2)*i - K(2)) * (a + b + K(2)*i) / (K(2)*den)
        f2 = (a + i - K.one)*(b + i - K.one)*(a + b + K(2)*i) / den
        p0 = dup_mul_ground(seq[-1], f0, K)
        p1 = dup_mul_ground(dup_lshift(seq[-1], 1, K), f1, K)
        p2 = dup_mul_ground(seq[-2], f2, K)
        seq.append(dup_sub(dup_add(p0, p1, K), p2, K))

    return seq[n]
Exemple #8
0
def dup_revert(f, n, K):
    """
    Compute ``f**(-1)`` mod ``x**n`` using Newton iteration.

    This function computes first ``2**n`` terms of a polynomial that
    is a result of inversion of a polynomial modulo ``x**n``. This is
    useful to efficiently compute series expansion of ``1/f``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x = ring("x", QQ)

    >>> f = -QQ(1,720)*x**6 + QQ(1,24)*x**4 - QQ(1,2)*x**2 + 1

    >>> R.dup_revert(f, 8)
    61/720*x**6 + 5/24*x**4 + 1/2*x**2 + 1

    """
    g = [K.revert(dup_TC(f, K))]
    h = [K.one, K.zero, K.zero]

    N = int(_ceil(_log(n, 2)))

    for i in range(1, N + 1):
        a = dup_mul_ground(g, K(2), K)
        b = dup_mul(f, dup_sqr(g, K), K)
        g = dup_rem(dup_sub(a, b, K), h, K)
        h = dup_lshift(h, dup_degree(h), K)

    return g
Exemple #9
0
def dup_rr_lcm(f, g, K):
    """
    Computes polynomial LCM over a ring in ``K[x]``.

    **Examples**

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.euclidtools import dup_rr_lcm

    >>> f = ZZ.map([1, 0, -1])
    >>> g = ZZ.map([1, -3, 2])

    >>> dup_rr_lcm(f, g, ZZ)
    [1, -2, -1, 2]

    """
    fc, f = dup_primitive(f, K)
    gc, g = dup_primitive(g, K)

    c = K.lcm(fc, gc)

    h = dup_exquo(dup_mul(f, g, K),
                  dup_gcd(f, g, K), K)

    return dup_mul_ground(h, c, K)
Exemple #10
0
def dup_sqf_list_include(f, K, all=False):
    """
    Return square-free decomposition of a polynomial in ``K[x]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> f = 2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16

    >>> R.dup_sqf_list_include(f)
    [(2, 1), (x + 1, 2), (x + 2, 3)]
    >>> R.dup_sqf_list_include(f, all=True)
    [(2, 1), (x + 1, 2), (x + 2, 3)]

    """
    coeff, factors = dup_sqf_list(f, K, all=all)

    if factors and factors[0][1] == 1:
        g = dup_mul_ground(factors[0][0], coeff, K)
        return [(g, 1)] + factors[1:]
    else:
        g = dup_strip([coeff])
        return [(g, 1)] + factors
Exemple #11
0
def dup_transform(f, p, q, K):
    """
    Evaluate functional transformation ``q**n * f(p/q)`` in ``K[x]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> R.dup_transform(x**2 - 2*x + 1, x**2 + 1, x - 1)
    x**4 - 2*x**3 + 5*x**2 - 4*x + 4

    """
    if not f:
        return []

    n = len(f) - 1
    h, Q = [f[0]], [[K.one]]

    for i in range(0, n):
        Q.append(dup_mul(Q[-1], q, K))

    for c, q in zip(f[1:], Q[1:]):
        h = dup_mul(h, p, K)
        q = dup_mul_ground(q, c, K)
        h = dup_add(h, q, K)

    return h
Exemple #12
0
def dup_clear_denoms(f, K0, K1=None, convert=False):
    """
    Clear denominators, i.e. transform ``K_0`` to ``K_1``.

    Examples
    ========

    >>> from sympy.polys.domains import QQ, ZZ
    >>> from sympy.polys.densetools import dup_clear_denoms

    >>> f = [QQ(1,2), QQ(1,3)]
    >>> dup_clear_denoms(f, QQ, convert=False)
    (6, [3/1, 2/1])

    >>> f = [QQ(1,2), QQ(1,3)]
    >>> dup_clear_denoms(f, QQ, convert=True)
    (6, [3, 2])

    """
    if K1 is None:
        K1 = K0.get_ring()

    common = K1.one

    for c in f:
        common = K1.lcm(common, K0.denom(c))

    if not K1.is_one(common):
        f = dup_mul_ground(f, common, K0)

    if not convert:
        return common, f
    else:
        return common, dup_convert(f, K0, K1)
Exemple #13
0
def dup_transform(f, p, q, K):
    """
    Evaluate functional transformation ``q**n * f(p/q)`` in ``K[x]``.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.densetools import dup_transform

    >>> f = ZZ.map([1, -2, 1])
    >>> p = ZZ.map([1, 0, 1])
    >>> q = ZZ.map([1, -1])

    >>> dup_transform(f, p, q, ZZ)
    [1, -2, 5, -4, 4]

    """
    if not f:
        return []

    n = dup_degree(f)
    h, Q = [f[0]], [[K.one]]

    for i in xrange(0, n):
        Q.append(dup_mul(Q[-1], q, K))

    for c, q in zip(f[1:], Q[1:]):
        h = dup_mul(h, p, K)
        q = dup_mul_ground(q, c, K)
        h = dup_add(h, q, K)

    return h
Exemple #14
0
def dup_revert(f, n, K):
    """
    Compute ``f**(-1)`` mod ``x**n`` using Newton iteration.

    This function computes first ``2**n`` terms of a polynomial that
    is a result of inversion of a polynomial modulo ``x**n``. This is
    useful to efficiently compute series expansion of ``1/f``.

    Examples
    ========

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.densetools import dup_revert

    >>> f = [-QQ(1,720), QQ(0), QQ(1,24), QQ(0), -QQ(1,2), QQ(0), QQ(1)]

    >>> dup_revert(f, 8, QQ)
    [61/720, 0/1, 5/24, 0/1, 1/2, 0/1, 1/1]

    """
    g = [K.revert(dup_TC(f, K))]
    h = [K.one, K.zero, K.zero]

    N = int(_ceil(_log(n, 2)))

    for i in xrange(1, N + 1):
        a = dup_mul_ground(g, K(2), K)
        b = dup_mul(f, dup_sqr(g, K), K)
        g = dup_rem(dup_sub(a, b, K), h, K)
        h = dup_lshift(h, dup_degree(h), K)

    return g
Exemple #15
0
def dup_clear_denoms(f, K0, K1=None, convert=False):
    """
    Clear denominators, i.e. transform ``K_0`` to ``K_1``.

    Examples
    ========

    >>> from sympy.polys.domains import QQ, ZZ
    >>> from sympy.polys.densetools import dup_clear_denoms

    >>> f = [QQ(1,2), QQ(1,3)]
    >>> dup_clear_denoms(f, QQ, convert=False)
    (6, [3/1, 2/1])

    >>> f = [QQ(1,2), QQ(1,3)]
    >>> dup_clear_denoms(f, QQ, convert=True)
    (6, [3, 2])

    """
    if K1 is None:
        K1 = K0.get_ring()

    common = K1.one

    for c in f:
        common = K1.lcm(common, K0.denom(c))

    if not K1.is_one(common):
        f = dup_mul_ground(f, common, K0)

    if not convert:
        return common, f
    else:
        return common, dup_convert(f, K0, K1)
Exemple #16
0
def dup_sqf_list_include(f, K, all=False):
    """
    Return square-free decomposition of a polynomial in ``K[x]``.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.sqfreetools import dup_sqf_list_include

    >>> f = ZZ.map([2, 16, 50, 76, 56, 16])

    >>> dup_sqf_list_include(f, ZZ)
    [([2], 1), ([1, 1], 2), ([1, 2], 3)]

    >>> dup_sqf_list_include(f, ZZ, all=True)
    [([2], 1), ([1, 1], 2), ([1, 2], 3)]

    """
    coeff, factors = dup_sqf_list(f, K, all=all)

    if factors and factors[0][1] == 1:
        g = dup_mul_ground(factors[0][0], coeff, K)
        return [(g, 1)] + factors[1:]
    else:
        g = dup_strip([coeff])
        return [(g, 1)] + factors
Exemple #17
0
def dup_transform(f, p, q, K):
    """
    Evaluate functional transformation ``q**n * f(p/q)`` in ``K[x]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> R.dup_transform(x**2 - 2*x + 1, x**2 + 1, x - 1)
    x**4 - 2*x**3 + 5*x**2 - 4*x + 4

    """
    if not f:
        return []

    n = len(f) - 1
    h, Q = [f[0]], [[K.one]]

    for i in range(0, n):
        Q.append(dup_mul(Q[-1], q, K))

    for c, q in zip(f[1:], Q[1:]):
        h = dup_mul(h, p, K)
        q = dup_mul_ground(q, c, K)
        h = dup_add(h, q, K)

    return h
Exemple #18
0
def dup_rr_lcm(f, g, K):
    """
    Computes polynomial LCM over a ring in `K[x]`.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.euclidtools import dup_rr_lcm

    >>> f = ZZ.map([1, 0, -1])
    >>> g = ZZ.map([1, -3, 2])

    >>> dup_rr_lcm(f, g, ZZ)
    [1, -2, -1, 2]

    """
    fc, f = dup_primitive(f, K)
    gc, g = dup_primitive(g, K)

    c = K.lcm(fc, gc)

    h = dup_quo(dup_mul(f, g, K), dup_gcd(f, g, K), K)

    return dup_mul_ground(h, c, K)
Exemple #19
0
def dup_revert(f, n, K):
    """
    Compute ``f**(-1)`` mod ``x**n`` using Newton iteration.

    This function computes first ``2**n`` terms of a polynomial that
    is a result of inversion of a polynomial modulo ``x**n``. This is
    useful to efficiently compute series expansion of ``1/f``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x = ring("x", QQ)

    >>> f = -QQ(1,720)*x**6 + QQ(1,24)*x**4 - QQ(1,2)*x**2 + 1

    >>> R.dup_revert(f, 8)
    61/720*x**6 + 5/24*x**4 + 1/2*x**2 + 1

    """
    g = [K.revert(dup_TC(f, K))]
    h = [K.one, K.zero, K.zero]

    N = int(_ceil(_log(n, 2)))

    for i in range(1, N + 1):
        a = dup_mul_ground(g, K(2), K)
        b = dup_mul(f, dup_sqr(g, K), K)
        g = dup_rem(dup_sub(a, b, K), h, K)
        h = dup_lshift(h, dup_degree(h), K)

    return g
Exemple #20
0
def dup_sqf_list_include(f, K, all=False):
    """
    Return square-free decomposition of a polynomial in ``K[x]``.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.sqfreetools import dup_sqf_list_include

    >>> f = ZZ.map([2, 16, 50, 76, 56, 16])

    >>> dup_sqf_list_include(f, ZZ)
    [([2], 1), ([1, 1], 2), ([1, 2], 3)]

    >>> dup_sqf_list_include(f, ZZ, all=True)
    [([2], 1), ([1, 1], 2), ([1, 2], 3)]

    """
    coeff, factors = dup_sqf_list(f, K, all=all)

    if factors and factors[0][1] == 1:
        g = dup_mul_ground(factors[0][0], coeff, K)
        return [(g, 1)] + factors[1:]
    else:
        g = dup_strip([coeff])
        return [(g, 1)] + factors
Exemple #21
0
def dup_transform(f, p, q, K):
    """
    Evaluate functional transformation ``q**n * f(p/q)`` in ``K[x]``.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.densetools import dup_transform

    >>> f = ZZ.map([1, -2, 1])
    >>> p = ZZ.map([1, 0, 1])
    >>> q = ZZ.map([1, -1])

    >>> dup_transform(f, p, q, ZZ)
    [1, -2, 5, -4, 4]

    """
    if not f:
        return []

    n = dup_degree(f)
    h, Q = [f[0]], [[K.one]]

    for i in xrange(0, n):
        Q.append(dup_mul(Q[-1], q, K))

    for c, q in zip(f[1:], Q[1:]):
        h = dup_mul(h, p, K)
        q = dup_mul_ground(q, c, K)
        h = dup_add(h, q, K)

    return h
Exemple #22
0
def dup_revert(f, n, K):
    """
    Compute ``f**(-1)`` mod ``x**n`` using Newton iteration.

    This function computes first ``2**n`` terms of a polynomial that
    is a result of inversion of a polynomial modulo ``x**n``. This is
    useful to efficiently compute series expansion of ``1/f``.

    Examples
    ========

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.densetools import dup_revert

    >>> f = [-QQ(1,720), QQ(0), QQ(1,24), QQ(0), -QQ(1,2), QQ(0), QQ(1)]

    >>> dup_revert(f, 8, QQ)
    [61/720, 0/1, 5/24, 0/1, 1/2, 0/1, 1/1]

    """
    g = [K.revert(dup_TC(f, K))]
    h = [K.one, K.zero, K.zero]

    N = int(_ceil(_log(n, 2)))

    for i in xrange(1, N + 1):
        a = dup_mul_ground(g, K(2), K)
        b = dup_mul(f, dup_sqr(g, K), K)
        g = dup_rem(dup_sub(a, b, K), h, K)
        h = dup_lshift(h, dup_degree(h), K)

    return g
def dup_sqf_list_include(f, K, all=False):
    """
    Return square-free decomposition of a polynomial in ``K[x]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> f = 2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16

    >>> R.dup_sqf_list_include(f)
    [(2, 1), (x + 1, 2), (x + 2, 3)]
    >>> R.dup_sqf_list_include(f, all=True)
    [(2, 1), (x + 1, 2), (x + 2, 3)]

    """
    coeff, factors = dup_sqf_list(f, K, all=all)

    if factors and factors[0][1] == 1:
        g = dup_mul_ground(factors[0][0], coeff, K)
        return [(g, 1)] + factors[1:]
    else:
        g = dup_strip([coeff])
        return [(g, 1)] + factors
Exemple #24
0
def dup_qq_heu_gcd(f, g, K0):
    """
    Heuristic polynomial GCD in `Q[x]`.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``,
    ``cff = quo(f, h)``, and ``cfg = quo(g, h)``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x = ring("x", QQ)

    >>> f = QQ(1,2)*x**2 + QQ(7,4)*x + QQ(3,2)
    >>> g = QQ(1,2)*x**2 + x

    >>> R.dup_qq_heu_gcd(f, g)
    (x + 2, 1/2*x + 3/4, 1/2*x)

    """
    result = _dup_ff_trivial_gcd(f, g, K0)

    if result is not None:
        return result

    K1 = K0.get_ring()

    cf, f = dup_clear_denoms(f, K0, K1)
    cg, g = dup_clear_denoms(g, K0, K1)

    f = dup_convert(f, K0, K1)
    g = dup_convert(g, K0, K1)

    h, cff, cfg = dup_zz_heu_gcd(f, g, K1)

    h = dup_convert(h, K1, K0)

    c = dup_LC(h, K0)
    h = dup_monic(h, K0)

    cff = dup_convert(cff, K1, K0)
    cfg = dup_convert(cfg, K1, K0)

    cff = dup_mul_ground(cff, K0.quo(c, cf), K0)
    cfg = dup_mul_ground(cfg, K0.quo(c, cg), K0)

    return h, cff, cfg
Exemple #25
0
def dup_qq_heu_gcd(f, g, K0):
    """
    Heuristic polynomial GCD in `Q[x]`.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``,
    ``cff = quo(f, h)``, and ``cfg = quo(g, h)``.

    Examples
    ========

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.euclidtools import dup_qq_heu_gcd

    >>> f = [QQ(1,2), QQ(7,4), QQ(3,2)]
    >>> g = [QQ(1,2), QQ(1), QQ(0)]

    >>> dup_qq_heu_gcd(f, g, QQ)
    ([1/1, 2/1], [1/2, 3/4], [1/2, 0/1])

    """
    result = _dup_ff_trivial_gcd(f, g, K0)

    if result is not None:
        return result

    K1 = K0.get_ring()

    cf, f = dup_clear_denoms(f, K0, K1)
    cg, g = dup_clear_denoms(g, K0, K1)

    f = dup_convert(f, K0, K1)
    g = dup_convert(g, K0, K1)

    h, cff, cfg = dup_zz_heu_gcd(f, g, K1)

    h = dup_convert(h, K1, K0)

    c = dup_LC(h, K0)
    h = dup_monic(h, K0)

    cff = dup_convert(cff, K1, K0)
    cfg = dup_convert(cfg, K1, K0)

    cff = dup_mul_ground(cff, K0.quo(c, cf), K0)
    cfg = dup_mul_ground(cfg, K0.quo(c, cg), K0)

    return h, cff, cfg
Exemple #26
0
def dup_qq_heu_gcd(f, g, K0):
    """
    Heuristic polynomial GCD in `Q[x]`.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``,
    ``cff = quo(f, h)``, and ``cfg = quo(g, h)``.

    Examples
    ========

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.euclidtools import dup_qq_heu_gcd

    >>> f = [QQ(1,2), QQ(7,4), QQ(3,2)]
    >>> g = [QQ(1,2), QQ(1), QQ(0)]

    >>> dup_qq_heu_gcd(f, g, QQ)
    ([1/1, 2/1], [1/2, 3/4], [1/2, 0/1])

    """
    result = _dup_ff_trivial_gcd(f, g, K0)

    if result is not None:
        return result

    K1 = K0.get_ring()

    cf, f = dup_clear_denoms(f, K0, K1)
    cg, g = dup_clear_denoms(g, K0, K1)

    f = dup_convert(f, K0, K1)
    g = dup_convert(g, K0, K1)

    h, cff, cfg = dup_zz_heu_gcd(f, g, K1)

    h = dup_convert(h, K1, K0)

    c = dup_LC(h, K0)
    h = dup_monic(h, K0)

    cff = dup_convert(cff, K1, K0)
    cfg = dup_convert(cfg, K1, K0)

    cff = dup_mul_ground(cff, K0.quo(c, cf), K0)
    cfg = dup_mul_ground(cfg, K0.quo(c, cg), K0)

    return h, cff, cfg
Exemple #27
0
def dup_qq_heu_gcd(f, g, K0):
    """
    Heuristic polynomial GCD in `Q[x]`.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``,
    ``cff = quo(f, h)``, and ``cfg = quo(g, h)``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x = ring("x", QQ)

    >>> f = QQ(1,2)*x**2 + QQ(7,4)*x + QQ(3,2)
    >>> g = QQ(1,2)*x**2 + x

    >>> R.dup_qq_heu_gcd(f, g)
    (x + 2, 1/2*x + 3/4, 1/2*x)

    """
    result = _dup_ff_trivial_gcd(f, g, K0)

    if result is not None:
        return result

    K1 = K0.get_ring()

    cf, f = dup_clear_denoms(f, K0, K1)
    cg, g = dup_clear_denoms(g, K0, K1)

    f = dup_convert(f, K0, K1)
    g = dup_convert(g, K0, K1)

    h, cff, cfg = dup_zz_heu_gcd(f, g, K1)

    h = dup_convert(h, K1, K0)

    c = dup_LC(h, K0)
    h = dup_monic(h, K0)

    cff = dup_convert(cff, K1, K0)
    cfg = dup_convert(cfg, K1, K0)

    cff = dup_mul_ground(cff, K0.quo(c, cf), K0)
    cfg = dup_mul_ground(cfg, K0.quo(c, cg), K0)

    return h, cff, cfg
Exemple #28
0
def dup_factor_list(f, K0, **args):
    """Factor polynomials into irreducibles in `K[x]`. """
    if not K0.has_CharacteristicZero:  # pragma: no cover
        raise DomainError('only characteristic zero allowed')

    if K0.is_Algebraic:
        coeff, factors = dup_ext_factor(f, K0)
    else:
        if not K0.is_Exact:
            K0_inexact, K0 = K0, K0.get_exact()
            f = dup_convert(f, K0_inexact, K0)
        else:
            K0_inexact = None

        if K0.has_Field:
            K = K0.get_ring()

            denom, f = dup_ground_to_ring(f, K0, K)
            f = dup_convert(f, K0, K)
        else:
            K = K0

        if K.is_ZZ:
            coeff, factors = dup_zz_factor(f, K, **args)
        elif K.is_Poly:
            f, u = dmp_inject(f, 0, K)

            coeff, factors = dmp_factor_list(f, u, K.dom, **args)

            for i, (f, k) in enumerate(factors):
                factors[i] = (dmp_eject(f, u, K), k)

            coeff = K.convert(coeff, K.dom)
        else:  # pragma: no cover
            raise DomainError('factorization not supported over %s' % K0)

        if K0.has_Field:
            for i, (f, k) in enumerate(factors):
                factors[i] = (dup_convert(f, K, K0), k)

            coeff = K0.convert(coeff, K)
            denom = K0.convert(denom, K)

            coeff = K0.quo(coeff, denom)

        if K0_inexact is not None:
            for i, (f, k) in enumerate(factors):
                factors[i] = (dup_convert(f, K0, K0_inexact), k)

            coeff = K0_inexact.convert(coeff, K0)

    if not args.get('include', False):
        return coeff, factors
    else:
        if not factors:
            return [(dup_strip([coeff]), 1)]
        else:
            g = dup_mul_ground(factors[0][0], coeff, K)
            return [(g, factors[0][1])] + factors[1:]
Exemple #29
0
def dup_factor_list(f, K0, **args):
    """Factor polynomials into irreducibles in `K[x]`. """
    if not K0.has_CharacteristicZero: # pragma: no cover
        raise DomainError('only characteristic zero allowed')

    if K0.is_Algebraic:
        coeff, factors = dup_ext_factor(f, K0)
    else:
        if not K0.is_Exact:
            K0_inexact, K0 = K0, K0.get_exact()
            f = dup_convert(f, K0_inexact, K0)
        else:
            K0_inexact = None

        if K0.has_Field:
            K = K0.get_ring()

            denom, f = dup_ground_to_ring(f, K0, K)
            f = dup_convert(f, K0, K)
        else:
            K = K0

        if K.is_ZZ:
            coeff, factors = dup_zz_factor(f, K, **args)
        elif K.is_Poly:
            f, u = dmp_inject(f, 0, K)

            coeff, factors = dmp_factor_list(f, u, K.dom, **args)

            for i, (f, k) in enumerate(factors):
                factors[i] = (dmp_eject(f, u, K), k)

            coeff = K.convert(coeff, K.dom)
        else: # pragma: no cover
            raise DomainError('factorization not supported over %s' % K0)

        if K0.has_Field:
            for i, (f, k) in enumerate(factors):
                factors[i] = (dup_convert(f, K, K0), k)

            coeff = K0.convert(coeff, K)
            denom = K0.convert(denom, K)

            coeff = K0.quo(coeff, denom)

        if K0_inexact is not None:
            for i, (f, k) in enumerate(factors):
                factors[i] = (dup_convert(f, K0, K0_inexact), k)

            coeff = K0_inexact.convert(coeff, K0)

    if not args.get('include', False):
        return coeff, factors
    else:
        if not factors:
            return [(dup_strip([coeff]), 1)]
        else:
            g = dup_mul_ground(factors[0][0], coeff, K)
            return [(g, factors[0][1])] + factors[1:]
def dup_factor_list_include(f, K):
    """Factor polynomials into irreducibles in `K[x]`. """
    coeff, factors = dup_factor_list(f, K)

    if not factors:
        return [(dup_strip([coeff]), 1)]
    else:
        g = dup_mul_ground(factors[0][0], coeff, K)
        return [(g, factors[0][1])] + factors[1:]
Exemple #31
0
def dup_spherical_bessel_fn_minus(n, K):
    """ Low-level implementation of fn(-n, x) """
    seq = [[K.one, K.zero], [K.zero]]

    for i in xrange(2, n + 1):
        a = dup_mul_ground(dup_lshift(seq[-1], 1, K), K(3 - 2 * i), K)
        seq.append(dup_sub(a, seq[-2], K))

    return seq[n]
Exemple #32
0
def dup_factor_list_include(f, K):
    """Factor polynomials into irreducibles in `K[x]`. """
    coeff, factors = dup_factor_list(f, K)

    if not factors:
        return [(dup_strip([coeff]), 1)]
    else:
        g = dup_mul_ground(factors[0][0], coeff, K)
        return [(g, factors[0][1])] + factors[1:]
Exemple #33
0
def dup_spherical_bessel_fn_minus(n, K):
    """ Low-level implementation of fn(-n, x) """
    seq = [[K.one, K.zero], [K.zero]]

    for i in range(2, n + 1):
        a = dup_mul_ground(dup_lshift(seq[-1], 1, K), K(3 - 2*i), K)
        seq.append(dup_sub(a, seq[-2], K))

    return seq[n]
Exemple #34
0
def dup_chebyshevt(n, K):
    """Low-level implementation of Chebyshev polynomials of the 1st kind. """
    seq = [[K.one], [K.one, K.zero]]

    for i in xrange(2, n + 1):
        a = dup_mul_ground(dup_lshift(seq[-1], 1, K), K(2), K)
        seq.append(dup_sub(a, seq[-2], K))

    return seq[n]
Exemple #35
0
def dup_chebyshevt(n, K):
    """Low-level implementation of Chebyshev polynomials of the 1st kind. """
    seq = [[K.one], [K.one, K.zero]]

    for i in range(2, n + 1):
        a = dup_mul_ground(dup_lshift(seq[-1], 1, K), K(2), K)
        seq.append(dup_sub(a, seq[-2], K))

    return seq[n]
Exemple #36
0
def dup_zz_hensel_lift(p, f, f_list, l, K):
    """
    Multifactor Hensel lifting in `Z[x]`.

    Given a prime `p`, polynomial `f` over `Z[x]` such that `lc(f)`
    is a unit modulo `p`, monic pair-wise coprime polynomials `f_i`
    over `Z[x]` satisfying::

        f = lc(f) f_1 ... f_r (mod p)

    and a positive integer `l`, returns a list of monic polynomials
    `F_1`, `F_2`, ..., `F_r` satisfying::

       f = lc(f) F_1 ... F_r (mod p**l)

       F_i = f_i (mod p), i = 1..r

    References
    ==========

    1. [Gathen99]_

    """
    r = len(f_list)
    lc = dup_LC(f, K)

    if r == 1:
        F = dup_mul_ground(f, K.gcdex(lc, p**l)[0], K)
        return [dup_trunc(F, p**l, K)]

    m = p
    k = r // 2
    d = int(_ceil(_log(l, 2)))

    g = gf_from_int_poly([lc], p)

    for f_i in f_list[:k]:
        g = gf_mul(g, gf_from_int_poly(f_i, p), p, K)

    h = gf_from_int_poly(f_list[k], p)

    for f_i in f_list[k + 1:]:
        h = gf_mul(h, gf_from_int_poly(f_i, p), p, K)

    s, t, _ = gf_gcdex(g, h, p, K)

    g = gf_to_int_poly(g, p)
    h = gf_to_int_poly(h, p)
    s = gf_to_int_poly(s, p)
    t = gf_to_int_poly(t, p)

    for _ in range(1, d + 1):
        (g, h, s, t), m = dup_zz_hensel_step(m, f, g, h, s, t, K), m**2

    return dup_zz_hensel_lift(p, g, f_list[:k], l, K) \
         + dup_zz_hensel_lift(p, h, f_list[k:], l, K)
Exemple #37
0
def dup_zz_hensel_lift(p, f, f_list, l, K):
    """
    Multifactor Hensel lifting in `Z[x]`.

    Given a prime `p`, polynomial `f` over `Z[x]` such that `lc(f)`
    is a unit modulo `p`, monic pair-wise coprime polynomials `f_i`
    over `Z[x]` satisfying::

        f = lc(f) f_1 ... f_r (mod p)

    and a positive integer `l`, returns a list of monic polynomials
    `F_1`, `F_2`, ..., `F_r` satisfying::

       f = lc(f) F_1 ... F_r (mod p**l)

       F_i = f_i (mod p), i = 1..r

    References
    ==========

    1. [Gathen99]_

    """
    r = len(f_list)
    lc = dup_LC(f, K)

    if r == 1:
        F = dup_mul_ground(f, K.gcdex(lc, p**l)[0], K)
        return [ dup_trunc(F, p**l, K) ]

    m = p
    k = r // 2
    d = int(_ceil(_log(l, 2)))

    g = gf_from_int_poly([lc], p)

    for f_i in f_list[:k]:
        g = gf_mul(g, gf_from_int_poly(f_i, p), p, K)

    h = gf_from_int_poly(f_list[k], p)

    for f_i in f_list[k + 1:]:
        h = gf_mul(h, gf_from_int_poly(f_i, p), p, K)

    s, t, _ = gf_gcdex(g, h, p, K)

    g = gf_to_int_poly(g, p)
    h = gf_to_int_poly(h, p)
    s = gf_to_int_poly(s, p)
    t = gf_to_int_poly(t, p)

    for _ in range(1, d + 1):
        (g, h, s, t), m = dup_zz_hensel_step(m, f, g, h, s, t, K), m**2

    return dup_zz_hensel_lift(p, g, f_list[:k], l, K) \
        + dup_zz_hensel_lift(p, h, f_list[k:], l, K)
Exemple #38
0
def dup_laguerre(n, K):
    """Low-level implementation of Laguerre polynomials. """
    seq = [[K.one], [-K.one, K.one]]

    for i in xrange(2, n+1):
        a = dup_mul(seq[-1], [-K(1, i), K(2*i-1, i)], K)
        b = dup_mul_ground(seq[-2], K(i-1, i), K)

        seq.append(dup_sub(a, b, K))

    return seq[n]
Exemple #39
0
def dup_laguerre(n, alpha, K):
    """Low-level implementation of Laguerre polynomials. """
    seq = [[K.zero], [K.one]]

    for i in range(1, n + 1):
        a = dup_mul(seq[-1], [-K.one/i, alpha/i + K(2*i - 1)/i], K)
        b = dup_mul_ground(seq[-2], alpha/i + K(i - 1)/i, K)

        seq.append(dup_sub(a, b, K))

    return seq[-1]
Exemple #40
0
def dup_laguerre(n, K):
    """Low-level implementation of Laguerre polynomials. """
    seq = [[K.one], [-K.one, K.one]]

    for i in xrange(2, n + 1):
        a = dup_mul(seq[-1], [-K(1, i), K(2 * i - 1, i)], K)
        b = dup_mul_ground(seq[-2], K(i - 1, i), K)

        seq.append(dup_sub(a, b, K))

    return seq[n]
Exemple #41
0
def dup_laguerre(n, alpha, K):
    """Low-level implementation of Laguerre polynomials. """
    seq = [[K.zero], [K.one]]

    for i in xrange(1, n + 1):
        a = dup_mul(seq[-1], [-K.one / i, alpha / i + K(2 * i - 1) / i], K)
        b = dup_mul_ground(seq[-2], alpha / i + K(i - 1) / i, K)

        seq.append(dup_sub(a, b, K))

    return seq[-1]
Exemple #42
0
def dmp_zz_wang_lead_coeffs(f, T, cs, E, H, A, u, K):
    """Wang/EEZ: Compute correct leading coefficients. """
    C, J, v = [], [0] * len(E), u - 1

    for h in H:
        c = dmp_one(v, K)
        d = dup_LC(h, K) * cs

        for i in reversed(xrange(len(E))):
            k, e, (t, _) = 0, E[i], T[i]

            while not (d % e):
                d, k = d // e, k + 1

            if k != 0:
                c, J[i] = dmp_mul(c, dmp_pow(t, k, v, K), v, K), 1

        C.append(c)

    if any(not j for j in J):
        raise ExtraneousFactors  # pragma: no cover

    CC, HH = [], []

    for c, h in zip(C, H):
        d = dmp_eval_tail(c, A, v, K)
        lc = dup_LC(h, K)

        if K.is_one(cs):
            cc = lc // d
        else:
            g = K.gcd(lc, d)
            d, cc = d // g, lc // g
            h, cs = dup_mul_ground(h, d, K), cs // d

        c = dmp_mul_ground(c, cc, v, K)

        CC.append(c)
        HH.append(h)

    if K.is_one(cs):
        return f, HH, CC

    CCC, HHH = [], []

    for c, h in zip(CC, HH):
        CCC.append(dmp_mul_ground(c, cs, v, K))
        HHH.append(dmp_mul_ground(h, cs, 0, K))

    f = dmp_mul_ground(f, cs**(len(H) - 1), u, K)

    return f, HHH, CCC
def dmp_zz_wang_lead_coeffs(f, T, cs, E, H, A, u, K):
    """Wang/EEZ: Compute correct leading coefficients. """
    C, J, v = [], [0]*len(E), u-1

    for h in H:
        c = dmp_one(v, K)
        d = dup_LC(h, K)*cs

        for i in reversed(xrange(len(E))):
            k, e, (t, _) = 0, E[i], T[i]

            while not (d % e):
                d, k = d//e, k+1

            if k != 0:
                c, J[i] = dmp_mul(c, dmp_pow(t, k, v, K), v, K), 1

        C.append(c)

    if any([ not j for j in J ]):
        raise ExtraneousFactors # pragma: no cover

    CC, HH = [], []

    for c, h in zip(C, H):
        d = dmp_eval_tail(c, A, v, K)
        lc = dup_LC(h, K)

        if K.is_one(cs):
            cc = lc//d
        else:
            g = K.gcd(lc, d)
            d, cc = d//g, lc//g
            h, cs = dup_mul_ground(h, d, K), cs//d

        c = dmp_mul_ground(c, cc, v, K)

        CC.append(c)
        HH.append(h)

    if K.is_one(cs):
        return f, HH, CC

    CCC, HHH = [], []

    for c, h in zip(CC, HH):
        CCC.append(dmp_mul_ground(c, cs, v, K))
        HHH.append(dmp_mul_ground(h, cs, 0, K))

    f = dmp_mul_ground(f, cs**(len(H)-1), u, K)

    return f, HHH, CCC
Exemple #44
0
def dup_rr_prs_gcd(f, g, K):
    """
    Computes polynomial GCD using subresultants over a ring.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``, ``cff = quo(f, h)``,
    and ``cfg = quo(g, h)``.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.euclidtools import dup_rr_prs_gcd

    >>> f = ZZ.map([1, 0, -1])
    >>> g = ZZ.map([1, -3, 2])

    >>> dup_rr_prs_gcd(f, g, ZZ)
    ([1, -1], [1, 1], [1, -2])

    """
    result = _dup_rr_trivial_gcd(f, g, K)

    if result is not None:
        return result

    fc, F = dup_primitive(f, K)
    gc, G = dup_primitive(g, K)

    c = K.gcd(fc, gc)

    h = dup_subresultants(F, G, K)[-1]
    _, h = dup_primitive(h, K)

    if K.is_negative(dup_LC(h, K)):
        c = -c

    h = dup_mul_ground(h, c, K)

    cff = dup_quo(f, h, K)
    cfg = dup_quo(g, h, K)

    return h, cff, cfg
Exemple #45
0
def dup_rr_prs_gcd(f, g, K):
    """
    Computes polynomial GCD using subresultants over a ring.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``, ``cff = quo(f, h)``,
    and ``cfg = quo(g, h)``.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.euclidtools import dup_rr_prs_gcd

    >>> f = ZZ.map([1, 0, -1])
    >>> g = ZZ.map([1, -3, 2])

    >>> dup_rr_prs_gcd(f, g, ZZ)
    ([1, -1], [1, 1], [1, -2])

    """
    result = _dup_rr_trivial_gcd(f, g, K)

    if result is not None:
        return result

    fc, F = dup_primitive(f, K)
    gc, G = dup_primitive(g, K)

    c = K.gcd(fc, gc)

    h = dup_subresultants(F, G, K)[-1]
    _, h = dup_primitive(h, K)

    if K.is_negative(dup_LC(h, K)):
        c = -c

    h = dup_mul_ground(h, c, K)

    cff = dup_quo(f, h, K)
    cfg = dup_quo(g, h, K)

    return h, cff, cfg
Exemple #46
0
def dup_rr_prs_gcd(f, g, K):
    """
    Computes polynomial GCD using subresultants over a ring.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``, ``cff = quo(f, h)``,
    and ``cfg = quo(g, h)``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> R.dup_rr_prs_gcd(x**2 - 1, x**2 - 3*x + 2)
    (x - 1, x + 1, x - 2)

    """
    result = _dup_rr_trivial_gcd(f, g, K)

    if result is not None:
        return result

    fc, F = dup_primitive(f, K)
    gc, G = dup_primitive(g, K)

    c = K.gcd(fc, gc)

    h = dup_subresultants(F, G, K)[-1]
    _, h = dup_primitive(h, K)

    if K.is_negative(dup_LC(h, K)):
        c = -c

    h = dup_mul_ground(h, c, K)

    cff = dup_quo(f, h, K)
    cfg = dup_quo(g, h, K)

    return h, cff, cfg
Exemple #47
0
def dup_rr_prs_gcd(f, g, K):
    """
    Computes polynomial GCD using subresultants over a ring.

    Returns ``(h, cff, cfg)`` such that ``a = gcd(f, g)``, ``cff = quo(f, h)``,
    and ``cfg = quo(g, h)``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> R.dup_rr_prs_gcd(x**2 - 1, x**2 - 3*x + 2)
    (x - 1, x + 1, x - 2)

    """
    result = _dup_rr_trivial_gcd(f, g, K)

    if result is not None:
        return result

    fc, F = dup_primitive(f, K)
    gc, G = dup_primitive(g, K)

    c = K.gcd(fc, gc)

    h = dup_subresultants(F, G, K)[-1]
    _, h = dup_primitive(h, K)

    if K.is_negative(dup_LC(h, K)):
        c = -c

    h = dup_mul_ground(h, c, K)

    cff = dup_quo(f, h, K)
    cfg = dup_quo(g, h, K)

    return h, cff, cfg
def dup_rr_lcm(f, g, K):
    """
    Computes polynomial LCM over a ring in `K[x]`.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> R.dup_rr_lcm(x**2 - 1, x**2 - 3*x + 2)
    x**3 - 2*x**2 - x + 2

    """
    fc, f = dup_primitive(f, K)
    gc, g = dup_primitive(g, K)

    c = K.lcm(fc, gc)

    h = dup_quo(dup_mul(f, g, K), dup_gcd(f, g, K), K)

    return dup_mul_ground(h, c, K)
Exemple #49
0
def dup_rr_lcm(f, g, K):
    """
    Computes polynomial LCM over a ring in `K[x]`.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> R.dup_rr_lcm(x**2 - 1, x**2 - 3*x + 2)
    x**3 - 2*x**2 - x + 2

    """
    fc, f = dup_primitive(f, K)
    gc, g = dup_primitive(g, K)

    c = K.lcm(fc, gc)

    h = dup_quo(dup_mul(f, g, K), dup_gcd(f, g, K), K)

    return dup_mul_ground(h, c, K)
Exemple #50
0
def dup_clear_denoms(f, K0, K1=None, convert=False):
    """
    Clear denominators, i.e. transform ``K_0`` to ``K_1``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x = ring("x", QQ)

    >>> f = QQ(1,2)*x + QQ(1,3)

    >>> R.dup_clear_denoms(f, convert=False)
    (6, 3*x + 2)
    >>> R.dup_clear_denoms(f, convert=True)
    (6, 3*x + 2)

    """
    if K1 is None:
        if K0.has_assoc_Ring:
            K1 = K0.get_ring()
        else:
            K1 = K0

    common = K1.one

    for c in f:
        common = K1.lcm(common, K0.denom(c))

    if not K1.is_one(common):
        f = dup_mul_ground(f, common, K0)

    if not convert:
        return common, f
    else:
        return common, dup_convert(f, K0, K1)
Exemple #51
0
def dup_clear_denoms(f, K0, K1=None, convert=False):
    """
    Clear denominators, i.e. transform ``K_0`` to ``K_1``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x = ring("x", QQ)

    >>> f = QQ(1,2)*x + QQ(1,3)

    >>> R.dup_clear_denoms(f, convert=False)
    (6, 3*x + 2)
    >>> R.dup_clear_denoms(f, convert=True)
    (6, 3*x + 2)

    """
    if K1 is None:
        if K0.has_assoc_Ring:
            K1 = K0.get_ring()
        else:
            K1 = K0

    common = K1.one

    for c in f:
        common = K1.lcm(common, K0.denom(c))

    if not K1.is_one(common):
        f = dup_mul_ground(f, common, K0)

    if not convert:
        return common, f
    else:
        return common, dup_convert(f, K0, K1)
Exemple #52
0
def dmp_zz_diophantine(F, c, A, d, p, u, K):
    """Wang/EEZ: Solve multivariate Diophantine equations. """
    if not A:
        S = [[] for _ in F]
        n = dup_degree(c)

        for i, coeff in enumerate(c):
            if not coeff:
                continue

            T = dup_zz_diophantine(F, n - i, p, K)

            for j, (s, t) in enumerate(zip(S, T)):
                t = dup_mul_ground(t, coeff, K)
                S[j] = dup_trunc(dup_add(s, t, K), p, K)
    else:
        n = len(A)
        e = dmp_expand(F, u, K)

        a, A = A[-1], A[:-1]
        B, G = [], []

        for f in F:
            B.append(dmp_quo(e, f, u, K))
            G.append(dmp_eval_in(f, a, n, u, K))

        C = dmp_eval_in(c, a, n, u, K)

        v = u - 1

        S = dmp_zz_diophantine(G, C, A, d, p, v, K)
        S = [dmp_raise(s, 1, v, K) for s in S]

        for s, b in zip(S, B):
            c = dmp_sub_mul(c, s, b, u, K)

        c = dmp_ground_trunc(c, p, u, K)

        m = dmp_nest([K.one, -a], n, K)
        M = dmp_one(n, K)

        for k in xrange(0, d):
            if dmp_zero_p(c, u):
                break

            M = dmp_mul(M, m, u, K)
            C = dmp_diff_eval_in(c, k + 1, a, n, u, K)

            if not dmp_zero_p(C, v):
                C = dmp_quo_ground(C, K.factorial(k + 1), v, K)
                T = dmp_zz_diophantine(G, C, A, d, p, v, K)

                for i, t in enumerate(T):
                    T[i] = dmp_mul(dmp_raise(t, 1, v, K), M, u, K)

                for i, (s, t) in enumerate(zip(S, T)):
                    S[i] = dmp_add(s, t, u, K)

                for t, b in zip(T, B):
                    c = dmp_sub_mul(c, t, b, u, K)

                c = dmp_ground_trunc(c, p, u, K)

        S = [dmp_ground_trunc(s, p, u, K) for s in S]

    return S
Exemple #53
0
def dmp_zz_modular_resultant(f, g, p, u, K):
    """
    Compute resultant of `f` and `g` modulo a prime `p`.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> f = x + y + 2
    >>> g = 2*x*y + x + 3

    >>> R.dmp_zz_modular_resultant(f, g, 5)
    -2*y**2 + 1

    """
    if not u:
        return gf_int(dup_prs_resultant(f, g, K)[0] % p, p)

    v = u - 1

    n = dmp_degree(f, u)
    m = dmp_degree(g, u)

    N = dmp_degree_in(f, 1, u)
    M = dmp_degree_in(g, 1, u)

    B = n*M + m*N

    D, a = [K.one], -K.one
    r = dmp_zero(v)

    while dup_degree(D) <= B:
        while True:
            a += K.one

            if a == p:
                raise HomomorphismFailed('no luck')

            F = dmp_eval_in(f, gf_int(a, p), 1, u, K)

            if dmp_degree(F, v) == n:
                G = dmp_eval_in(g, gf_int(a, p), 1, u, K)

                if dmp_degree(G, v) == m:
                    break

        R = dmp_zz_modular_resultant(F, G, p, v, K)
        e = dmp_eval(r, a, v, K)

        if not v:
            R = dup_strip([R])
            e = dup_strip([e])
        else:
            R = [R]
            e = [e]

        d = K.invert(dup_eval(D, a, K), p)
        d = dup_mul_ground(D, d, K)
        d = dmp_raise(d, v, 0, K)

        c = dmp_mul(d, dmp_sub(R, e, v, K), v, K)
        r = dmp_add(r, c, v, K)

        r = dmp_ground_trunc(r, p, v, K)

        D = dup_mul(D, [K.one, -a], K)
        D = dup_trunc(D, p, K)

    return r
Exemple #54
0
def dup_inner_subresultants(f, g, K):
    """
    Subresultant PRS algorithm in `K[x]`.

    Computes the subresultant polynomial remainder sequence (PRS) of `f`
    and `g`, and the values for `\beta_i` and `\delta_i`. The last two
    sequences of values are necessary for computing the resultant in
    :func:`dup_prs_resultant`.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> R.dup_inner_subresultants(x**2 + 1, x**2 - 1)
    ([x**2 + 1, x**2 - 1, -2], [-1, -1], [0, 2])

    """
    n = dup_degree(f)
    m = dup_degree(g)

    if n < m:
        f, g = g, f
        n, m = m, n

    R = [f, g]
    d = n - m

    b = (-K.one)**(d + 1)
    c = -K.one

    B, D = [b], [d]

    if not f or not g:
        return R, B, D

    h = dup_prem(f, g, K)
    h = dup_mul_ground(h, b, K)

    while h:
        k = dup_degree(h)
        R.append(h)

        lc = dup_LC(g, K)

        if not d:
            q = c
        else:
            q = c**(d - 1)

        c = K.quo((-lc)**d, q)
        b = -lc * c**(m - k)

        f, g, m, d = g, h, k, m - k

        B.append(b)
        D.append(d)

        h = dup_prem(f, g, K)

        h = dup_quo_ground(h, b, K)

    return R, B, D
Exemple #55
0
def dup_zz_heu_gcd(f, g, K):
    """
    Heuristic polynomial GCD in `Z[x]`.

    Given univariate polynomials `f` and `g` in `Z[x]`, returns
    their GCD and cofactors, i.e. polynomials ``h``, ``cff`` and ``cfg``
    such that::

          h = gcd(f, g), cff = quo(f, h) and cfg = quo(g, h)

    The algorithm is purely heuristic which means it may fail to compute
    the GCD. This will be signaled by raising an exception. In this case
    you will need to switch to another GCD method.

    The algorithm computes the polynomial GCD by evaluating polynomials
    f and g at certain points and computing (fast) integer GCD of those
    evaluations. The polynomial GCD is recovered from the integer image
    by interpolation.  The final step is to verify if the result is the
    correct GCD. This gives cofactors as a side effect.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> R.dup_zz_heu_gcd(x**2 - 1, x**2 - 3*x + 2)
    (x - 1, x + 1, x - 2)

    References
    ==========

    1. [Liao95]_

    """
    result = _dup_rr_trivial_gcd(f, g, K)

    if result is not None:
        return result

    df = dup_degree(f)
    dg = dup_degree(g)

    gcd, f, g = dup_extract(f, g, K)

    if df == 0 or dg == 0:
        return [gcd], f, g

    f_norm = dup_max_norm(f, K)
    g_norm = dup_max_norm(g, K)

    B = K(2*min(f_norm, g_norm) + 29)

    x = max(min(B, 99*K.sqrt(B)),
            2*min(f_norm // abs(dup_LC(f, K)),
                  g_norm // abs(dup_LC(g, K))) + 2)

    for i in xrange(0, HEU_GCD_MAX):
        ff = dup_eval(f, x, K)
        gg = dup_eval(g, x, K)

        if ff and gg:
            h = K.gcd(ff, gg)

            cff = ff // h
            cfg = gg // h

            h = _dup_zz_gcd_interpolate(h, x, K)
            h = dup_primitive(h, K)[1]

            cff_, r = dup_div(f, h, K)

            if not r:
                cfg_, r = dup_div(g, h, K)

                if not r:
                    h = dup_mul_ground(h, gcd, K)
                    return h, cff_, cfg_

            cff = _dup_zz_gcd_interpolate(cff, x, K)

            h, r = dup_div(f, cff, K)

            if not r:
                cfg_, r = dup_div(g, h, K)

                if not r:
                    h = dup_mul_ground(h, gcd, K)
                    return h, cff, cfg_

            cfg = _dup_zz_gcd_interpolate(cfg, x, K)

            h, r = dup_div(g, cfg, K)

            if not r:
                cff_, r = dup_div(f, h, K)

                if not r:
                    h = dup_mul_ground(h, gcd, K)
                    return h, cff_, cfg

        x = 73794*x * K.sqrt(K.sqrt(x)) // 27011

    raise HeuristicGCDFailed('no luck')
def test_dup_ext_factor():
    h = [QQ(1), QQ(0), QQ(1)]
    K = QQ.algebraic_field(I)

    assert dup_ext_factor([], K) == (ANP([], h, QQ), [])

    f = [ANP([QQ(1)], h, QQ), ANP([QQ(1)], h, QQ)]

    assert dup_ext_factor(f, K) == (ANP([QQ(1)], h, QQ), [(f, 1)])

    g = [ANP([QQ(2)], h, QQ), ANP([QQ(2)], h, QQ)]

    assert dup_ext_factor(g, K) == (ANP([QQ(2)], h, QQ), [(f, 1)])

    f = [
        ANP([QQ(7)], h, QQ),
        ANP([], h, QQ),
        ANP([], h, QQ),
        ANP([], h, QQ),
        ANP([QQ(1, 1)], h, QQ)
    ]
    g = [
        ANP([QQ(1)], h, QQ),
        ANP([], h, QQ),
        ANP([], h, QQ),
        ANP([], h, QQ),
        ANP([QQ(1, 7)], h, QQ)
    ]

    assert dup_ext_factor(f, K) == (ANP([QQ(7)], h, QQ), [(g, 1)])

    f = [
        ANP([QQ(1)], h, QQ),
        ANP([], h, QQ),
        ANP([], h, QQ),
        ANP([], h, QQ),
        ANP([QQ(1)], h, QQ)
    ]

    assert dup_ext_factor(f, K) == \
        (ANP([QQ(1,1)], h, QQ), [
            ([ANP([QQ(1)], h, QQ), ANP([], h, QQ), ANP([QQ(-1),QQ(0)], h, QQ)], 1),
            ([ANP([QQ(1)], h, QQ), ANP([], h, QQ), ANP([QQ( 1),QQ(0)], h, QQ)], 1),
         ])

    f = [
        ANP([QQ(1)], h, QQ),
        ANP([], h, QQ),
        ANP([], h, QQ),
        ANP([], h, QQ),
        ANP([QQ(1)], h, QQ)
    ]

    assert dup_ext_factor(f, K) == \
        (ANP([QQ(1,1)], h, QQ), [
            ([ANP([QQ(1)], h, QQ), ANP([], h, QQ), ANP([QQ(-1),QQ(0)], h, QQ)], 1),
            ([ANP([QQ(1)], h, QQ), ANP([], h, QQ), ANP([QQ( 1),QQ(0)], h, QQ)], 1),
         ])

    h = [QQ(1), QQ(0), QQ(-2)]
    K = QQ.algebraic_field(sqrt(2))

    f = [
        ANP([QQ(1)], h, QQ),
        ANP([], h, QQ),
        ANP([], h, QQ),
        ANP([], h, QQ),
        ANP([QQ(1, 1)], h, QQ)
    ]

    assert dup_ext_factor(f, K) == \
        (ANP([QQ(1)], h, QQ), [
            ([ANP([QQ(1)], h, QQ), ANP([QQ(-1),QQ(0)], h, QQ), ANP([QQ(1)], h, QQ)], 1),
            ([ANP([QQ(1)], h, QQ), ANP([QQ( 1),QQ(0)], h, QQ), ANP([QQ(1)], h, QQ)], 1),
         ])

    f = [ANP([QQ(1, 1)], h, QQ), ANP([2, 0], h, QQ), ANP([QQ(2, 1)], h, QQ)]

    assert dup_ext_factor(f, K) == \
        (ANP([QQ(1,1)], h, QQ), [
            ([ANP([1], h, QQ), ANP([1,0], h, QQ)], 2),
        ])

    assert dup_ext_factor(dup_pow(f, 3, K), K) == \
        (ANP([QQ(1,1)], h, QQ), [
            ([ANP([1], h, QQ), ANP([1,0], h, QQ)], 6),
        ])

    f = dup_mul_ground(f, ANP([QQ(2, 1)], h, QQ), K)

    assert dup_ext_factor(f, K) == \
        (ANP([QQ(2,1)], h, QQ), [
            ([ANP([1], h, QQ), ANP([1,0], h, QQ)], 2),
        ])

    assert dup_ext_factor(dup_pow(f, 3, K), K) == \
        (ANP([QQ(8,1)], h, QQ), [
            ([ANP([1], h, QQ), ANP([1,0], h, QQ)], 6),
        ])

    h = [QQ(1, 1), QQ(0, 1), QQ(1, 1)]
    K = QQ.algebraic_field(I)

    f = [ANP([QQ(4, 1)], h, QQ), ANP([], h, QQ), ANP([QQ(9, 1)], h, QQ)]

    assert dup_ext_factor(f, K) == \
        (ANP([QQ(4,1)], h, QQ), [
            ([ANP([QQ(1,1)], h, QQ), ANP([-QQ(3,2), QQ(0,1)], h, QQ)], 1),
            ([ANP([QQ(1,1)], h, QQ), ANP([ QQ(3,2), QQ(0,1)], h, QQ)], 1),
        ])

    f = [
        ANP([QQ(4, 1)], h, QQ),
        ANP([QQ(8, 1)], h, QQ),
        ANP([QQ(77, 1)], h, QQ),
        ANP([QQ(18, 1)], h, QQ),
        ANP([QQ(153, 1)], h, QQ)
    ]

    assert dup_ext_factor(f, K) == \
        (ANP([QQ(4,1)], h, QQ), [
            ([ANP([QQ(1,1)], h, QQ), ANP([-QQ(4,1), QQ(1,1)], h, QQ)], 1),
            ([ANP([QQ(1,1)], h, QQ), ANP([-QQ(3,2), QQ(0,1)], h, QQ)], 1),
            ([ANP([QQ(1,1)], h, QQ), ANP([ QQ(3,2), QQ(0,1)], h, QQ)], 1),
            ([ANP([QQ(1,1)], h, QQ), ANP([ QQ(4,1), QQ(1,1)], h, QQ)], 1),
        ])
Exemple #57
0
def dup_inner_subresultants(f, g, K):
    """
    Subresultant PRS algorithm in ``K[x]``.

    Computes the subresultant polynomial remainder sequence (PRS) of ``f``
    and ``g``, and the values for $\\beta_i$ and $\\delta_i$. The last two
    sequences of values are necessary for computing the resultant in
    :func:`dup_prs_resultant`.

    **Examples**

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.euclidtools import dup_inner_subresultants

    >>> f = ZZ.map([1, 0, 1])
    >>> g = ZZ.map([1, 0, -1])

    >>> dup_inner_subresultants(f, g, ZZ)
    ([[1, 0, 1], [1, 0, -1], [-2]], [-1, -1], [0, 2])

    """
    n = dup_degree(f)
    m = dup_degree(g)

    if n < m:
        f, g = g, f
        n, m = m, n

    R = [f, g]
    d = n - m

    b = (-K.one)**(d+1)
    c =  -K.one

    B, D = [b], [d]

    if not f or not g:
        return R, B, D

    h = dup_prem(f, g, K)
    h = dup_mul_ground(h, b, K)

    while h:
        k = dup_degree(h)
        R.append(h)

        lc = dup_LC(g, K)

        if not d:
            q = c
        else:
            q = c**(d-1)

        c = K.exquo((-lc)**d, q)
        b = -lc * c**(m-k)

        f, g, m, d = g, h, k, m-k

        B.append(b)
        D.append(d)

        h = dup_prem(f, g, K)
        h = dup_exquo_ground(h, b, K)

    return R, B, D
Exemple #58
0
def dmp_zz_modular_resultant(f, g, p, u, K):
    """
    Compute resultant of ``f`` and ``g`` modulo a prime ``p``.

    **Examples**

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.euclidtools import dmp_zz_modular_resultant

    >>> f = ZZ.map([[1], [1, 2]])
    >>> g = ZZ.map([[2, 1], [3]])

    >>> dmp_zz_modular_resultant(f, g, ZZ(5), 1, ZZ)
    [-2, 0, 1]

    """
    if not u:
        return gf_int(dup_prs_resultant(f, g, K)[0] % p, p)

    v = u - 1

    n = dmp_degree(f, u)
    m = dmp_degree(g, u)

    N = dmp_degree_in(f, 1, u)
    M = dmp_degree_in(g, 1, u)

    B = n*M + m*N

    D, a = [K.one], -K.one
    r = dmp_zero(v)

    while dup_degree(D) <= B:
        while True:
            a += K.one

            if a == p:
                raise HomomorphismFailed('no luck')

            F = dmp_eval_in(f, gf_int(a, p), 1, u, K)

            if dmp_degree(F, v) == n:
                G = dmp_eval_in(g, gf_int(a, p), 1, u, K)

                if dmp_degree(G, v) == m:
                    break

        R = dmp_zz_modular_resultant(F, G, p, v, K)
        e = dmp_eval(r, a, v, K)

        if not v:
            R = dup_strip([R])
            e = dup_strip([e])
        else:
            R = [R]
            e = [e]

        d = K.invert(dup_eval(D, a, K), p)
        d = dup_mul_ground(D, d, K)
        d = dmp_raise(d, v, 0, K)

        c = dmp_mul(d, dmp_sub(R, e, v, K), v, K)
        r = dmp_add(r, c, v, K)

        r = dmp_ground_trunc(r, p, v, K)

        D = dup_mul(D, [K.one, -a], K)
        D = dup_trunc(D, p, K)

    return r
def dmp_zz_diophantine(F, c, A, d, p, u, K):
    """Wang/EEZ: Solve multivariate Diophantine equations. """
    if not A:
        S = [ [] for _ in F ]
        n = dup_degree(c)

        for i, coeff in enumerate(c):
            if not coeff:
                continue

            T = dup_zz_diophantine(F, n-i, p, K)

            for j, (s, t) in enumerate(zip(S, T)):
                t = dup_mul_ground(t, coeff, K)
                S[j] = dup_trunc(dup_add(s, t, K), p, K)
    else:
        n = len(A)
        e = dmp_expand(F, u, K)

        a, A = A[-1], A[:-1]
        B, G = [], []

        for f in F:
            B.append(dmp_quo(e, f, u, K))
            G.append(dmp_eval_in(f, a, n, u, K))

        C = dmp_eval_in(c, a, n, u, K)

        v = u - 1

        S = dmp_zz_diophantine(G, C, A, d, p, v, K)
        S = [ dmp_raise(s, 1, v, K) for s in S ]

        for s, b in zip(S, B):
            c = dmp_sub_mul(c, s, b, u, K)

        c = dmp_ground_trunc(c, p, u, K)

        m = dmp_nest([K.one, -a], n, K)
        M = dmp_one(n, K)

        for k in xrange(0, d):
            if dmp_zero_p(c, u):
                break

            M = dmp_mul(M, m, u, K)
            C = dmp_diff_eval_in(c, k+1, a, n, u, K)

            if not dmp_zero_p(C, v):
                C = dmp_quo_ground(C, K.factorial(k+1), v, K)
                T = dmp_zz_diophantine(G, C, A, d, p, v, K)

                for i, t in enumerate(T):
                    T[i] = dmp_mul(dmp_raise(t, 1, v, K), M, u, K)

                for i, (s, t) in enumerate(zip(S, T)):
                    S[i] = dmp_add(s, t, u, K)

                for t, b in zip(T, B):
                    c = dmp_sub_mul(c, t, b, u, K)

                c = dmp_ground_trunc(c, p, u, K)

        S = [ dmp_ground_trunc(s, p, u, K) for s in S ]

    return S
Exemple #60
0
def dup_inner_subresultants(f, g, K):
    """
    Subresultant PRS algorithm in `K[x]`.

    Computes the subresultant polynomial remainder sequence (PRS)
    and the non-zero scalar subresultants of `f` and `g`.
    By [1] Thm. 3, these are the constants '-c' (- to optimize
    computation of sign).
    The first subdeterminant is set to 1 by convention to match
    the polynomial and the scalar subdeterminants.
    If 'deg(f) < deg(g)', the subresultants of '(g,f)' are computed.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> R.dup_inner_subresultants(x**2 + 1, x**2 - 1)
    ([x**2 + 1, x**2 - 1, -2], [1, 1, 4])

    References
    ==========

    [1] W.S. Brown, The Subresultant PRS Algorithm.
    ACM Transaction of Mathematical Software 4 (1978) 237-249

    """
    n = dup_degree(f)
    m = dup_degree(g)

    if n < m:
        f, g = g, f
        n, m = m, n

    if not f:
        return [], []

    if not g:
        return [f], [K.one]

    R = [f, g]
    d = n - m

    b = (-K.one)**(d + 1)

    h = dup_prem(f, g, K)
    h = dup_mul_ground(h, b, K)

    lc = dup_LC(g, K)
    c = lc**d

    # Conventional first scalar subdeterminant is 1
    S = [K.one, c]
    c = -c

    while h:
        k = dup_degree(h)
        R.append(h)

        f, g, m, d = g, h, k, m - k

        b = -lc * c**d

        h = dup_prem(f, g, K)
        h = dup_quo_ground(h, b, K)

        lc = dup_LC(g, K)

        if d > 1:        # abnormal case
            q = c**(d - 1)
            c = K.quo((-lc)**d, q)
        else:
            c = -lc

        S.append(-c)

    return R, S