def euler_savings_func(w, r, e, n_guess, b_s, b_splus1, b_splus2, BQ, factor,
                       T_H, chi_b, params, theta, tau_bq, rho, lambdas):
    '''
    This function is usually looped through over J, so it does one ability group at a time.
    Inputs:
        w = wage rate (scalar)
        r = rental rate (scalar)
        e = ability levels (Sx1 array)
        n_guess = labor distribution (Sx1 array)
        b_s = wealth holdings at the start of a period (Sx1 array)
        b_splus1 = wealth holdings for the next period (Sx1 array)
        b_splus2 = wealth holdings for 2 periods ahead (Sx1 array)
        BQ = aggregate bequests for a certain ability (scalar)
        factor = scaling factor to convert to dollars (scalar)
        T_H = lump sum tax (scalar)
        chi_b = chi^b_j for a certain ability (scalar)
        params = parameter list (list)
        theta = replacement rate for a certain ability (scalar)
        tau_bq = bequest tax rate (scalar)
        rho = mortality rate (Sx1 array)
        lambdas = ability weight (scalar)
    Output:
        euler = Value of savings euler error (Sx1 array)
    '''
    J, S, T, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, g_n_ss, tau_payroll, retire, mean_income_data, a_tax_income, b_tax_income, c_tax_income, d_tax_income, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = params
    # In order to not have 2 savings euler equations (one that solves the first S-1 equations, and one that solves the last one),
    # we combine them.  In order to do this, we have to compute a consumption term in period t+1, which requires us to have a shifted
    # e and n matrix.  We append a zero on the end of both of these so they will be the right size.  We could append any value to them,
    # since in the euler equation, the coefficient on the marginal utility of consumption for this term will be zero (since rho is one).
    e_extended = np.array(list(e) + [0])
    n_extended = np.array(list(n_guess) + [0])
    tax1 = tax.total_taxes(r, b_s, w, e, n_guess, BQ, lambdas, factor, T_H,
                           None, 'SS', False, params, theta, tau_bq)
    tax2 = tax.total_taxes(r, b_splus1, w, e_extended[1:], n_extended[1:], BQ,
                           lambdas, factor, T_H, None, 'SS', True, params,
                           theta, tau_bq)
    cons1 = get_cons(r, b_s, w, e, n_guess, BQ, lambdas, b_splus1, params,
                     tax1)
    cons2 = get_cons(r, b_splus1, w, e_extended[1:], n_extended[1:], BQ,
                     lambdas, b_splus2, params, tax2)
    income = (r * b_splus1 + w * e_extended[1:] * n_extended[1:]) * factor
    deriv = (1 + r *
             (1 - tax.tau_income(r, b_splus1, w, e_extended[1:],
                                 n_extended[1:], factor, params) -
              tax.tau_income_deriv(r, b_splus1, w, e_extended[1:],
                                   n_extended[1:], factor, params) * income) -
             tax.tau_w_prime(b_splus1, params) * b_splus1 -
             tax.tau_wealth(b_splus1, params))
    savings_ut = rho * np.exp(-sigma * g_y) * chi_b * b_splus1**(-sigma)
    # Again, not who in this equation, the (1-rho) term will zero out in the last period, so the last entry of cons2 can be complete
    # gibberish (which it is).  It just has to exist so cons2 is the right size to match all other arrays in the equation.
    euler = marg_ut_cons(cons1,
                         params) - beta * (1 - rho) * deriv * marg_ut_cons(
                             cons2, params) * np.exp(-sigma * g_y) - savings_ut
    return euler
Exemple #2
0
def Euler1(w, r, e, L_guess, K1, K2, K3, B, factor, taulump, chi_b):
    """
    Parameters:
        w        = wage rate (scalar)
        r        = rental rate (scalar)
        e        = distribution of abilities (SxJ array)
        L_guess  = distribution of labor (SxJ array)
        K1       = distribution of capital in period t ((S-1) x J array)
        K2       = distribution of capital in period t+1 ((S-1) x J array)
        K3       = distribution of capital in period t+2 ((S-1) x J array)
        B        = distribution of incidental bequests (1 x J array)
        factor   = scaling value to make average income match data
        taulump  = lump sum transfer from the government to the households
        xi       = coefficient of relative risk aversion
        chi_b    = discount factor of savings

    Returns:
        Value of Euler error.
    """
    B_euler = B.reshape(1, J)
    tax1 = tax.total_taxes_SS(r, K1, w, e[:-1, :], L_guess[:-1, :], B_euler, bin_weights, factor, taulump)
    tax2 = tax.total_taxes_SS2(r, K2, w, e[1:, :], L_guess[1:, :], B_euler, bin_weights, factor, taulump)
    cons1 = get_cons(r, K1, w, e[:-1, :], L_guess[:-1, :], B_euler, bin_weights, K2, g_y, tax1)
    cons2 = get_cons(r, K2, w, e[1:, :], L_guess[1:, :], B_euler, bin_weights, K3, g_y, tax2)
    income = (r * K2 + w * e[1:, :] * L_guess[1:, :]) * factor
    deriv = (
        1
        + r
        * (
            1
            - tax.tau_income(r, K1, w, e[1:, :], L_guess[1:, :], factor)
            - tax.tau_income_deriv(r, K1, w, e[1:, :], L_guess[1:, :], factor) * income
        )
        - tax.tau_w_prime(K2) * K2
        - tax.tau_wealth(K2)
    )
    bequest_ut = (
        (1 - surv_rate[:-1].reshape(S - 1, 1)) * np.exp(-sigma * g_y) * chi_b[:-1].reshape(S - 1, J) * K2 ** (-sigma)
    )
    euler = (
        MUc(cons1) - beta * surv_rate[:-1].reshape(S - 1, 1) * deriv * MUc(cons2) * np.exp(-sigma * g_y) - bequest_ut
    )
    return euler
Exemple #3
0
def Euler1(w, r, e, L_guess, K1, K2, K3, B, factor, taulump, chi_b):
    '''
    Parameters:
        w        = wage rate (scalar)
        r        = rental rate (scalar)
        e        = distribution of abilities (SxJ array)
        L_guess  = distribution of labor (SxJ array)
        K1       = distribution of capital in period t ((S-1) x J array)
        K2       = distribution of capital in period t+1 ((S-1) x J array)
        K3       = distribution of capital in period t+2 ((S-1) x J array)
        B        = distribution of incidental bequests (1 x J array)
        factor   = scaling value to make average income match data
        taulump  = lump sum transfer from the government to the households
        xi       = coefficient of relative risk aversion
        chi_b    = discount factor of savings

    Returns:
        Value of Euler error.
    '''
    B_euler = B.reshape(1, J)
    tax1 = tax.total_taxes_SS(r, K1, w, e[:-1, :], L_guess[:-1, :], B_euler,
                              bin_weights, factor, taulump)
    tax2 = tax.total_taxes_SS2(r, K2, w, e[1:, :], L_guess[1:, :], B_euler,
                               bin_weights, factor, taulump)
    cons1 = get_cons(r, K1, w, e[:-1, :], L_guess[:-1, :], B_euler,
                     bin_weights, K2, g_y, tax1)
    cons2 = get_cons(r, K2, w, e[1:, :], L_guess[1:, :], B_euler, bin_weights,
                     K3, g_y, tax2)
    income = (r * K2 + w * e[1:, :] * L_guess[1:, :]) * factor
    deriv = (
        1 + r *
        (1 - tax.tau_income(r, K1, w, e[1:, :], L_guess[1:, :], factor) -
         tax.tau_income_deriv(r, K1, w, e[1:, :], L_guess[1:, :], factor) *
         income) - tax.tau_w_prime(K2) * K2 - tax.tau_wealth(K2))
    bequest_ut = (1 - surv_rate[:-1].reshape(S - 1, 1)) * np.exp(
        -sigma * g_y) * chi_b[:-1].reshape(S - 1, 1) * K2**(-sigma)
    euler = MUc(cons1) - beta * surv_rate[:-1].reshape(
        S - 1, 1) * deriv * MUc(cons2) * np.exp(-sigma * g_y) - bequest_ut
    return euler
Exemple #4
0
def Euler1(w, r, e, n_guess, b1, b2, b3, BQ, factor, T_H, chi_b):
    '''
    Parameters:
        w        = wage rate (scalar)
        r        = rental rate (scalar)
        e        = distribution of abilities (SxJ array)
        n_guess  = distribution of labor (SxJ array)
        b1       = distribution of capital in period t ((S-1) x J array)
        b2       = distribution of capital in period t+1 ((S-1) x J array)
        b3       = distribution of capital in period t+2 ((S-1) x J array)
        B        = distribution of incidental bequests (1 x J array)
        factor   = scaling value to make average income match data
        T_H  = lump sum transfer from the government to the households
        xi       = coefficient of relative risk aversion
        chi_b    = discount factor of savings

    Returns:
        Value of Euler error.
    '''
    BQ_euler = BQ.reshape(1, J)
    tax1 = tax.total_taxes_SS(r, b1, w, e[:-1, :], n_guess[:-1, :], BQ_euler, lambdas, factor, T_H)
    tax2 = tax.total_taxes_SS2(r, b2, w, e[1:, :], n_guess[1:, :], BQ_euler, lambdas, factor, T_H)
    cons1 = get_cons(r, b1, w, e[:-1, :], n_guess[:-1, :], BQ_euler, lambdas, b2, g_y, tax1)
    cons2 = get_cons(r, b2, w, e[1:, :], n_guess[1:, :], BQ_euler, lambdas, b3, g_y, tax2)
    income = (r * b2 + w * e[1:, :] * n_guess[1:, :]) * factor
    deriv = (
        1 + r*(1-tax.tau_income(r, b1, w, e[1:, :], n_guess[1:, :], factor)-tax.tau_income_deriv(
            r, b1, w, e[1:, :], n_guess[1:, :], factor)*income)-tax.tau_w_prime(b2)*b2-tax.tau_wealth(b2))
    bequest_ut = rho[:-1].reshape(S-1, 1) * np.exp(-sigma * g_y) * chi_b[:-1].reshape(S-1, J) * b2 ** (-sigma)
    euler = MUc(cons1) - beta * (1-rho[:-1].reshape(S-1, 1)) * deriv * MUc(
        cons2) * np.exp(-sigma * g_y) - bequest_ut
    return euler
def euler_savings_func(w, r, e, n_guess, b_s, b_splus1, b_splus2, BQ, factor, T_H, chi_b, params, theta, tau_bq, rho, lambdas):
    '''
    This function is usually looped through over J, so it does one ability group at a time.
    Inputs:
        w = wage rate (scalar)
        r = rental rate (scalar)
        e = ability levels (Sx1 array)
        n_guess = labor distribution (Sx1 array)
        b_s = wealth holdings at the start of a period (Sx1 array)
        b_splus1 = wealth holdings for the next period (Sx1 array)
        b_splus2 = wealth holdings for 2 periods ahead (Sx1 array)
        BQ = aggregate bequests for a certain ability (scalar)
        factor = scaling factor to convert to dollars (scalar)
        T_H = lump sum tax (scalar)
        chi_b = chi^b_j for a certain ability (scalar)
        params = parameter list (list)
        theta = replacement rate for a certain ability (scalar)
        tau_bq = bequest tax rate (scalar)
        rho = mortality rate (Sx1 array)
        lambdas = ability weight (scalar)
    Output:
        euler = Value of savings euler error (Sx1 array)
    '''
    J, S, T, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, g_n_ss, tau_payroll, retire, mean_income_data, a_tax_income, b_tax_income, c_tax_income, d_tax_income, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = params
    # In order to not have 2 savings euler equations (one that solves the first S-1 equations, and one that solves the last one),
    # we combine them.  In order to do this, we have to compute a consumption term in period t+1, which requires us to have a shifted
    # e and n matrix.  We append a zero on the end of both of these so they will be the right size.  We could append any value to them,
    # since in the euler equation, the coefficient on the marginal utility of consumption for this term will be zero (since rho is one).
    e_extended = np.array(list(e) + [0])
    n_extended = np.array(list(n_guess) + [0])
    tax1 = tax.total_taxes(r, b_s, w, e, n_guess, BQ, lambdas, factor, T_H, None, 'SS', False, params, theta, tau_bq)
    tax2 = tax.total_taxes(r, b_splus1, w, e_extended[1:], n_extended[1:], BQ, lambdas, factor, T_H, None, 'SS', True, params, theta, tau_bq)
    cons1 = get_cons(r, b_s, w, e, n_guess, BQ, lambdas, b_splus1, params, tax1)
    cons2 = get_cons(r, b_splus1, w, e_extended[1:], n_extended[1:], BQ, lambdas, b_splus2, params, tax2)
    income = (r * b_splus1 + w * e_extended[1:] * n_extended[1:]) * factor
    deriv = (
        1 + r*(1-tax.tau_income(r, b_splus1, w, e_extended[1:], n_extended[1:], factor, params)-tax.tau_income_deriv(
            r, b_splus1, w, e_extended[1:], n_extended[1:], factor, params)*income)-tax.tau_w_prime(b_splus1, params)*b_splus1-tax.tau_wealth(b_splus1, params))
    savings_ut = rho * np.exp(-sigma * g_y) * chi_b * b_splus1 ** (-sigma)
    # Again, not who in this equation, the (1-rho) term will zero out in the last period, so the last entry of cons2 can be complete
    # gibberish (which it is).  It just has to exist so cons2 is the right size to match all other arrays in the equation.
    euler = marg_ut_cons(cons1, params) - beta * (1-rho) * deriv * marg_ut_cons(
        cons2, params) * np.exp(-sigma * g_y) - savings_ut
    return euler
Exemple #6
0
def Steady_state_TPI_solver(guesses, winit, rinit, BQinit, T_H_init, factor, j, s, t, params, theta, tau_bq, rho, lambdas, e, initial_b, chi_b, chi_n):
    '''
    Parameters:
        guesses = distribution of capital and labor in period t
                  ((S-1)*S*J x 1 list)
        winit   = wage rate (scalar)
        rinit   = rental rate (scalar)
        t       = time period

    Returns:
        Value of Euler error. (as an 2*S*J x 1 list)
    '''

    J, S, T, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, tau_payroll, retire, mean_income_data, a_tax_income, b_tax_income, c_tax_income, d_tax_income, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = params
    length = len(guesses)/2
    b_guess = np.array(guesses[:length])
    n_guess = np.array(guesses[length:])

    if length == S:
        b_s = np.array([0] + list(b_guess[:-1]))
    else:
        b_s = np.array([(initial_b[-(s+3), j])] + list(b_guess[:-1]))
    b_splus1 = b_guess
    b_splus2 = np.array(list(b_guess[1:]) + [0])
    w_s = winit[t:t+length]
    w_splus1 = winit[t+1:t+length+1]
    r_s = rinit[t:t+length]
    r_splus1 = rinit[t+1:t+length+1]
    n_s = n_guess
    n_extended = np.array(list(n_guess[1:]) + [0])
    e_s = e[-length:, j]
    e_extended = np.array(list(e[-length+1:, j]) + [0])
    BQ_s = BQinit[t:t+length]
    BQ_splus1 = BQinit[t+1:t+length+1]
    T_H_s = T_H_init[t:t+length]
    T_H_splus1 = T_H_init[t+1:t+length+1]
    # Savings euler equations
    tax_s = tax.total_taxes(r_s, b_s, w_s, e_s, n_s, BQ_s, lambdas[j], factor, T_H_s, j, 'TPI', False, params, theta, tau_bq)
    tax_splus1 = tax.total_taxes(r_splus1, b_splus1, w_splus1, e_extended, n_extended, BQ_splus1, lambdas[j], factor, T_H_splus1, j, 'TPI', True, params, theta, tau_bq)
    cons_s = house.get_cons(r_s, b_s, w_s, e_s, n_s, BQ_s, lambdas[j], b_splus1, params, tax_s)
    cons_splus1 = house.get_cons(r_splus1, b_splus1, w_splus1, e_extended, n_extended, BQ_splus1, lambdas[j], b_splus2, params, tax_splus1)
    income_splus1 = (r_splus1 * b_splus1 + w_splus1 * e_extended * n_extended) * factor
    savings_ut = rho[-(length):] * np.exp(-sigma * g_y) * chi_b[-(length):, j] * b_splus1 ** (-sigma)
    deriv_savings = 1 + r_splus1 * (1 - tax.tau_income(
        r_splus1, b_splus1, w_splus1, e_extended, n_extended, factor, params) - tax.tau_income_deriv(
        r_splus1, b_splus1, w_splus1, e_extended, n_extended, factor, params) * income_splus1) - tax.tau_w_prime(
        b_splus1, params)*b_splus1 - tax.tau_wealth(b_splus1, params)
    error1 = house.marg_ut_cons(cons_s, params) - beta * (1-rho[-(length):]) * np.exp(-sigma * g_y) * deriv_savings * house.marg_ut_cons(
        cons_splus1, params) - savings_ut
    # Labor leisure euler equations
    income_s = (r_s * b_s + w_s * e_s * n_s) * factor
    deriv_laborleisure = 1 - tau_payroll - tax.tau_income(r_s, b_s, w_s, e_s, n_s, factor, params) - tax.tau_income_deriv(
        r_s, b_s, w_s, e_s, n_s, factor, params) * income_s
    error2 = house.marg_ut_cons(cons_s, params) * w_s * e[-(length):, j] * deriv_laborleisure - house.marg_ut_labor(n_s, chi_n[-length:], params)
    # Check and punish constraint violations
    mask1 = n_guess < 0
    error2[mask1] += 1e12
    mask2 = n_guess > ltilde
    error2[mask2] += 1e12
    mask3 = cons_s < 0
    error2[mask3] += 1e12
    mask4 = b_guess <= 0
    error2[mask4] += 1e12
    mask5 = cons_splus1 < 0
    error2[mask5] += 1e12
    return list(error1.flatten()) + list(error2.flatten())
Exemple #7
0
def Steady_state_TPI_solver(guesses, winit, rinit, BQinit, T_H_init, factor, j, s, t, params, theta, tau_bq, rho, lambdas, e, initial_b, chi_b, chi_n):
    '''
    Parameters:
        guesses = distribution of capital and labor (various length list)
        winit   = wage rate ((T+S)x1 array)
        rinit   = rental rate ((T+S)x1 array)
        BQinit = aggregate bequests ((T+S)x1 array)
        T_H_init = lump sum tax over time ((T+S)x1 array)
        factor = scaling factor (scalar)
        j = which ability type is being solved for (scalar)
        s = which upper triangle loop is being solved for (scalar)
        t = which diagonal is being solved for (scalar)
        params = list of parameters (list)
        theta = replacement rates (Jx1 array)
        tau_bq = bequest tax rate (Jx1 array)
        rho = mortalit rate (Sx1 array)
        lambdas = ability weights (Jx1 array)
        e = ability type (SxJ array)
        initial_b = capital stock distribution in period 0 (SxJ array)
        chi_b = chi^b_j (Jx1 array)
        chi_n = chi^n_s (Sx1 array)
    Output:
        Value of Euler error (various length list)
    '''

    J, S, T, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, g_n_ss, tau_payroll, retire, mean_income_data, a_tax_income, b_tax_income, c_tax_income, d_tax_income, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = params
    length = len(guesses)/2
    b_guess = np.array(guesses[:length])
    n_guess = np.array(guesses[length:])

    if length == S:
        b_s = np.array([0] + list(b_guess[:-1]))
    else:
        b_s = np.array([(initial_b[-(s+3), j])] + list(b_guess[:-1]))
    b_splus1 = b_guess
    b_splus2 = np.array(list(b_guess[1:]) + [0])
    w_s = winit[t:t+length]
    w_splus1 = winit[t+1:t+length+1]
    r_s = rinit[t:t+length]
    r_splus1 = rinit[t+1:t+length+1]
    n_s = n_guess
    n_extended = np.array(list(n_guess[1:]) + [0])
    e_s = e[-length:, j]
    e_extended = np.array(list(e[-length+1:, j]) + [0])
    BQ_s = BQinit[t:t+length]
    BQ_splus1 = BQinit[t+1:t+length+1]
    T_H_s = T_H_init[t:t+length]
    T_H_splus1 = T_H_init[t+1:t+length+1]
    # Savings euler equations
    tax_s = tax.total_taxes(r_s, b_s, w_s, e_s, n_s, BQ_s, lambdas[j], factor, T_H_s, j, 'TPI', False, params, theta, tau_bq)
    tax_splus1 = tax.total_taxes(r_splus1, b_splus1, w_splus1, e_extended, n_extended, BQ_splus1, lambdas[j], factor, T_H_splus1, j, 'TPI', True, params, theta, tau_bq)
    cons_s = house.get_cons(r_s, b_s, w_s, e_s, n_s, BQ_s, lambdas[j], b_splus1, params, tax_s)
    cons_splus1 = house.get_cons(r_splus1, b_splus1, w_splus1, e_extended, n_extended, BQ_splus1, lambdas[j], b_splus2, params, tax_splus1)
    income_splus1 = (r_splus1 * b_splus1 + w_splus1 * e_extended * n_extended) * factor
    savings_ut = rho[-(length):] * np.exp(-sigma * g_y) * chi_b[-(length):, j] * b_splus1 ** (-sigma)
    deriv_savings = 1 + r_splus1 * (1 - tax.tau_income(
        r_splus1, b_splus1, w_splus1, e_extended, n_extended, factor, params) - tax.tau_income_deriv(
        r_splus1, b_splus1, w_splus1, e_extended, n_extended, factor, params) * income_splus1) - tax.tau_w_prime(
        b_splus1, params)*b_splus1 - tax.tau_wealth(b_splus1, params)
    error1 = house.marg_ut_cons(cons_s, params) - beta * (1-rho[-(length):]) * np.exp(-sigma * g_y) * deriv_savings * house.marg_ut_cons(
        cons_splus1, params) - savings_ut
    # Labor leisure euler equations
    income_s = (r_s * b_s + w_s * e_s * n_s) * factor
    deriv_laborleisure = 1 - tau_payroll - tax.tau_income(r_s, b_s, w_s, e_s, n_s, factor, params) - tax.tau_income_deriv(
        r_s, b_s, w_s, e_s, n_s, factor, params) * income_s
    error2 = house.marg_ut_cons(cons_s, params) * w_s * e[-(length):, j] * deriv_laborleisure - house.marg_ut_labor(n_s, chi_n[-length:], params)
    # Check and punish constraint violations
    mask1 = n_guess < 0
    error2[mask1] += 1e12
    mask2 = n_guess > ltilde
    error2[mask2] += 1e12
    mask3 = cons_s < 0
    error2[mask3] += 1e12
    mask4 = b_guess <= 0
    error2[mask4] += 1e12
    mask5 = cons_splus1 < 0
    error2[mask5] += 1e12
    return list(error1.flatten()) + list(error2.flatten())
Exemple #8
0
def Euler_Error(guesses, winit, rinit, Binit, Tinit, t):
    '''
    Parameters:
        guesses = distribution of capital and labor in period t
                  ((S-1)*S*J x 1 list)
        winit   = wage rate (scalar)
        rinit   = rental rate (scalar)
        t       = time period

    Returns:
        Value of Euler error. (as an 2*S*J x 1 list)
    '''
    length = len(guesses) / 2
    K_guess = np.array(guesses[:length])
    L_guess = np.array(guesses[length:])

    if length == S:
        K1 = np.array([0] + list(K_guess[:-2]))
    else:
        K1 = np.array([(initial_K[-(s + 2), j])] + list(K_guess[:-2]))
    K2 = K_guess[:-1]
    K3 = K_guess[1:]
    w1 = winit[t:t + length - 1]
    w2 = winit[t + 1:t + length]
    r1 = rinit[t:t + length - 1]
    r2 = rinit[t + 1:t + length]
    l1 = L_guess[:-1]
    l2 = L_guess[1:]
    e1 = e[-length:-1, j]
    e2 = e[-length + 1:, j]
    B1 = Binit[t:t + length - 1]
    B2 = Binit[t + 1:t + length]
    T1 = Tinit[t:t + length - 1]
    T2 = Tinit[t + 1:t + length]
    # Euler 1 equations
    tax11 = tax.total_taxes_TPI1(r1, K1, w1, e1, l1, B1, bin_weights[j],
                                 factor_ss, T1, j)
    tax12 = tax.total_taxes_TPI1_2(r2, K2, w2, e2, l2, B2, bin_weights[j],
                                   factor_ss, T2, j)
    cons11 = get_cons(r1, K1, w1, e1, l1, B1, bin_weights[j], K2, g_y, tax11)
    cons12 = get_cons(r2, K2, w2, e2, l2, B2, bin_weights[j], K3, g_y, tax12)
    wealth1 = (r2 * K2 + w2 * e2 * l2) * factor_ss
    bequest_ut = (1 - surv_rate[-(length):-1]) * np.exp(
        -sigma * g_y) * chi_b[-(length):-1, j] * K2**(-sigma)
    deriv1 = 1 + r2 * (1 - tax.tau_income(r2, K2, w2, e2, l2, factor_ss) -
                       tax.tau_income_deriv(r2, K2, w2, e2, l2, factor_ss) *
                       wealth1) - tax.tau_w_prime(K2) * K2 - tax.tau_wealth(K2)
    error1 = MUc(cons11) - beta * surv_rate[-(length):-1] * np.exp(
        -sigma * g_y) * deriv1 * MUc(cons12) - bequest_ut
    # Euler 2 equations
    if length == S:
        K1_2 = np.array([0] + list(K_guess[:-1]))
    else:
        K1_2 = np.array([(initial_K[-(s + 2), j])] + list(K_guess[:-1]))

    K2_2 = K_guess
    w = winit[t:t + length]
    r = rinit[t:t + length]
    B = Binit[t:t + length]
    Tl = Tinit[t:t + length]
    tax2 = tax.total_taxes_TPI2(r, K1_2, w, e[-(length):, j], L_guess, B,
                                bin_weights[j], factor_ss, Tl, j)
    cons2 = get_cons(r, K1_2, w, e[-(length):, j], L_guess, B, bin_weights[j],
                     K2_2, g_y, tax2)
    wealth2 = (r * K1_2 + w * e[-(length):, j] * L_guess) * factor_ss
    deriv2 = 1 - tau_payroll - tax.tau_income(
        r, K1_2, w,
        e[-(length):, j], L_guess, factor_ss) - tax.tau_income_deriv(
            r, K1_2, w, e[-(length):, j], L_guess, factor_ss) * wealth2
    error2 = MUc(cons2) * w * e[-(length):, j] * deriv2 - MUl2(
        L_guess, chi_n[-length:])
    # Euler 3 equations
    tax3 = tax.total_taxes_eul3_TPI(r[-1], K_guess[-2], w[-1], e[-1, j],
                                    L_guess[-1], B[-1], bin_weights[j],
                                    factor_ss, Tl[-1], j)
    cons3 = get_cons(r[-1], K_guess[-2], w[-1], e[-1, j], L_guess[-1], B[-1],
                     bin_weights[j], K_guess[-1], g_y, tax3)
    error3 = MUc(cons3) - np.exp(-sigma * g_y) * MUb2(K_guess[-1], chi_b[:, j])
    # Check and punish constraint violations
    mask1 = L_guess < 0
    error2[mask1] += 1e12
    mask2 = L_guess > ltilde
    error2[mask2] += 1e12
    mask3 = cons2 < 0
    error2[mask3] += 1e12
    mask4 = K_guess <= 0
    error2[mask4] += 1e12
    return list(error1.flatten()) + list(error2.flatten()) + list(
        error3.flatten())
Exemple #9
0
def Euler_Error(guesses, winit, rinit, Binit, Tinit, t):
    """
    Parameters:
        guesses = distribution of capital and labor in period t
                  ((S-1)*S*J x 1 list)
        winit   = wage rate (scalar)
        rinit   = rental rate (scalar)
        t       = time period

    Returns:
        Value of Euler error. (as an 2*S*J x 1 list)
    """
    length = len(guesses) / 2
    K_guess = np.array(guesses[:length])
    L_guess = np.array(guesses[length:])

    if length == S:
        K1 = np.array([0] + list(K_guess[:-2]))
    else:
        K1 = np.array([(initial_K[-(s + 2), j])] + list(K_guess[:-2]))
    K2 = K_guess[:-1]
    K3 = K_guess[1:]
    w1 = winit[t : t + length - 1]
    w2 = winit[t + 1 : t + length]
    r1 = rinit[t : t + length - 1]
    r2 = rinit[t + 1 : t + length]
    l1 = L_guess[:-1]
    l2 = L_guess[1:]
    e1 = e[-length:-1, j]
    e2 = e[-length + 1 :, j]
    B1 = Binit[t : t + length - 1]
    B2 = Binit[t + 1 : t + length]
    T1 = Tinit[t : t + length - 1]
    T2 = Tinit[t + 1 : t + length]
    # Euler 1 equations
    tax11 = tax.total_taxes_TPI1(r1, K1, w1, e1, l1, B1, bin_weights[j], factor_ss, T1, j)
    tax12 = tax.total_taxes_TPI1_2(r2, K2, w2, e2, l2, B2, bin_weights[j], factor_ss, T2, j)
    cons11 = get_cons(r1, K1, w1, e1, l1, B1, bin_weights[j], K2, g_y, tax11)
    cons12 = get_cons(r2, K2, w2, e2, l2, B2, bin_weights[j], K3, g_y, tax12)
    wealth1 = (r2 * K2 + w2 * e2 * l2) * factor_ss
    bequest_ut = (1 - surv_rate[-(length):-1]) * np.exp(-sigma * g_y) * chi_b[-(length):-1, j] * K2 ** (-sigma)
    deriv1 = (
        1
        + r2
        * (
            1
            - tax.tau_income(r2, K2, w2, e2, l2, factor_ss)
            - tax.tau_income_deriv(r2, K2, w2, e2, l2, factor_ss) * wealth1
        )
        - tax.tau_w_prime(K2) * K2
        - tax.tau_wealth(K2)
    )
    error1 = MUc(cons11) - beta * surv_rate[-(length):-1] * np.exp(-sigma * g_y) * deriv1 * MUc(cons12) - bequest_ut
    # Euler 2 equations
    if length == S:
        K1_2 = np.array([0] + list(K_guess[:-1]))
    else:
        K1_2 = np.array([(initial_K[-(s + 2), j])] + list(K_guess[:-1]))

    K2_2 = K_guess
    w = winit[t : t + length]
    r = rinit[t : t + length]
    B = Binit[t : t + length]
    Tl = Tinit[t : t + length]
    tax2 = tax.total_taxes_TPI2(r, K1_2, w, e[-(length):, j], L_guess, B, bin_weights[j], factor_ss, Tl, j)
    cons2 = get_cons(r, K1_2, w, e[-(length):, j], L_guess, B, bin_weights[j], K2_2, g_y, tax2)
    wealth2 = (r * K1_2 + w * e[-(length):, j] * L_guess) * factor_ss
    deriv2 = (
        1
        - tau_payroll
        - tax.tau_income(r, K1_2, w, e[-(length):, j], L_guess, factor_ss)
        - tax.tau_income_deriv(r, K1_2, w, e[-(length):, j], L_guess, factor_ss) * wealth2
    )
    error2 = MUc(cons2) * w * e[-(length):, j] * deriv2 - MUl2(L_guess, chi_n[-length:])
    # Euler 3 equations
    tax3 = tax.total_taxes_eul3_TPI(
        r[-1], K_guess[-2], w[-1], e[-1, j], L_guess[-1], B[-1], bin_weights[j], factor_ss, Tl[-1], j
    )
    cons3 = get_cons(r[-1], K_guess[-2], w[-1], e[-1, j], L_guess[-1], B[-1], bin_weights[j], K_guess[-1], g_y, tax3)
    error3 = MUc(cons3) - np.exp(-sigma * g_y) * MUb2(K_guess[-1], chi_b[:, j])
    # Check and punish constraint violations
    mask1 = L_guess < 0
    error2[mask1] += 1e12
    mask2 = L_guess > ltilde
    error2[mask2] += 1e12
    mask3 = cons2 < 0
    error2[mask3] += 1e12
    mask4 = K_guess <= 0
    error2[mask4] += 1e12
    return list(error1.flatten()) + list(error2.flatten()) + list(error3.flatten())
Exemple #10
0
def Steady_state_TPI_solver(guesses, winit, rinit, BQinit, T_H_init, factor, j,
                            s, t, params, theta, tau_bq, rho, lambdas, e,
                            initial_b, chi_b, chi_n):
    '''
    Parameters:
        guesses = distribution of capital and labor (various length list)
        winit   = wage rate ((T+S)x1 array)
        rinit   = rental rate ((T+S)x1 array)
        BQinit = aggregate bequests ((T+S)x1 array)
        T_H_init = lump sum tax over time ((T+S)x1 array)
        factor = scaling factor (scalar)
        j = which ability type is being solved for (scalar)
        s = which upper triangle loop is being solved for (scalar)
        t = which diagonal is being solved for (scalar)
        params = list of parameters (list)
        theta = replacement rates (Jx1 array)
        tau_bq = bequest tax rate (Jx1 array)
        rho = mortalit rate (Sx1 array)
        lambdas = ability weights (Jx1 array)
        e = ability type (SxJ array)
        initial_b = capital stock distribution in period 0 (SxJ array)
        chi_b = chi^b_j (Jx1 array)
        chi_n = chi^n_s (Sx1 array)
    Output:
        Value of Euler error (various length list)
    '''

    J, S, T, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, g_n_ss, tau_payroll, retire, mean_income_data, a_tax_income, b_tax_income, c_tax_income, d_tax_income, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = params
    length = len(guesses) / 2
    b_guess = np.array(guesses[:length])
    n_guess = np.array(guesses[length:])

    if length == S:
        b_s = np.array([0] + list(b_guess[:-1]))
    else:
        b_s = np.array([(initial_b[-(s + 3), j])] + list(b_guess[:-1]))
    b_splus1 = b_guess
    b_splus2 = np.array(list(b_guess[1:]) + [0])
    w_s = winit[t:t + length]
    w_splus1 = winit[t + 1:t + length + 1]
    r_s = rinit[t:t + length]
    r_splus1 = rinit[t + 1:t + length + 1]
    n_s = n_guess
    n_extended = np.array(list(n_guess[1:]) + [0])
    e_s = e[-length:, j]
    e_extended = np.array(list(e[-length + 1:, j]) + [0])
    BQ_s = BQinit[t:t + length]
    BQ_splus1 = BQinit[t + 1:t + length + 1]
    T_H_s = T_H_init[t:t + length]
    T_H_splus1 = T_H_init[t + 1:t + length + 1]
    # Savings euler equations
    tax_s = tax.total_taxes(r_s, b_s, w_s, e_s, n_s, BQ_s, lambdas[j], factor,
                            T_H_s, j, 'TPI', False, params, theta, tau_bq)
    tax_splus1 = tax.total_taxes(r_splus1, b_splus1, w_splus1, e_extended,
                                 n_extended, BQ_splus1, lambdas[j], factor,
                                 T_H_splus1, j, 'TPI', True, params, theta,
                                 tau_bq)
    cons_s = house.get_cons(r_s, b_s, w_s, e_s, n_s, BQ_s, lambdas[j],
                            b_splus1, params, tax_s)
    cons_splus1 = house.get_cons(r_splus1, b_splus1, w_splus1, e_extended,
                                 n_extended, BQ_splus1, lambdas[j], b_splus2,
                                 params, tax_splus1)
    income_splus1 = (r_splus1 * b_splus1 +
                     w_splus1 * e_extended * n_extended) * factor
    savings_ut = rho[-(length):] * np.exp(
        -sigma * g_y) * chi_b[-(length):, j] * b_splus1**(-sigma)
    deriv_savings = 1 + r_splus1 * (
        1 - tax.tau_income(r_splus1, b_splus1, w_splus1, e_extended,
                           n_extended, factor, params) -
        tax.tau_income_deriv(r_splus1, b_splus1, w_splus1, e_extended,
                             n_extended, factor, params) * income_splus1
    ) - tax.tau_w_prime(b_splus1, params) * b_splus1 - tax.tau_wealth(
        b_splus1, params)
    error1 = house.marg_ut_cons(
        cons_s, params) - beta * (1 - rho[-(length):]) * np.exp(
            -sigma * g_y) * deriv_savings * house.marg_ut_cons(
                cons_splus1, params) - savings_ut
    # Labor leisure euler equations
    income_s = (r_s * b_s + w_s * e_s * n_s) * factor
    deriv_laborleisure = 1 - tau_payroll - tax.tau_income(
        r_s, b_s, w_s, e_s, n_s, factor, params) - tax.tau_income_deriv(
            r_s, b_s, w_s, e_s, n_s, factor, params) * income_s
    error2 = house.marg_ut_cons(cons_s, params) * w_s * e[
        -(length):, j] * deriv_laborleisure - house.marg_ut_labor(
            n_s, chi_n[-length:], params)
    # Check and punish constraint violations
    mask1 = n_guess < 0
    error2[mask1] += 1e12
    mask2 = n_guess > ltilde
    error2[mask2] += 1e12
    mask3 = cons_s < 0
    error2[mask3] += 1e12
    mask4 = b_guess <= 0
    error2[mask4] += 1e12
    mask5 = cons_splus1 < 0
    error2[mask5] += 1e12
    return list(error1.flatten()) + list(error2.flatten())
def euler_savings_func(w, r, e, n_guess, b_s, b_splus1, b_splus2, BQ, factor, T_H, chi_b, params, theta, tau_bq, rho, lambdas):
    '''
    Inputs:
        w        = wage rate (scalar)
        r        = rental rate (scalar)
        e        = distribution of abilities (SxJ array)
        n_guess  = distribution of labor (SxJ array)
        b_s       = distribution of capital in period t (S x J array)
        b_splus1       = distribution of capital in period t+1 (S x J array)
        b_splus2       = distribution of capital in period t+2 (S x J array)
        BQ        = distribution of incidental bequests (1 x J array)
        factor   = scaling value to make average income match data
        T_H  = lump sum transfer from the government to the households
        chi_b    = discount factor of savings
        params = parameters
        theta = replacement rates
        tau_bq = bequest tax parameters
        rho = mortality rates
        lambdas = bin weights

    Returns:
        Value of Euler error.
    '''
    J, S, T, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, tau_payroll, retire, mean_income_data, a_tax_income, b_tax_income, c_tax_income, d_tax_income, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = params
    e_extended = np.array(list(e) + [0])
    n_extended = np.array(list(n_guess) + [0])
    tax1 = tax.total_taxes(r, b_s, w, e, n_guess, BQ, lambdas, factor, T_H, None, 'SS', False, params, theta, tau_bq)
    tax2 = tax.total_taxes(r, b_splus1, w, e_extended[1:], n_extended[1:], BQ, lambdas, factor, T_H, None, 'SS', True, params, theta, tau_bq)
    cons1 = get_cons(r, b_s, w, e, n_guess, BQ, lambdas, b_splus1, params, tax1)
    cons2 = get_cons(r, b_splus1, w, e_extended[1:], n_extended[1:], BQ, lambdas, b_splus2, params, tax2)
    income = (r * b_splus1 + w * e_extended[1:] * n_extended[1:]) * factor
    deriv = (
        1 + r*(1-tax.tau_income(r, b_s, w, e_extended[1:], n_extended[1:], factor, params)-tax.tau_income_deriv(
            r, b_s, w, e_extended[1:], n_extended[1:], factor, params)*income)-tax.tau_w_prime(b_splus1, params)*b_splus1-tax.tau_wealth(b_splus1, params))
    savings_ut = rho * np.exp(-sigma * g_y) * chi_b * b_splus1 ** (-sigma)
    euler = marg_ut_cons(cons1, params) - beta * (1-rho) * deriv * marg_ut_cons(
        cons2, params) * np.exp(-sigma * g_y) - savings_ut
    return euler