Exemple #1
0
def test_RootsOf():
    f = Poly((x-4)**4, x)

    roots = RootsOf(f)

    assert roots.count == 4

    assert list(roots.roots()) == [ Integer(4),
        Integer(4), Integer(4), Integer(4) ]

    assert RootSum(lambda r: r**2, f) == 64

    roots = RootsOf(x**5+x+1, x)

    assert roots.count == 5

    f = Poly(x**5+x+1, x)

    assert list(roots.roots()) == [ RootOf(f, 0), RootOf(f, 1),
        RootOf(f, 2), RootOf(f, 3), RootOf(f, 4) ]

    assert RootSum(lambda r: r**2, f).doit() == RootOf(f, 0)**2 + \
        RootOf(f, 1)**2 + RootOf(f, 2)**2 + RootOf(f, 3)**2 + RootOf(f, 4)**2

    assert RootSum(Lambda(x, x), Poly(0, x), evaluate=True)  == S.Zero
    assert RootSum(Lambda(x, x), Poly(0, x), evaluate=False) != S.Zero

    assert RootSum(Lambda(x, x), Poly(x-1, x), evaluate=False).doit() == S.One
Exemple #2
0
def test_contains():
    assert Interval(0, 2).contains(1) is S.true
    assert Interval(0, 2).contains(3) is S.false
    assert Interval(0, 2, True, False).contains(0) is S.false
    assert Interval(0, 2, True, False).contains(2) is S.true
    assert Interval(0, 2, False, True).contains(0) is S.true
    assert Interval(0, 2, False, True).contains(2) is S.false
    assert Interval(0, 2, True, True).contains(0) is S.false
    assert Interval(0, 2, True, True).contains(2) is S.false

    assert FiniteSet(1, 2, 3).contains(2) is S.true
    assert FiniteSet(1, 2, Symbol('x')).contains(Symbol('x')) is S.true

    # issue 8197
    from sympy.abc import a, b
    assert isinstance(FiniteSet(b).contains(-a), Contains)
    assert isinstance(FiniteSet(b).contains(a), Contains)
    assert isinstance(FiniteSet(a).contains(1), Contains)
    raises(TypeError, lambda: 1 in FiniteSet(a))

    # issue 8209
    rad1 = Pow(Pow(2, S(1) / 3) - 1, S(1) / 3)
    rad2 = Pow(S(1) / 9,
               S(1) / 3) - Pow(S(2) / 9,
                               S(1) / 3) + Pow(S(4) / 9,
                                               S(1) / 3)
    s1 = FiniteSet(rad1)
    s2 = FiniteSet(rad2)
    assert s1 - s2 == S.EmptySet

    items = [1, 2, S.Infinity, S('ham'), -1.1]
    fset = FiniteSet(*items)
    assert all(item in fset for item in items)
    assert all(fset.contains(item) is S.true for item in items)

    assert Union(Interval(0, 1), Interval(2, 5)).contains(3) is S.true
    assert Union(Interval(0, 1), Interval(2, 5)).contains(6) is S.false
    assert Union(Interval(0, 1), FiniteSet(2, 5)).contains(3) is S.false

    assert S.EmptySet.contains(1) is S.false
    assert FiniteSet(RootOf(x**3 + x - 1, 0)).contains(S.Infinity) is S.false

    assert RootOf(x**5 + x**3 + 1, 0) in S.Reals
    assert not RootOf(x**5 + x**3 + 1, 1) in S.Reals

    # non-bool results
    assert Union(Interval(1, 2), Interval(3, 4)).contains(x) == \
        Or(And(x <= 2, x >= 1), And(x <= 4, x >= 3))
    assert Intersection(Interval(1, x), Interval(2, 3)).contains(y) == \
        And(y <= 3, y <= x, y >= 1, y >= 2)
Exemple #3
0
def test_pretty_RootOf():
    expr = RootOf(x**5 + 11 * x - 2, 0)
    ascii_str = \
"""\
      / 5              \\\n\
RootOf\\x  + 11*x - 2, 0/\
"""
    ucode_str = \
u"""\
      ⎛ 5              ⎞\n\
RootOf⎝x  + 11⋅x - 2, 0⎠\
"""

    assert pretty(expr) == ascii_str
    assert upretty(expr) == ucode_str
Exemple #4
0
def test_issue_3693():
    assert solve(x * (x - 1)**2 * (x + 1) * (x**6 - x + 1)) == [
        -1, 0, 1,
        RootOf(x**6 - x + 1, 0),
        RootOf(x**6 - x + 1, 1),
        RootOf(x**6 - x + 1, 2),
        RootOf(x**6 - x + 1, 3),
        RootOf(x**6 - x + 1, 4),
        RootOf(x**6 - x + 1, 5)
    ]
Exemple #5
0
def test_contains():
    assert Interval(0, 2).contains(1) is S.true
    assert Interval(0, 2).contains(3) is S.false
    assert Interval(0, 2, True, False).contains(0) is S.false
    assert Interval(0, 2, True, False).contains(2) is S.true
    assert Interval(0, 2, False, True).contains(0) is S.true
    assert Interval(0, 2, False, True).contains(2) is S.false
    assert Interval(0, 2, True, True).contains(0) is S.false
    assert Interval(0, 2, True, True).contains(2) is S.false

    assert FiniteSet(1, 2, 3).contains(2) is S.true
    assert FiniteSet(1, 2, Symbol('x')).contains(Symbol('x')) is S.true

    # issue 8197
    from sympy.abc import a, b
    assert isinstance(FiniteSet(b).contains(-a), Contains)
    assert isinstance(FiniteSet(b).contains(a), Contains)
    assert isinstance(FiniteSet(a).contains(1), Contains)
    raises(TypeError, lambda: 1 in FiniteSet(a))

    # issue 8209
    rad1 = Pow(Pow(2, S(1)/3) - 1, S(1)/3)
    rad2 = Pow(S(1)/9, S(1)/3) - Pow(S(2)/9, S(1)/3) + Pow(S(4)/9, S(1)/3)
    s1 = FiniteSet(rad1)
    s2 = FiniteSet(rad2)
    assert s1 - s2 == S.EmptySet

    items = [1, 2, S.Infinity, S('ham'), -1.1]
    fset = FiniteSet(*items)
    assert all(item in fset for item in items)
    assert all(fset.contains(item) is S.true for item in items)

    assert Union(Interval(0, 1), Interval(2, 5)).contains(3) is S.true
    assert Union(Interval(0, 1), Interval(2, 5)).contains(6) is S.false
    assert Union(Interval(0, 1), FiniteSet(2, 5)).contains(3) is S.false

    assert S.EmptySet.contains(1) is S.false
    assert FiniteSet(RootOf(x**3 + x - 1, 0)).contains(S.Infinity) is S.false
Exemple #6
0
def test_latex_RootOf():
    assert latex(RootOf(x**5 + x + 3, 0)) == \
        r"\operatorname{RootOf} {\left(x^{5} + x + 3, 0\right)}"
Exemple #7
0
def test_RootOf_issue_10092():
    x = Symbol('x', real=True)
    eq = x**3 - 17 * x**2 + 81 * x - 118
    r = RootOf(eq, 0)
    assert (x < r).subs(x, r) is S.false
Exemple #8
0
def _rewrite_gamma(f, s, a, b):
    """
    Try to rewrite the product f(s) as a product of gamma functions,
    so that the inverse mellin transform of f can be expressed as a meijer
    G function.

    Return (an, ap), (bm, bq), arg, exp, fac such that
    G((an, ap), (bm, bq), arg/z**exp)*fac is the inverse mellin transform of f(s).

    Raises IntegralTransformError or MellinTransformStripError on failure.

    It is asserted that f has no poles in the fundamental strip designated by
    (a, b). One of a and b is allowed to be None. The fundamental strip is
    important, because it determines the inversion contour.

    This function can handle exponentials, linear factors, trigonometric
    functions.

    This is a helper function for inverse_mellin_transform that will not
    attempt any transformations on f.

    >>> from sympy.integrals.transforms import _rewrite_gamma
    >>> from sympy.abc import s
    >>> from sympy import oo
    >>> _rewrite_gamma(s*(s+3)*(s-1), s, -oo, oo)
    (([], [-3, 0, 1]), ([-2, 1, 2], []), 1, 1, -1)
    >>> _rewrite_gamma((s-1)**2, s, -oo, oo)
    (([], [1, 1]), ([2, 2], []), 1, 1, 1)

    Importance of the fundamental strip:

    >>> _rewrite_gamma(1/s, s, 0, oo)
    (([1], []), ([], [0]), 1, 1, 1)
    >>> _rewrite_gamma(1/s, s, None, oo)
    (([1], []), ([], [0]), 1, 1, 1)
    >>> _rewrite_gamma(1/s, s, 0, None)
    (([1], []), ([], [0]), 1, 1, 1)
    >>> _rewrite_gamma(1/s, s, -oo, 0)
    (([], [1]), ([0], []), 1, 1, -1)
    >>> _rewrite_gamma(1/s, s, None, 0)
    (([], [1]), ([0], []), 1, 1, -1)
    >>> _rewrite_gamma(1/s, s, -oo, None)
    (([], [1]), ([0], []), 1, 1, -1)

    >>> _rewrite_gamma(2**(-s+3), s, -oo, oo)
    (([], []), ([], []), 1/2, 1, 8)
    """
    from itertools import repeat
    from sympy import (Poly, gamma, Mul, re, RootOf, exp as exp_, E, expand,
                       roots, ilcm, pi, sin, cos, tan, cot, igcd, exp_polar)
    # Our strategy will be as follows:
    # 1) Guess a constant c such that the inversion integral should be
    #    performed wrt s'=c*s (instead of plain s). Write s for s'.
    # 2) Process all factors, rewrite them independently as gamma functions in
    #    argument s, or exponentials of s.
    # 3) Try to transform all gamma functions s.t. they have argument
    #    a+s or a-s.
    # 4) Check that the resulting G function parameters are valid.
    # 5) Combine all the exponentials.

    a_, b_ = S([a, b])
    def left(c, is_numer):
        """
        Decide whether pole at c lies to the left of the fundamental strip.
        """
        # heuristically, this is the best chance for us to solve the inequalities
        c = expand(re(c))
        if a_ is None:
            return c < b_
        if b_ is None:
            return c <= a_
        if (c >= b_) is True:
            return False
        if (c <= a_) is True:
            return True
        if is_numer:
            return None
        if a_.free_symbols or b_.free_symbols or c.free_symbols:
            return None # XXX
            #raise IntegralTransformError('Inverse Mellin', f,
            #                     'Could not determine position of singularity %s'
            #                     ' relative to fundamental strip' % c)
        raise MellinTransformStripError('Pole inside critical strip?')

    # 1)
    s_multipliers = []
    for g in f.atoms(gamma):
        if not g.has(s):
            continue
        arg = g.args[0]
        if arg.is_Add:
            arg = arg.as_independent(s)[1]
        coeff, _ = arg.as_coeff_mul(s)
        s_multipliers += [coeff]
    for g in f.atoms(sin, cos, tan, cot):
        if not g.has(s):
            continue
        arg = g.args[0]
        if arg.is_Add:
            arg = arg.as_independent(s)[1]
        coeff, _ = arg.as_coeff_mul(s)
        s_multipliers += [coeff/pi]
    s_multipliers = [abs(x) for x in s_multipliers if x.is_real]
    common_coefficient = S(1)
    for x in s_multipliers:
        if not x.is_Rational:
            common_coefficient = x
            break
    s_multipliers = [x/common_coefficient for x in s_multipliers]
    if any(not x.is_Rational for x in s_multipliers):
        raise NotImplementedError
    s_multiplier = common_coefficient/reduce(ilcm, [S(x.q) for x in s_multipliers], S(1))
    if s_multiplier == common_coefficient:
        if len(s_multipliers) == 0:
            s_multiplier = common_coefficient
        else:
            s_multiplier = common_coefficient \
                           *reduce(igcd, [S(x.p) for x in s_multipliers])

    exponent = S(1)
    fac = S(1)
    f = f.subs(s, s/s_multiplier)
    fac /= s_multiplier
    exponent = 1/s_multiplier
    if a_ is not None:
        a_ *= s_multiplier
    if b_ is not None:
        b_ *= s_multiplier

    # 2)
    numer, denom = f.as_numer_denom()
    numer = Mul.make_args(numer)
    denom = Mul.make_args(denom)
    args = zip(numer, repeat(True)) + zip(denom, repeat(False))

    facs = []
    dfacs = []
    # *_gammas will contain pairs (a, c) representing Gamma(a*s + c)
    numer_gammas = []
    denom_gammas = []
    # exponentials will contain bases for exponentials of s
    exponentials = []
    def exception(fact):
        return IntegralTransformError("Inverse Mellin", f, "Unrecognised form '%s'." % fact)
    while args:
        fact, is_numer = args.pop()
        if is_numer:
            ugammas, lgammas = numer_gammas, denom_gammas
            ufacs, lfacs = facs, dfacs
        else:
            ugammas, lgammas = denom_gammas, numer_gammas
            ufacs, lfacs = dfacs, facs

        def linear_arg(arg):
            """ Test if arg is of form a*s+b, raise exception if not. """
            if not arg.is_polynomial(s):
                raise exception(fact)
            p = Poly(arg, s)
            if p.degree() != 1:
                raise exception(fact)
            return p.all_coeffs()

        # constants
        if not fact.has(s):
            ufacs += [fact]
        # exponentials
        elif fact.is_Pow or isinstance(fact, exp_):
            if fact.is_Pow:
                base = fact.base
                exp  = fact.exp
            else:
                base = exp_polar(1)
                exp  = fact.args[0]
            if exp.is_Integer:
                cond = is_numer
                if exp < 0:
                    cond = not cond
                args += [(base, cond)]*abs(exp)
                continue
            elif not base.has(s):
                a, b = linear_arg(exp)
                if not is_numer:
                    base = 1/base
                exponentials += [base**a]
                facs += [base**b]
            else:
                raise exception(fact)
        # linear factors
        elif fact.is_polynomial(s):
            p = Poly(fact, s)
            if p.degree() != 1:
                # We completely factor the poly. For this we need the roots.
                # Now roots() only works in some cases (low degree), and RootOf
                # only works without parameters. So try both...
                coeff = p.LT()[1]
                rs = roots(p, s)
                if len(rs) != p.degree():
                    rs = RootOf.all_roots(p)
                ufacs += [coeff]
                args += [(s - c, is_numer) for c in rs]
                continue
            a, c = p.all_coeffs()
            ufacs += [a]
            c /= -a
            # Now need to convert s - c
            if left(c, is_numer):
                ugammas += [(S(1), -c + 1)]
                lgammas += [(S(1), -c)]
            else:
                ufacs += [-1]
                ugammas += [(S(-1), c + 1)]
                lgammas += [(S(-1), c)]
        elif isinstance(fact, gamma):
            a, b = linear_arg(fact.args[0])
            if is_numer:
                if (a > 0 and (left(-b/a, is_numer) is False)) or \
                   (a < 0 and (left(-b/a, is_numer) is True)):
                    raise NotImplementedError('Gammas partially over the strip.')
            ugammas += [(a, b)]
        elif isinstance(fact, sin):
            # We try to re-write all trigs as gammas. This is not in
            # general the best strategy, since sometimes this is impossible,
            # but rewriting as exponentials would work. However trig functions
            # in inverse mellin transforms usually all come from simplifying
            # gamma terms, so this should work.
            a = fact.args[0]
            if is_numer:
                # No problem with the poles.
                gamma1, gamma2, fac_ = gamma(a/pi), gamma(1 - a/pi), pi
            else:
                gamma1, gamma2, fac_ = _rewrite_sin(linear_arg(a), s, a_, b_)
            args += [(gamma1, not is_numer), (gamma2, not is_numer)]
            ufacs += [fac_]
        elif isinstance(fact, tan):
            a = fact.args[0]
            args += [(sin(a, evaluate=False), is_numer),
                     (sin(pi/2 - a, evaluate=False), not is_numer)]
        elif isinstance(fact, cos):
            a = fact.args[0]
            args += [(sin(pi/2 - a, evaluate=False), is_numer)]
        elif isinstance(fact, cot):
            a = fact.args[0]
            args += [(sin(pi/2 - a, evaluate=False), is_numer),
                     (sin(a, evaluate=False), not is_numer)]
        else:
            raise exception(fact)

    fac *= Mul(*facs)/Mul(*dfacs)

    # 3)
    an, ap, bm, bq = [], [], [], []
    for gammas, plus, minus, is_numer in [(numer_gammas, an, bm, True),
                                          (denom_gammas, bq, ap, False)]:
        while gammas:
            a, c = gammas.pop()
            if a != -1 and a != +1:
                # We use the gamma function multiplication theorem.
                p = abs(S(a))
                newa = a/p
                newc = c/p
                assert a.is_Integer
                for k in range(p):
                    gammas += [(newa, newc + k/p)]
                if is_numer:
                    fac *= (2*pi)**((1 - p)/2) * p**(c - S(1)/2)
                    exponentials += [p**a]
                else:
                    fac /= (2*pi)**((1 - p)/2) * p**(c - S(1)/2)
                    exponentials += [p**(-a)]
                continue
            if a == +1:
                plus.append(1 - c)
            else:
                minus.append(c)

    # 4)
    # TODO

    # 5)
    arg = Mul(*exponentials)

    # for testability, sort the arguments
    an.sort()
    ap.sort()
    bm.sort()
    bq.sort()

    return (an, ap), (bm, bq), arg, exponent, fac
Exemple #9
0
def _rewrite_gamma(f, s, a, b):
    """
    Try to rewrite the product f(s) as a product of gamma functions,
    so that the inverse mellin transform of f can be expressed as a meijer
    G function.

    Return (an, ap), (bm, bq), arg, exp, fac such that
    G((an, ap), (bm, bq), arg/z**exp)*fac is the inverse mellin transform of f(s).

    Raises IntegralTransformError or ValueError on failure.

    It is asserted that f has no poles in the fundamental strip designated by
    (a, b). One of a and b is allowed to be None. The fundamental strip is
    important, because it determines the inversion contour.

    This function can handle exponentials, linear factors, trigonometric
    functions.

    This is a helper function for inverse_mellin_transform that will not
    attempt any transformations on f.

    >>> from sympy.integrals.transforms import _rewrite_gamma
    >>> from sympy.abc import s
    >>> from sympy import oo
    >>> _rewrite_gamma(s*(s+3)*(s-1), s, -oo, oo)
    (([], [-3, 0, 1]), ([-2, 1, 2], []), 1, 1, -1)
    >>> _rewrite_gamma((s-1)**2, s, -oo, oo)
    (([], [1, 1]), ([2, 2], []), 1, 1, 1)

    Importance of the fundamental strip:

    >>> _rewrite_gamma(1/s, s, 0, oo)
    (([1], []), ([], [0]), 1, 1, 1)
    >>> _rewrite_gamma(1/s, s, None, oo)
    (([1], []), ([], [0]), 1, 1, 1)
    >>> _rewrite_gamma(1/s, s, 0, None)
    (([1], []), ([], [0]), 1, 1, 1)
    >>> _rewrite_gamma(1/s, s, -oo, 0)
    (([], [1]), ([0], []), 1, 1, -1)
    >>> _rewrite_gamma(1/s, s, None, 0)
    (([], [1]), ([0], []), 1, 1, -1)
    >>> _rewrite_gamma(1/s, s, -oo, None)
    (([], [1]), ([0], []), 1, 1, -1)

    >>> _rewrite_gamma(2**(-s+3), s, -oo, oo)
    (([], []), ([], []), 1/2, 1, 8)
    """
    from itertools import repeat
    from sympy import (Poly, gamma, Mul, re, RootOf, exp as exp_, E, expand,
                       roots, ilcm, pi, sin, cos, tan, cot, igcd)
    # Our strategy will be as follows:
    # 1) Guess a constant c such that the inversion integral should be
    #    performed wrt s'=c*s (instead of plain s). Write s for s'.
    # 2) Process all factors, rewrite them independently as gamma functions in
    #    argument s, or exponentials of s.
    # 3) Try to transform all gamma functions s.t. they have argument
    #    a+s or a-s.
    # 4) Check that the resulting G function parameters are valid.
    # 5) Combine all the exponentials.

    a_, b_ = S([a, b])

    def left(c, is_numer):
        """
        Decide whether pole at c lies to the left of the fundamental strip.
        """
        # heuristically, this is the best chance for us to solve the inequalities
        c = expand(re(c))
        if a_ is None:
            return c < b_
        if b_ is None:
            return c <= a_
        if (c >= b_) is True:
            return False
        if (c <= a_) is True:
            return True
        if is_numer:
            return None
        if a_.free_symbols or b_.free_symbols or c.free_symbols:
            return None  # XXX
            #raise IntegralTransformError('Inverse Mellin', f,
            #                     'Could not determine position of singularity %s'
            #                     ' relative to fundamental strip' % c)
        raise ValueError('Pole inside critical strip?')

    # 1)
    s_multipliers = []
    for g in f.atoms(gamma):
        if not g.has(s):
            continue
        arg = g.args[0]
        if arg.is_Add:
            arg = arg.as_independent(s)[1]
        coeff, _ = arg.as_coeff_mul(s)
        s_multipliers += [coeff]
    for g in f.atoms(sin, cos, tan, cot):
        if not g.has(s):
            continue
        arg = g.args[0]
        if arg.is_Add:
            arg = arg.as_independent(s)[1]
        coeff, _ = arg.as_coeff_mul(s)
        s_multipliers += [coeff / pi]
    s_multipliers = [abs(x) for x in s_multipliers if x.is_real]
    common_coefficient = S(1)
    for x in s_multipliers:
        if not x.is_Rational:
            common_coefficient = x
            break
    s_multipliers = [x / common_coefficient for x in s_multipliers]
    if any(not x.is_Rational for x in s_multipliers):
        raise NotImplementedError
    s_multiplier = common_coefficient / reduce(
        ilcm, [S(x.q) for x in s_multipliers], S(1))
    if s_multiplier == common_coefficient:
        if len(s_multipliers) == 0:
            s_multiplier = common_coefficient
        else:
            s_multiplier = common_coefficient \
                           *reduce(igcd, [S(x.p) for x in s_multipliers])

    exponent = S(1)
    fac = S(1)
    f = f.subs(s, s / s_multiplier)
    fac /= s_multiplier
    exponent = 1 / s_multiplier
    if a_ is not None:
        a_ *= s_multiplier
    if b_ is not None:
        b_ *= s_multiplier

    # 2)
    numer, denom = f.as_numer_denom()
    numer = Mul.make_args(numer)
    denom = Mul.make_args(denom)
    args = zip(numer, repeat(True)) + zip(denom, repeat(False))

    facs = []
    dfacs = []
    # *_gammas will contain pairs (a, c) representing Gamma(a*s + c)
    numer_gammas = []
    denom_gammas = []
    # exponentials will contain bases for exponentials of s
    exponentials = []

    def exception(fact):
        return IntegralTransformError("Inverse Mellin", f,
                                      "Unrecognised form '%s'." % fact)

    while args:
        fact, is_numer = args.pop()
        if is_numer:
            ugammas, lgammas = numer_gammas, denom_gammas
            ufacs, lfacs = facs, dfacs
        else:
            ugammas, lgammas = denom_gammas, numer_gammas
            ufacs, lfacs = dfacs, facs

        def linear_arg(arg):
            """ Test if arg is of form a*s+b, raise exception if not. """
            if not arg.is_polynomial(s):
                raise exception(fact)
            p = Poly(arg, s)
            if p.degree() != 1:
                raise exception(fact)
            return p.all_coeffs()

        # constants
        if not fact.has(s):
            ufacs += [fact]
        # exponentials
        elif fact.is_Pow or isinstance(fact, exp_):
            if fact.is_Pow:
                base = fact.base
                exp = fact.exp
            else:
                base = E
                exp = fact.args[0]
            if exp.is_Integer:
                cond = is_numer
                if exp < 0:
                    cond = not cond
                args += [(base, cond)] * abs(exp)
                continue
            elif not base.has(s):
                a, b = linear_arg(exp)
                if not is_numer:
                    base = 1 / base
                exponentials += [base**a]
                facs += [base**b]
            else:
                raise exception(fact)
        # linear factors
        elif fact.is_polynomial(s):
            p = Poly(fact, s)
            if p.degree() != 1:
                # We completely factor the poly. For this we need the roots.
                # Now roots() only works in some cases (low degree), and RootOf
                # only works without parameters. So try both...
                coeff = p.LT()[1]
                rs = roots(p, s)
                if len(rs) != p.degree():
                    rs = RootOf.all_roots(p)
                ufacs += [coeff]
                args += [(s - c, is_numer) for c in rs]
                continue
            a, c = p.all_coeffs()
            ufacs += [a]
            c /= -a
            # Now need to convert s - c
            if left(c, is_numer):
                ugammas += [(S(1), -c + 1)]
                lgammas += [(S(1), -c)]
            else:
                ufacs += [-1]
                ugammas += [(S(-1), c + 1)]
                lgammas += [(S(-1), c)]
        elif isinstance(fact, gamma):
            a, b = linear_arg(fact.args[0])
            if is_numer:
                if (a > 0 and (left(-b/a, is_numer) is False)) or \
                   (a < 0 and (left(-b/a, is_numer) is True)):
                    raise NotImplementedError(
                        'Gammas partially over the strip.')
            ugammas += [(a, b)]
        elif isinstance(fact, sin):
            # We try to re-write all trigs as gammas. This is not in
            # general the best strategy, since sometimes this is impossible,
            # but rewriting as exponentials would work. However trig functions
            # in inverse mellin transforms usually all come from simplifying
            # gamma terms, so this should work.
            a = fact.args[0]
            if is_numer:
                # No problem with the poles.
                gamma1, gamma2, fac_ = gamma(a / pi), gamma(1 - a / pi), pi
            else:
                gamma1, gamma2, fac_ = _rewrite_sin(linear_arg(a), s, a_, b_)
            args += [(gamma1, not is_numer), (gamma2, not is_numer)]
            ufacs += [fac_]
        elif isinstance(fact, tan):
            a = fact.args[0]
            args += [(sin(a, evaluate=False), is_numer),
                     (sin(pi / 2 - a, evaluate=False), not is_numer)]
        elif isinstance(fact, cos):
            a = fact.args[0]
            args += [(sin(pi / 2 - a, evaluate=False), is_numer)]
        elif isinstance(fact, cot):
            a = fact.args[0]
            args += [(sin(pi / 2 - a, evaluate=False), is_numer),
                     (sin(a, evaluate=False), not is_numer)]
        else:
            raise exception(fact)

    fac *= Mul(*facs) / Mul(*dfacs)

    # 3)
    an, ap, bm, bq = [], [], [], []
    for gammas, plus, minus, is_numer in [(numer_gammas, an, bm, True),
                                          (denom_gammas, bq, ap, False)]:
        while gammas:
            a, c = gammas.pop()
            if a != -1 and a != +1:
                # We use the gamma function multiplication theorem.
                p = abs(S(a))
                newa = a / p
                newc = c / p
                assert a.is_Integer
                for k in range(p):
                    gammas += [(newa, newc + k / p)]
                if is_numer:
                    fac *= (2 * pi)**((1 - p) / 2) * p**(c - S(1) / 2)
                    exponentials += [p**a]
                else:
                    fac /= (2 * pi)**((1 - p) / 2) * p**(c - S(1) / 2)
                    exponentials += [p**(-a)]
                continue
            if a == +1:
                plus.append(1 - c)
            else:
                minus.append(c)

    # 4)
    # TODO

    # 5)
    arg = Mul(*exponentials)

    # for testability, sort the arguments
    an.sort()
    ap.sort()
    bm.sort()
    bq.sort()

    return (an, ap), (bm, bq), arg, exponent, fac
Exemple #10
0
def test_issue_3070():
    r = RootOf(x**6 - 4 * x**5 - 2, 1)
    assert cse(r) == ([], [r])
    # and a check that the right thing is done with the new
    # mechanism
    assert sub_post(sub_pre((-x - y) * z - x - y)) == -z * (x + y) - x - y
Exemple #11
0
from sympy.polys.subresultants_qq_zz import *

x = var('x')

###############
f = x**3 - 7 * x + 7
g = f * (x - 3)
###############
print('derivative of f is : ', f.as_poly().diff())
print('integral of f is : ', f.as_poly().integrate())
print('gcd(f, diff(f)) is : ', f.as_poly().gcd(f.as_poly().diff()))
print('gcd(f, g) is : ', f.as_poly().gcd(g.as_poly()))
print('real root isolating intervals of f are : ',
      f.as_poly().intervals(), '\n')
print('sturm sequence of f is = ', f.as_poly().sturm())
print('real roots of f are = ', f.as_poly().real_roots())
###############
f1 = x**2 + 4
pprint(f1)
###############
print('complex roots of f1 are = ', solve((f1), x))
print('complex roots of f1 are = ', rootof((f1), x, 0))
print('complex roots of f1 are = ', CRootOf((f1), x, 0))
print('complex roots of f1 are = ', RootOf((f1), x, 0))

f2 = x**2 + 1

print('*****complex roots of f2 are = ', CRootOf((f2), x, 1))
print('complex roots of f1 are = ', solve((f2), x))
print('roots of f1 are = ', rootof((f2), x, 0))
print('complex roots of f1 are = ', RootOf((f2), x, 1))