Exemple #1
0
def MT_Hybrid_CAN(n_frame,
                  nb_filters1,
                  nb_filters2,
                  input_shape_1,
                  input_shape_2,
                  kernel_size_1=(3, 3, 3),
                  kernel_size_2=(3, 3),
                  dropout_rate1=0.25,
                  dropout_rate2=0.5,
                  pool_size_1=(2, 2, 2),
                  pool_size_2=(2, 2),
                  nb_dense=128):
    diff_input = Input(shape=input_shape_1)
    rawf_input = Input(shape=input_shape_2)

    # Motion branch
    d1 = Conv3D(nb_filters1, kernel_size_1, padding='same',
                activation='tanh')(diff_input)
    d2 = Conv3D(nb_filters1, kernel_size_1, activation='tanh')(d1)

    # App branch
    r1 = Conv2D(nb_filters1, kernel_size_2, padding='same',
                activation='tanh')(rawf_input)
    r2 = Conv2D(nb_filters1, kernel_size_2, activation='tanh')(r1)

    # Mask from App (g1) * Motion Branch (d2)
    g1 = Conv2D(1, (1, 1), padding='same', activation='sigmoid')(r2)
    g1 = Attention_mask()(g1)
    g1 = K.expand_dims(g1, axis=-1)
    gated1 = multiply([d2, g1])

    # Motion Branch
    d3 = AveragePooling3D(pool_size_1)(gated1)
    d4 = Dropout(dropout_rate1)(d3)
    d5 = Conv3D(nb_filters2, kernel_size_1, padding='same',
                activation='tanh')(d4)
    d6 = Conv3D(nb_filters2, kernel_size_1, activation='tanh')(d5)

    # App branch
    r3 = AveragePooling2D(pool_size_2)(r2)
    r4 = Dropout(dropout_rate1)(r3)
    r5 = Conv2D(nb_filters2, kernel_size_2, padding='same',
                activation='tanh')(r4)
    r6 = Conv2D(nb_filters2, kernel_size_2, activation='tanh')(r5)

    # Mask from App (g2) * Motion Branch (d6)
    g2 = Conv2D(1, (1, 1), padding='same', activation='sigmoid')(r6)
    g2 = Attention_mask()(g2)
    g2 = K.repeat_elements(g2, d6.shape[3], axis=-1)
    g2 = K.expand_dims(g2, axis=-1)
    gated2 = multiply([d6, g2])

    # Motion Branch
    d7 = AveragePooling3D(pool_size_1)(gated2)
    d8 = Dropout(dropout_rate1)(d7)

    # Motion Branch
    d9 = Flatten()(d8)

    d10_y = Dense(nb_dense, activation='tanh')(d9)
    d11_y = Dropout(dropout_rate2)(d10_y)
    out_y = Dense(n_frame, name='output_1')(d11_y)

    d10_r = Dense(nb_dense, activation='tanh')(d9)
    d11_r = Dropout(dropout_rate2)(d10_r)
    out_r = Dense(n_frame, name='output_2')(d11_r)

    model = Model(inputs=[diff_input, rawf_input], outputs=[out_y, out_r])
    return model
Exemple #2
0
    def _add_discriminator_block(old_model, config):
        # new shape is double the size of previous one
        old_input_shape = list(old_model.input.shape)
        new_input_shape = (old_input_shape[-2] * 2, old_input_shape[-2] * 2,
                           old_input_shape[-1])
        model_input = Input(shape=new_input_shape, name="doubled_dis_input")

        # weights init
        w_init = RandomNormal(stddev=0.02)
        w_const = max_norm(1.0)

        # conv layers
        x = model_input
        for strides in [1, 3, 3]:
            x = Conv2D(config['filters'],
                       strides,
                       padding='same',
                       kernel_initializer=w_init,
                       kernel_constraint=w_const)(x)
            x = LeakyReLU()(x)

        x = AveragePooling2D()(x)

        new_block = x
        # skip the input, 1x1 and activation for the old model
        for i in range(config['num_input_layers'], len(old_model.layers)):
            x = old_model.layers[i](x)

        # define straight-through model
        model1 = Model(model_input, x)

        # compile model
        model1.compile(loss=wasserstein_loss,
                       optimizer=Adam(lr=config['learning_rate'],
                                      beta_1=config['beta_1'],
                                      beta_2=config['beta_2'],
                                      epsilon=config['epsilon']))

        # downsample the new larger image
        downsample = AveragePooling2D()(model_input)

        # connect old input processing to downsampled new input
        old_block = old_model.layers[1](downsample)
        old_block = old_model.layers[2](old_block)

        # fade in output of old model input layer with new input
        x = WeightedSum()([old_block, new_block])
        # skip the input, 1x1 and activation for the old model
        for i in range(config['num_input_layers'], len(old_model.layers)):
            x = old_model.layers[i](x)

        # define fade-in model
        model2 = Model(model_input, x)

        # compile model
        model2.compile(loss=wasserstein_loss,
                       optimizer=Adam(lr=config['learning_rate'],
                                      beta_1=config['beta_1'],
                                      beta_2=config['beta_2'],
                                      epsilon=config['epsilon']))

        return [model1, model2]
Exemple #3
0
def MTTS_CAN(n_frame,
             nb_filters1,
             nb_filters2,
             input_shape,
             kernel_size=(3, 3),
             dropout_rate1=0.25,
             dropout_rate2=0.5,
             pool_size=(2, 2),
             nb_dense=128):
    diff_input = Input(shape=input_shape)
    rawf_input = Input(shape=input_shape)

    d1 = TSM_Cov2D(diff_input,
                   n_frame,
                   nb_filters1,
                   kernel_size,
                   padding='same',
                   activation='tanh')
    d2 = TSM_Cov2D(d1,
                   n_frame,
                   nb_filters1,
                   kernel_size,
                   padding='valid',
                   activation='tanh')

    r1 = Conv2D(nb_filters1, kernel_size, padding='same',
                activation='tanh')(rawf_input)
    r2 = Conv2D(nb_filters1, kernel_size, activation='tanh')(r1)

    g1 = Conv2D(1, (1, 1), padding='same', activation='sigmoid')(r2)
    g1 = Attention_mask()(g1)
    gated1 = multiply([d2, g1])

    d3 = AveragePooling2D(pool_size)(gated1)
    d4 = Dropout(dropout_rate1)(d3)

    r3 = AveragePooling2D(pool_size)(r2)
    r4 = Dropout(dropout_rate1)(r3)

    d5 = TSM_Cov2D(d4,
                   n_frame,
                   nb_filters2,
                   kernel_size,
                   padding='same',
                   activation='tanh')
    d6 = TSM_Cov2D(d5,
                   n_frame,
                   nb_filters2,
                   kernel_size,
                   padding='valid',
                   activation='tanh')

    r5 = Conv2D(nb_filters2, kernel_size, padding='same',
                activation='tanh')(r4)
    r6 = Conv2D(nb_filters2, kernel_size, activation='tanh')(r5)

    g2 = Conv2D(1, (1, 1), padding='same', activation='sigmoid')(r6)
    g2 = Attention_mask()(g2)
    gated2 = multiply([d6, g2])

    d7 = AveragePooling2D(pool_size)(gated2)
    d8 = Dropout(dropout_rate1)(d7)

    d9 = Flatten()(d8)

    d10_y = Dense(nb_dense, activation='tanh')(d9)
    d11_y = Dropout(dropout_rate2)(d10_y)
    out_y = Dense(1, name='output_1')(d11_y)

    d10_r = Dense(nb_dense, activation='tanh')(d9)
    d11_r = Dropout(dropout_rate2)(d10_r)
    out_r = Dense(1, name='output_2')(d11_r)

    model = Model(inputs=[diff_input, rawf_input], outputs=[out_y, out_r])
    return model
def evaluate_on_cifar10():
    tf.random.set_seed(42)

    total_depth = 100
    n_blocks = 3
    depth = (total_depth - 4) // n_blocks
    growth_rate = 12
    filters = growth_rate * 2

    # region Model
    input_layer = Input(shape=[32, 32, 3])
    layer = input_layer
    layer = Conv2D(filters=filters, kernel_size=3, strides=1,
                   padding="same")(layer)

    for k in range(n_blocks):
        layer = DenseBlock2D(kernel_size=3,
                             growth_rate=growth_rate,
                             depth=depth,
                             use_batch_normalization=True)(layer)

        if k < (n_blocks - 1):
            filters += growth_rate * depth // 4
            layer = transition_block(layer, filters)
        else:
            layer = AveragePooling2D(pool_size=8)(layer)

    layer = Flatten()(layer)
    layer = Dense(units=10, activation="softmax")(layer)
    model = Model(inputs=input_layer, outputs=layer)
    model.summary()

    model.compile(optimizer="adam",
                  loss="categorical_crossentropy",
                  metrics=["acc"])
    # endregion

    # region Data
    (x_train, y_train), (x_test, y_test) = cifar10.load_data()
    x_train = x_train.astype(np.float32) / 255.0
    x_test = x_test.astype(np.float32) / 255.0

    y_train = to_categorical(y_train, num_classes=10)
    y_test = to_categorical(y_test, num_classes=10)

    generator = ImageDataGenerator(rotation_range=15,
                                   width_shift_range=5. / 32,
                                   height_shift_range=5. / 32,
                                   horizontal_flip=True)
    generator.fit(x_train)
    # endregion

    log_dir = "../logs/tests/dense_block_cifar10/{}".format(int(time()))
    log_dir = os.path.normpath(log_dir)
    tensorboard = TensorBoard(log_dir=log_dir, profile_batch=0)

    model.fit_generator(generator.flow(x_train, y_train, batch_size=64),
                        steps_per_epoch=100,
                        epochs=300,
                        validation_data=(x_test, y_test),
                        validation_steps=100,
                        verbose=1,
                        callbacks=[tensorboard])
Exemple #5
0
def vgg16_avg(input_shape):
    img_input = Input(shape=input_shape)

    # Block 1
    x = Convolution2D(64,
                      3,
                      3,
                      activation='relu',
                      border_mode='same',
                      name='block1_conv1')(img_input)
    x = Convolution2D(64,
                      3,
                      3,
                      activation='relu',
                      border_mode='same',
                      name='block1_conv2')(x)
    x = AveragePooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)

    # Block 2
    x = Convolution2D(128,
                      3,
                      3,
                      activation='relu',
                      border_mode='same',
                      name='block2_conv1')(x)
    x = Convolution2D(128,
                      3,
                      3,
                      activation='relu',
                      border_mode='same',
                      name='block2_conv2')(x)
    x = AveragePooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)

    # Block 3
    x = Convolution2D(256,
                      3,
                      3,
                      activation='relu',
                      border_mode='same',
                      name='block3_conv1')(x)
    x = Convolution2D(256,
                      3,
                      3,
                      activation='relu',
                      border_mode='same',
                      name='block3_conv2')(x)
    x = Convolution2D(256,
                      3,
                      3,
                      activation='relu',
                      border_mode='same',
                      name='block3_conv3')(x)
    x = AveragePooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)

    # Block 4
    x = Convolution2D(512,
                      3,
                      3,
                      activation='relu',
                      border_mode='same',
                      name='block4_conv1')(x)
    x = Convolution2D(512,
                      3,
                      3,
                      activation='relu',
                      border_mode='same',
                      name='block4_conv2')(x)
    x = Convolution2D(512,
                      3,
                      3,
                      activation='relu',
                      border_mode='same',
                      name='block4_conv3')(x)
    x = AveragePooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)

    # Block 5
    x = Convolution2D(512,
                      3,
                      3,
                      activation='relu',
                      border_mode='same',
                      name='block5_conv1')(x)
    x = Convolution2D(512,
                      3,
                      3,
                      activation='relu',
                      border_mode='same',
                      name='block5_conv2')(x)
    x = Convolution2D(512,
                      3,
                      3,
                      activation='relu',
                      border_mode='same',
                      name='block5_conv3')(x)
    x = AveragePooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)
Exemple #6
0
def InceptionV3(include_top=True,
                weights='imagenet',
                input_tensor=None,
                model_input=None,
                pooling=None,
                classes=1000, model_path=""):
    """Instantiates the Inception v3 architecture.

    Optionally loads weights pre-trained
    on ImageNet. Note that when using TensorFlow,
    for best performance you should set
    `image_data_format='channels_last'` in your Keras config
    at ~/.keras/keras.json.
    The model and the weights are compatible with both
    TensorFlow and Theano. The data format
    convention used by the model is the one
    specified in your Keras config file.
    Note that the default input image size for this model is 299x299.

    # Arguments
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization)
            or 'imagenet' (pre-training on ImageNet).
        input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is False (otherwise the input shape
            has to be `(299, 299, 3)` (with `channels_last` data format)
            or `(3, 299, 299)` (with `channels_first` data format).
            It should have exactly 3 inputs channels,
            and width and height should be no smaller than 139.
            E.g. `(150, 150, 3)` would be one valid value.
        pooling: Optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the
                last convolutional layer.
            - `avg` means that global average pooling
                will be applied to the output of the
                last convolutional layer, and thus
                the output of the model will be a 2D tensor.
            - `max` means that global max pooling will
                be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is True, and
            if no `weights` argument is specified.

    # Returns
        A Keras model instance.

    # Raises
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
    """


    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as imagenet with `include_top`'
                         ' as true, `classes` should be 1000')


    img_input = model_input
    channel_axis = 3


    x = conv2d_bn(img_input, 32, 3, 3, strides=(2, 2), padding='valid')
    x = conv2d_bn(x, 32, 3, 3, padding='valid')
    x = conv2d_bn(x, 64, 3, 3)
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    x = conv2d_bn(x, 80, 1, 1, padding='valid')
    x = conv2d_bn(x, 192, 3, 3, padding='valid')
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    # mixed 0, 1, 2: 35 x 35 x 256
    branch1x1 = conv2d_bn(x, 64, 1, 1)

    branch5x5 = conv2d_bn(x, 48, 1, 1)
    branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

    branch3x3dbl = conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 32, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch5x5, branch3x3dbl, branch_pool],
        axis=channel_axis,
        name='mixed0')

    # mixed 1: 35 x 35 x 256
    branch1x1 = conv2d_bn(x, 64, 1, 1)

    branch5x5 = conv2d_bn(x, 48, 1, 1)
    branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

    branch3x3dbl = conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 64, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch5x5, branch3x3dbl, branch_pool],
        axis=channel_axis,
        name='mixed1')

    # mixed 2: 35 x 35 x 256
    branch1x1 = conv2d_bn(x, 64, 1, 1)

    branch5x5 = conv2d_bn(x, 48, 1, 1)
    branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

    branch3x3dbl = conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 64, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch5x5, branch3x3dbl, branch_pool],
        axis=channel_axis,
        name='mixed2')

    # mixed 3: 17 x 17 x 768
    branch3x3 = conv2d_bn(x, 384, 3, 3, strides=(2, 2), padding='valid')

    branch3x3dbl = conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = conv2d_bn(
        branch3x3dbl, 96, 3, 3, strides=(2, 2), padding='valid')

    branch_pool = MaxPooling2D((3, 3), strides=(2, 2))(x)
    x = layers.concatenate(
        [branch3x3, branch3x3dbl, branch_pool], axis=channel_axis, name='mixed3')

    # mixed 4: 17 x 17 x 768
    branch1x1 = conv2d_bn(x, 192, 1, 1)

    branch7x7 = conv2d_bn(x, 128, 1, 1)
    branch7x7 = conv2d_bn(branch7x7, 128, 1, 7)
    branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

    branch7x7dbl = conv2d_bn(x, 128, 1, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 1, 7)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch7x7, branch7x7dbl, branch_pool],
        axis=channel_axis,
        name='mixed4')

    # mixed 5, 6: 17 x 17 x 768
    for i in range(2):
        branch1x1 = conv2d_bn(x, 192, 1, 1)

        branch7x7 = conv2d_bn(x, 160, 1, 1)
        branch7x7 = conv2d_bn(branch7x7, 160, 1, 7)
        branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

        branch7x7dbl = conv2d_bn(x, 160, 1, 1)
        branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1)
        branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 1, 7)
        branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1)
        branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

        branch_pool = AveragePooling2D(
            (3, 3), strides=(1, 1), padding='same')(x)
        branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
        x = layers.concatenate(
            [branch1x1, branch7x7, branch7x7dbl, branch_pool],
            axis=channel_axis,
            name='mixed' + str(5 + i))

    # mixed 7: 17 x 17 x 768
    branch1x1 = conv2d_bn(x, 192, 1, 1)

    branch7x7 = conv2d_bn(x, 192, 1, 1)
    branch7x7 = conv2d_bn(branch7x7, 192, 1, 7)
    branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

    branch7x7dbl = conv2d_bn(x, 192, 1, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch7x7, branch7x7dbl, branch_pool],
        axis=channel_axis,
        name='mixed7')

    # mixed 8: 8 x 8 x 1280
    branch3x3 = conv2d_bn(x, 192, 1, 1)
    branch3x3 = conv2d_bn(branch3x3, 320, 3, 3,
                          strides=(2, 2), padding='valid')

    branch7x7x3 = conv2d_bn(x, 192, 1, 1)
    branch7x7x3 = conv2d_bn(branch7x7x3, 192, 1, 7)
    branch7x7x3 = conv2d_bn(branch7x7x3, 192, 7, 1)
    branch7x7x3 = conv2d_bn(
        branch7x7x3, 192, 3, 3, strides=(2, 2), padding='valid')

    branch_pool = MaxPooling2D((3, 3), strides=(2, 2))(x)
    x = layers.concatenate(
        [branch3x3, branch7x7x3, branch_pool], axis=channel_axis, name='mixed8')

    # mixed 9: 8 x 8 x 2048
    for i in range(2):
        branch1x1 = conv2d_bn(x, 320, 1, 1)

        branch3x3 = conv2d_bn(x, 384, 1, 1)
        branch3x3_1 = conv2d_bn(branch3x3, 384, 1, 3)
        branch3x3_2 = conv2d_bn(branch3x3, 384, 3, 1)
        branch3x3 = layers.concatenate(
            [branch3x3_1, branch3x3_2], axis=channel_axis, name='mixed9_' + str(i))

        branch3x3dbl = conv2d_bn(x, 448, 1, 1)
        branch3x3dbl = conv2d_bn(branch3x3dbl, 384, 3, 3)
        branch3x3dbl_1 = conv2d_bn(branch3x3dbl, 384, 1, 3)
        branch3x3dbl_2 = conv2d_bn(branch3x3dbl, 384, 3, 1)
        branch3x3dbl = layers.concatenate(
            [branch3x3dbl_1, branch3x3dbl_2], axis=channel_axis)

        branch_pool = AveragePooling2D(
            (3, 3), strides=(1, 1), padding='same')(x)
        branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
        x = layers.concatenate(
            [branch1x1, branch3x3, branch3x3dbl, branch_pool],
            axis=channel_axis,
            name='mixed' + str(9 + i))
    if include_top:
        # Classification block
        x = GlobalAveragePooling2D(name='avg_pool')(x)
        x = Dense(classes, activation='softmax', name='predictions')(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    inputs = img_input
    # Create model.
    model = Model(inputs, x, name='inception_v3')



    # load weights
    if weights == 'imagenet':
        if K.image_data_format() == 'channels_first':
            if K.backend() == 'tensorflow':
                warnings.warn('You are using the TensorFlow backend, yet you '
                              'are using the Theano '
                              'image data format convention '
                              '(`image_data_format="channels_first"`). '
                              'For best performance, set '
                              '`image_data_format="channels_last"` in '
                              'your Keras config '
                              'at ~/.keras/keras.json.')
        if include_top:
            weights_path = model_path
            model.load_weights(weights_path)
        else:
            weights_path = ""
    elif (weights == "trained"):
        weights_path = model_path
        model.load_weights(weights_path)

    return model
Exemple #7
0
    def build(input_shape, num_outputs, block_fn, hp_lambda, repetitions):
        """Builds a custom ResNet like architecture.
        Args:
            input_shape: The input shape in the form (nb_channels, nb_rows, nb_cols)
            num_outputs: The number of outputs at final softmax layer
            block_fn: The block function to use. This is either `basic_block` or `bottleneck`.
                The original paper used basic_block for layers < 50
            repetitions: Number of repetitions of various block units.
                At each block unit, the number of filters are doubled and the input size is halved
        Returns:
            The keras `Model`.
        """
        _handle_dim_ordering()
        if len(input_shape) != 3:
            raise Exception(
                "Input shape should be a tuple (nb_channels, nb_rows, nb_cols)"
            )

        # Permute dimension order if necessary
        if K.image_data_format() == 'channels_last':
            input_shape = (input_shape[1], input_shape[2], input_shape[0])

        # Load function from str if needed.
        block_fn = _get_block(block_fn)

        input = Input(shape=input_shape)
        conv1 = _conv_bn_relu(filters=16, kernel_size=(7, 7),
                              strides=(2, 2))(input)
        pool1 = MaxPooling2D(pool_size=(3, 3), strides=(2, 2),
                             padding="same")(conv1)

        block = pool1
        filters = 16
        for i, r in enumerate(repetitions):
            #block = SpatialDropout2D(rate=0.5)(block)
            block = _residual_block(block_fn,
                                    filters=filters,
                                    repetitions=r,
                                    is_first_layer=(i == 0))(block)
            filters *= 2

        # Last activation
        block_output_split = _bn_relu(block)
        #block = SpatialDropout2D(rate=0.5)(block)

        # Classifier block class label
        block_shape = K.int_shape(block_output_split)
        pool2 = AveragePooling2D(pool_size=(block_shape[ROW_AXIS],
                                            block_shape[COL_AXIS]),
                                 strides=(1, 1))(block_output_split)
        flatten1 = Flatten()(pool2)
        dense_class = Dense(units=num_outputs,
                            kernel_initializer="he_normal",
                            activation="sigmoid")(flatten1)

        # Classifier block domain label
        hp_lambda = 0.01
        Flip = flipGradient.GradientReversal(hp_lambda)
        block = Flip(block_output_split)

        block_shape = K.int_shape(block)
        pool2 = AveragePooling2D(pool_size=(block_shape[ROW_AXIS],
                                            block_shape[COL_AXIS]),
                                 strides=(1, 1))(block)
        flatten1 = Flatten()(pool2)

        # flatten1 = Dense(units=256, kernel_initializer="he_normal", activation="relu")(flatten1)

        # flatten1 = Dense(units=256, kernel_initializer="he_normal", activation="relu")(flatten1)

        dense_domain = Dense(units=num_outputs,
                             kernel_initializer="he_normal",
                             activation="sigmoid")(flatten1)

        model_combined = Model(inputs=input,
                               outputs=[dense_class, dense_domain])

        model_class = Model(inputs=input, outputs=dense_class)

        model_domain = Model(inputs=input, outputs=dense_domain)

        return (model_combined, model_class)
Exemple #8
0
def _main(args):
    config_path = os.path.expanduser(args.config_path)
    weights_path = os.path.expanduser(args.weights_path)
    assert config_path.endswith('.cfg'), '{} is not a .cfg file'.format(
        config_path)
    assert weights_path.endswith(
        '.weights'), '{} is not a .weights file'.format(weights_path)

    output_path = os.path.expanduser(args.output_path)
    assert output_path.endswith(
        '.h5'), 'output path {} is not a .h5 file'.format(output_path)
    output_root = os.path.splitext(output_path)[0]

    # Load weights and config.
    print('Loading weights.')
    weights_file = open(weights_path, 'rb')
    major, minor, revision = np.ndarray(shape=(3, ),
                                        dtype='int32',
                                        buffer=weights_file.read(12))
    if (major * 10 + minor) >= 2 and major < 1000 and minor < 1000:
        seen = np.ndarray(shape=(1, ),
                          dtype='int64',
                          buffer=weights_file.read(8))
    else:
        seen = np.ndarray(shape=(1, ),
                          dtype='int32',
                          buffer=weights_file.read(4))
    print('Weights Header: ', major, minor, revision, seen)

    print('Parsing Darknet config.')
    unique_config_file = unique_config_sections(config_path)
    cfg_parser = configparser.ConfigParser()
    cfg_parser.read_file(unique_config_file)

    print('Creating Keras model.')
    image_height = int(cfg_parser['net_0']['height'])
    image_width = int(cfg_parser['net_0']['width'])
    input_layer = Input(shape=(image_height, image_width, 3))
    prev_layer = input_layer
    print(input_layer.shape)
    all_layers = [prev_layer]

    weight_decay = float(cfg_parser['net_0']['decay']
                         ) if 'net_0' in cfg_parser.sections() else 5e-4
    count = 0
    out_index = []
    for section in cfg_parser.sections():
        print('Parsing section {}'.format(section))
        if section.startswith('convolutional'):
            filters = int(cfg_parser[section]['filters'])
            size = int(cfg_parser[section]['size'])
            stride = int(cfg_parser[section]['stride'])
            pad = int(cfg_parser[section]['pad'])
            activation = cfg_parser[section]['activation']
            batch_normalize = 'batch_normalize' in cfg_parser[section]

            padding = 'same' if pad == 1 and stride == 1 else 'valid'

            # Setting weights.
            # Darknet serializes convolutional weights as:
            # [bias/beta, [gamma, mean, variance], conv_weights]
            prev_layer_shape = K.int_shape(prev_layer)

            weights_shape = (size, size, prev_layer_shape[-1], filters)
            darknet_w_shape = (filters, weights_shape[2], size, size)
            weights_size = np.product(weights_shape)

            print('conv2d', 'bn' if batch_normalize else '  ', activation,
                  weights_shape)

            conv_bias = np.ndarray(shape=(filters, ),
                                   dtype='float32',
                                   buffer=weights_file.read(filters * 4))
            count += filters

            if batch_normalize:
                bn_weights = np.ndarray(shape=(3, filters),
                                        dtype='float32',
                                        buffer=weights_file.read(filters * 12))
                count += 3 * filters

                bn_weight_list = [
                    bn_weights[0],  # scale gamma
                    conv_bias,  # shift beta
                    bn_weights[1],  # running mean
                    bn_weights[2]  # running var
                ]

            conv_weights = np.ndarray(shape=darknet_w_shape,
                                      dtype='float32',
                                      buffer=weights_file.read(weights_size *
                                                               4))
            count += weights_size

            # DarkNet conv_weights are serialized Caffe-style:
            # (out_dim, in_dim, height, width)
            # We would like to set these to Tensorflow order:
            # (height, width, in_dim, out_dim)
            conv_weights = np.transpose(conv_weights, [2, 3, 1, 0])
            conv_weights = [conv_weights] if batch_normalize else [
                conv_weights, conv_bias
            ]

            # Handle activation.
            act_fn = None
            if activation == 'leaky':
                pass  # Add advanced activation later.
            elif activation != 'linear':
                raise ValueError(
                    'Unknown activation function `{}` in section {}'.format(
                        activation, section))

            # Create Conv2D layer
            if stride > 1:
                # Darknet uses left and top padding instead of 'same' mode
                prev_layer = ZeroPadding2D(((1, 0), (1, 0)))(prev_layer)
            conv_layer = (Conv2D(filters, (size, size),
                                 strides=(stride, stride),
                                 kernel_regularizer=l2(weight_decay),
                                 use_bias=not batch_normalize,
                                 weights=conv_weights,
                                 activation=act_fn,
                                 padding=padding))(prev_layer)

            if batch_normalize:
                conv_layer = (BatchNormalization(
                    weights=bn_weight_list))(conv_layer)
            prev_layer = conv_layer
            print(prev_layer.shape)

            if activation == 'linear':
                all_layers.append(prev_layer)
            elif activation == 'leaky':
                act_layer = LeakyReLU(alpha=0.1)(prev_layer)
                prev_layer = act_layer
                all_layers.append(act_layer)

        elif section.startswith('route'):
            ids = [int(i) for i in cfg_parser[section]['layers'].split(',')]
            layers = [all_layers[i] for i in ids]
            if len(layers) > 1:
                print('Concatenating route layers:', layers)
                concatenate_layer = Concatenate()(layers)
                all_layers.append(concatenate_layer)
                prev_layer = concatenate_layer
            else:
                skip_layer = layers[0]  # only one layer to route
                all_layers.append(skip_layer)
                prev_layer = skip_layer

        elif section.startswith('maxpool'):
            size = int(cfg_parser[section]['size'])
            stride = int(cfg_parser[section]['stride'])
            all_layers.append(
                MaxPooling2D(pool_size=(size, size),
                             strides=(stride, stride),
                             padding='same')(prev_layer))
            prev_layer = all_layers[-1]

        elif section.startswith('avgpool'):
            if cfg_parser.items(section):
                raise ValueError('{} with params unsupported.'.format(section))
            all_layers.append(
                AveragePooling2D(pool_size=(prev_layer.shape[1],
                                            prev_layer.shape[2]))(prev_layer))
            prev_layer = all_layers[-1]

        elif section.startswith('shortcut'):
            index = int(cfg_parser[section]['from'])
            activation = cfg_parser[section]['activation']
            assert activation == 'linear', 'Only linear activation supported.'
            all_layers.append(Add()([all_layers[index], prev_layer]))
            prev_layer = all_layers[-1]

        elif section.startswith('upsample'):
            stride = int(cfg_parser[section]['stride'])
            assert stride == 2, 'Only stride=2 supported.'
            all_layers.append(UpSampling2D(stride)(prev_layer))
            prev_layer = all_layers[-1]

        elif section.startswith('yolo'):
            out_index.append(len(all_layers) - 1)
            all_layers.append(None)
            prev_layer = all_layers[-1]

        # elif section.startswith('net'):
        #     pass
        elif (section.startswith('net') or section.startswith('cost')
              or section.startswith('softmax')):
            pass
        else:
            raise ValueError(
                'Unsupported section header type: {}'.format(section))

    # Create and save model.
    if len(out_index) == 0:
        out_index.append(len(all_layers) - 1)
    model = Model(inputs=input_layer,
                  outputs=[all_layers[i] for i in out_index])
    print(model.summary())
    if args.weights_only:
        model.save_weights('{}'.format(output_path))
        print('Saved Keras weights to {}'.format(output_path))
    else:
        model.save('{}'.format(output_path))
        print('Saved Keras model to {}'.format(output_path))

    # Check to see if all weights have been read.
    remaining_weights = len(weights_file.read()) / 4
    weights_file.close()
    print('Read {} of {} from Darknet weights.'.format(
        count, count + remaining_weights))
    if remaining_weights > 0:
        print('Warning: {} unused weights'.format(remaining_weights))

    if args.plot_model:
        plot(model, to_file='{}.png'.format(output_root), show_shapes=True)
        print('Saved model plot to {}.png'.format(output_root))
Exemple #9
0
def EEGNet(nb_classes, Chans = 64, Samples = 128, 
             dropoutRate = 0.5, kernLength = 64, F1 = 8, 
             D = 2, F2 = 16, norm_rate = 0.25, dropoutType = 'Dropout'):
    """ Keras Implementation of EEGNet
    http://iopscience.iop.org/article/10.1088/1741-2552/aace8c/meta
    Note that this implements the newest version of EEGNet and NOT the earlier
    version (version v1 and v2 on arxiv). We strongly recommend using this
    architecture as it performs much better and has nicer properties than
    our earlier version. For example:
        
        1. Depthwise Convolutions to learn spatial filters within a 
        temporal convolution. The use of the depth_multiplier option maps 
        exactly to the number of spatial filters learned within a temporal
        filter. This matches the setup of algorithms like FBCSP which learn 
        spatial filters within each filter in a filter-bank. This also limits 
        the number of free parameters to fit when compared to a fully-connected
        convolution. 
        
        2. Separable Convolutions to learn how to optimally combine spatial
        filters across temporal bands. Separable Convolutions are Depthwise
        Convolutions followed by (1x1) Pointwise Convolutions. 
        
    
    While the original paper used Dropout, we found that SpatialDropout2D 
    sometimes produced slightly better results for classification of ERP 
    signals. However, SpatialDropout2D significantly reduced performance 
    on the Oscillatory dataset (SMR, BCI-IV Dataset 2A). We recommend using
    the default Dropout in most cases.
        
    Assumes the input signal is sampled at 128Hz. If you want to use this model
    for any other sampling rate you will need to modify the lengths of temporal
    kernels and average pooling size in blocks 1 and 2 as needed (double the 
    kernel lengths for double the sampling rate, etc). Note that we haven't 
    tested the model performance with this rule so this may not work well. 
    
    The model with default parameters gives the EEGNet-8,2 model as discussed
    in the paper. This model should do pretty well in general, although it is
	advised to do some model searching to get optimal performance on your
	particular dataset.
    We set F2 = F1 * D (number of input filters = number of output filters) for
    the SeparableConv2D layer. We haven't extensively tested other values of this
    parameter (say, F2 < F1 * D for compressed learning, and F2 > F1 * D for
    overcomplete). We believe the main parameters to focus on are F1 and D. 
    Inputs:
        
      nb_classes      : int, number of classes to classify
      Chans, Samples  : number of channels and time points in the EEG data
      dropoutRate     : dropout fraction
      kernLength      : length of temporal convolution in first layer. We found
                        that setting this to be half the sampling rate worked
                        well in practice. For the SMR dataset in particular
                        since the data was high-passed at 4Hz we used a kernel
                        length of 32.     
      F1, F2          : number of temporal filters (F1) and number of pointwise
                        filters (F2) to learn. Default: F1 = 8, F2 = F1 * D. 
      D               : number of spatial filters to learn within each temporal
                        convolution. Default: D = 2
      dropoutType     : Either SpatialDropout2D or Dropout, passed as a string.
    """
    
    if dropoutType == 'SpatialDropout2D':
        dropoutType = SpatialDropout2D
    elif dropoutType == 'Dropout':
        dropoutType = Dropout
    else:
        raise ValueError('dropoutType must be one of SpatialDropout2D '
                         'or Dropout, passed as a string.')
    
    input1   = Input(shape = (1, Chans, Samples))

    ##################################################################
    block1       = Conv2D(F1, (1, kernLength), padding = 'same',
                                   input_shape = (1, Chans, Samples),
                                   use_bias = False)(input1)
    block1       = BatchNormalization(axis = 1)(block1)
    block1       = DepthwiseConv2D((Chans, 1), use_bias = False, 
                                   depth_multiplier = D,
                                   depthwise_constraint = max_norm(1.))(block1)
    block1       = BatchNormalization(axis = 1)(block1)
    block1       = Activation('elu')(block1)
    block1       = AveragePooling2D((1, 4))(block1)
    block1       = dropoutType(dropoutRate)(block1)
    
    block2       = SeparableConv2D(F2, (1, 16),
                                   use_bias = False, padding = 'same')(block1)
    block2       = BatchNormalization(axis = 1)(block2)
    block2       = Activation('elu')(block2)
    block2       = AveragePooling2D((1, 8))(block2)
    block2       = dropoutType(dropoutRate)(block2)
        
    flatten      = Flatten(name = 'flatten')(block2)
    
    dense        = Dense(nb_classes, name = 'dense', 
                         kernel_constraint = max_norm(norm_rate))(flatten)
    softmax      = Activation('softmax', name = 'softmax')(dense)
    
    return Model(inputs=input1, outputs=softmax)
Exemple #10
0
def resnet_v2(input_shape, depth, num_classes=10, fused_batch_norm=False):
    """ResNet Version 2 Model builder [b]
    Stacks of (1 x 1)-(3 x 3)-(1 x 1) BN-ReLU-Conv2D or also known as
    bottleneck layer
    First shortcut connection per layer is 1 x 1 Conv2D.
    Second and onwards shortcut connection is identity.
    At the beginning of each stage, the feature map size is halved (downsampled)
    by a convolutional layer with strides=2, while the number of filter maps is
    doubled. Within each stage, the layers have the same number filters and the
    same filter map sizes.
    Features maps sizes:
    conv1  : 32x32,  16
    stage 0: 32x32,  64
    stage 1: 16x16, 128
    stage 2:  8x8,  256
    # Arguments
        input_shape (tensor): shape of input image tensor
        depth (int): number of core convolutional layers
        num_classes (int): number of classes (CIFAR10 has 10)
    # Returns
        model (Model): Keras model instance
    """
    
    if (depth - 2) % 9 != 0:
        raise ValueError('depth should be 9n+2 (eg 56 or 110 in [b])')
    # Start model definition.
    num_filters_in = 16
    num_res_blocks = int((depth - 2) / 9)

    inputs = Input(shape=input_shape)
    # v2 performs Conv2D with BN-ReLU on input before splitting into 2 paths
    x = resnet_layer(inputs=inputs,
                     num_filters=num_filters_in,
                     conv_first=True,
                     fused_batch_norm=fused_batch_norm)

    # Instantiate the stack of residual units
    for stage in range(3):
        for res_block in range(num_res_blocks):
            activation = 'relu'
            batch_normalization = True
            strides = 1
            if stage == 0:
                num_filters_out = num_filters_in * 4
                if res_block == 0:  # first layer and first stage
                    activation = None
                    batch_normalization = False
            else:
                num_filters_out = num_filters_in * 2
                if res_block == 0:  # first layer but not first stage
                    strides = 2    # downsample

            # bottleneck residual unit
            y = resnet_layer(inputs=x,
                             num_filters=num_filters_in,
                             kernel_size=1,
                             strides=strides,
                             activation=activation,
                             batch_normalization=batch_normalization,
                             conv_first=False)
            y = resnet_layer(inputs=y,
                             num_filters=num_filters_in,
                             conv_first=False)
            y = resnet_layer(inputs=y,
                             num_filters=num_filters_out,
                             kernel_size=1,
                             conv_first=False)
            if res_block == 0:
                # linear projection residual shortcut connection to match
                # changed dims
                x = resnet_layer(inputs=x,
                                 num_filters=num_filters_out,
                                 kernel_size=1,
                                 strides=strides,
                                 activation=None,
                                 batch_normalization=False)
            x = keras.layers.add([x, y])

        num_filters_in = num_filters_out

    # Add classifier on top.
    # v2 has BN-ReLU before Pooling
    x = BatchNormalization(fused=fused_batch_norm)(x)
    x = Activation('relu')(x)
    x = AveragePooling2D(pool_size=8)(x)
    y = Flatten()(x)
    outputs = Dense(num_classes,
                    activation='softmax',
                    kernel_initializer='he_normal')(y)

    # Instantiate model.
    model = Model(inputs=inputs, outputs=outputs)
    return model
Exemple #11
0
def ResNet50(include_top=True,
             weights='imagenet',
             input_tensor=None,
             input_shape=None,
             pooling=None,
             classes=1000):
    """Instantiates the ResNet50 architecture.

    Optionally loads weights pre-trained
    on ImageNet. Note that when using TensorFlow,
    for best performance you should set
    `image_data_format='channels_last'` in your Keras config
    at ~/.keras/keras.json.

    The model and the weights are compatible with both
    TensorFlow and Theano. The data format
    convention used by the model is the one
    specified in your Keras config file.

    # Arguments
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization),
              'imagenet' (pre-training on ImageNet),
              or the path to the weights file to be loaded.
        input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is False (otherwise the input shape
            has to be `(224, 224, 3)` (with `channels_last` data format)
            or `(3, 224, 224)` (with `channels_first` data format).
            It should have exactly 3 inputs channels,
            and width and height should be no smaller than 197.
            E.g. `(200, 200, 3)` would be one valid value.
        pooling: Optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the
                last convolutional layer.
            - `avg` means that global average pooling
                will be applied to the output of the
                last convolutional layer, and thus
                the output of the model will be a 2D tensor.
            - `max` means that global max pooling will
                be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is True, and
            if no `weights` argument is specified.

    # Returns
        A Keras model instance.

    # Raises
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
    """
    if not (weights in {'imagenet', None} or os.path.exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as imagenet with `include_top`'
                         ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=224,
                                      min_size=197,
                                      data_format=K.image_data_format(),
                                      require_flatten=include_top,
                                      weights=weights)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor
    if K.image_data_format() == 'channels_last':
        bn_axis = 3
    else:
        bn_axis = 1

    x = ZeroPadding2D(padding=(3, 3), name='conv1_pad')(img_input)
    x = Conv2D(64, (7, 7), strides=(2, 2), padding='valid', name='conv1')(x)
    x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
    x = Activation('relu')(x)
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')

    x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')

    x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')

    x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')

    x = AveragePooling2D((7, 7), name='avg_pool')(x)

    if include_top:
        x = Flatten()(x)
        x = Dense(classes, activation='softmax', name='fc1000')(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = Model(inputs, x, name='resnet50')

    # load weights
    if weights == 'imagenet':
        if include_top:
            weights_path = get_file(
                'resnet50_weights_tf_dim_ordering_tf_kernels.h5',
                WEIGHTS_PATH,
                cache_subdir='models',
                md5_hash='a7b3fe01876f51b976af0dea6bc144eb')
        else:
            weights_path = get_file(
                'resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5',
                WEIGHTS_PATH_NO_TOP,
                cache_subdir='models',
                md5_hash='a268eb855778b3df3c7506639542a6af')
        model.load_weights(weights_path)
        if K.backend() == 'theano':
            layer_utils.convert_all_kernels_in_model(model)
    elif weights is not None:
        model.load_weights(weights)

    return model
Exemple #12
0
                                            Dropout)
from tensorflow.python.keras.callbacks import (EarlyStopping, ModelCheckpoint,
                                               LearningRateScheduler)
import tensorflow as tf

tf.flags.DEFINE_integer('batch_size', 8, 'batch size, default: 4')
tf.flags.DEFINE_integer('img_size', 224, 'square images acquired')
tf.flags.DEFINE_integer('epochs', 50, 'epochs, default: 10')
FLAGS = tf.flags.FLAGS

model = Xception(input_shape=(FLAGS.img_size, FLAGS.img_size, 3),
                 include_top=False,
                 weights='imagenet')

x = model.output
x = AveragePooling2D(pool_size=(2, 2))(x)
x = Dense(32, activation='relu')(x)
x = Dropout(0.1)(x)
x = Flatten()(x)
x = Dense(2, activation='softmax', kernel_regularizer=l2(.0005))(x)

model = Model(inputs=model.inputs, outputs=x)
opt = SGD(lr=0.0001, momentum=.9)
model.compile(loss='categorical_crossentropy',
              optimizer=opt,
              metrics=['accuracy'])

train_datagen = ImageDataGenerator(rescale=1. / 255,
                                   rotation_range=15,
                                   width_shift_range=0.1,
                                   height_shift_range=0.1,
Exemple #13
0
        activation='relu'
    )
)
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.25))
# layer2 - conv
model.add(
    Conv2D(
        filters=40,
        kernel_size=(3,3),
        strides=(1,1),
        padding='same',
        activation='relu'
    )
)
model.add(AveragePooling2D(pool_size=(2,2)))
model.add(Dropout(0.25))
# Fully connection layer
# ----------------------------------------
model.add(Flatten())
model.add(Dense(units=512, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(units=10, activation='softmax'))

startTime = time.time()

model.compile(
    optimizer='adam',
    loss='categorical_crossentropy',
    metrics=['accuracy']
)
def EEGNet_SSVEP(nb_classes,
                 Chans=64,
                 Samples=128,
                 regRate=0.0001,
                 dropoutRate=0.25,
                 kernLength=64,
                 numFilters=8):
    """ Keras Implementation of the variant of EEGNet that was used to classify
    signals from an SSVEP task (https://arxiv.org/abs/1803.04566)

       
    Inputs:
        
        nb_classes     : int, number of classes to classify
        Chans, Samples : number of channels and time points in the EEG data
        regRate        : regularization parameter for L1 and L2 penalties
        dropoutRate    : dropout fraction
        kernLength     : length of temporal convolution in first layer
        numFilters     : number of temporal-spatial filter pairs to learn
    
    """

    input1 = Input(shape=(1, Chans, Samples))

    ##################################################################
    layer1 = Conv2D(numFilters, (1, kernLength),
                    padding='same',
                    kernel_regularizer=l1_l2(l1=0.0, l2=0.0),
                    input_shape=(1, Chans, Samples),
                    use_bias=False)(input1)
    layer1 = BatchNormalization(axis=1)(layer1)
    layer1 = DepthwiseConv2D((Chans, 1),
                             depthwise_regularizer=l1_l2(l1=regRate,
                                                         l2=regRate),
                             use_bias=False)(layer1)
    layer1 = BatchNormalization(axis=1)(layer1)
    layer1 = Activation('elu')(layer1)
    layer1 = SpatialDropout2D(dropoutRate)(layer1)

    layer2 = SeparableConv2D(numFilters, (1, 8),
                             depthwise_regularizer=l1_l2(l1=0.0, l2=regRate),
                             use_bias=False,
                             padding='same')(layer1)
    layer2 = BatchNormalization(axis=1)(layer2)
    layer2 = Activation('elu')(layer2)
    layer2 = AveragePooling2D((1, 4))(layer2)
    layer2 = SpatialDropout2D(dropoutRate)(layer2)

    layer3 = SeparableConv2D(numFilters * 2, (1, 8),
                             depth_multiplier=2,
                             depthwise_regularizer=l1_l2(l1=0.0, l2=regRate),
                             use_bias=False,
                             padding='same')(layer2)
    layer3 = BatchNormalization(axis=1)(layer3)
    layer3 = Activation('elu')(layer3)
    layer3 = AveragePooling2D((1, 4))(layer3)
    layer3 = SpatialDropout2D(dropoutRate)(layer3)

    flatten = Flatten(name='flatten')(layer3)

    dense = Dense(nb_classes, name='dense')(flatten)
    softmax = Activation('softmax', name='softmax')(dense)

    return Model(inputs=input1, outputs=softmax)
Exemple #15
0
def network_model(input_shape, input_name, num_classes):

    X_input = Input(shape=input_shape, name=input_name)

    # Stage 1
    X = Conv2D(64, (7, 7),
               strides=(1, 1),
               padding='same',
               name='conv1',
               kernel_initializer=glorot_uniform(seed=0))(X_input)
    X = BatchNormalization(axis=3, name='bn_conv1')(X)
    X = Activation('relu')(X)
    X = MaxPooling2D((3, 3), strides=(1, 1), padding='same')(X)

    # Stage 2
    X = convolutional_block(X,
                            f=3,
                            filters=[64, 64, 256],
                            stage=2,
                            block='a',
                            s=1)
    X = identity_block(X, 3, [64, 64, 256], stage=2, block='b')
    X = identity_block(X, 3, [64, 64, 256], stage=2, block='c')

    # Stage 3
    X = convolutional_block(X,
                            f=3,
                            filters=[128, 128, 512],
                            stage=3,
                            block='a',
                            s=2)
    X = identity_block(X, 3, [128, 128, 512], stage=3, block='b')
    X = identity_block(X, 3, [128, 128, 512], stage=3, block='c')
    X = identity_block(X, 3, [128, 128, 512], stage=3, block='d')

    # Stage 4
    X = convolutional_block(X,
                            f=3,
                            filters=[256, 256, 1024],
                            stage=4,
                            block='a',
                            s=2)
    X = identity_block(X, 3, [256, 256, 1024], stage=4, block='b')
    X = identity_block(X, 3, [256, 256, 1024], stage=4, block='c')
    X = identity_block(X, 3, [256, 256, 1024], stage=4, block='d')
    X = identity_block(X, 3, [256, 256, 1024], stage=4, block='e')
    X = identity_block(X, 3, [256, 256, 1024], stage=4, block='f')

    # Stage 5
    X = convolutional_block(X,
                            f=3,
                            filters=[512, 512, 2048],
                            stage=5,
                            block='a',
                            s=2)
    X = identity_block(X, 3, [512, 512, 2048], stage=5, block='b')
    X = identity_block(X, 3, [512, 512, 2048], stage=5, block='c')

    # Average pooling
    X = AveragePooling2D(pool_size=(7, 7), strides=(1, 1), name='avg_pool')(X)

    # output layer
    X = Flatten()(X)
    X = Dense(num_classes,
              activation='softmax',
              name='fc' + str(num_classes),
              kernel_initializer=glorot_uniform(seed=0))(X)

    model = Model(inputs=X_input, outputs=X, name='Resnet50')

    return model
def loadModel():
    myInput = Input(shape=(96, 96, 3))

    x = ZeroPadding2D(padding=(3, 3), input_shape=(96, 96, 3))(myInput)
    x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x)
    x = BatchNormalization(axis=3, epsilon=0.00001, name='bn1')(x)
    x = Activation('relu')(x)
    x = ZeroPadding2D(padding=(1, 1))(x)
    x = MaxPooling2D(pool_size=3, strides=2)(x)
    x = Lambda(lambda x: tf.nn.lrn(x, alpha=1e-4, beta=0.75), name='lrn_1')(x)
    x = Conv2D(64, (1, 1), name='conv2')(x)
    x = BatchNormalization(axis=3, epsilon=0.00001, name='bn2')(x)
    x = Activation('relu')(x)
    x = ZeroPadding2D(padding=(1, 1))(x)
    x = Conv2D(192, (3, 3), name='conv3')(x)
    x = BatchNormalization(axis=3, epsilon=0.00001, name='bn3')(x)
    x = Activation('relu')(x)
    x = Lambda(lambda x: tf.nn.lrn(x, alpha=1e-4, beta=0.75), name='lrn_2')(x)
    x = ZeroPadding2D(padding=(1, 1))(x)
    x = MaxPooling2D(pool_size=3, strides=2)(x)

    # Inception3a
    inception_3a_3x3 = Conv2D(96, (1, 1), name='inception_3a_3x3_conv1')(x)
    inception_3a_3x3 = BatchNormalization(
        axis=3, epsilon=0.00001, name='inception_3a_3x3_bn1')(inception_3a_3x3)
    inception_3a_3x3 = Activation('relu')(inception_3a_3x3)
    inception_3a_3x3 = ZeroPadding2D(padding=(1, 1))(inception_3a_3x3)
    inception_3a_3x3 = Conv2D(128, (3, 3),
                              name='inception_3a_3x3_conv2')(inception_3a_3x3)
    inception_3a_3x3 = BatchNormalization(
        axis=3, epsilon=0.00001, name='inception_3a_3x3_bn2')(inception_3a_3x3)
    inception_3a_3x3 = Activation('relu')(inception_3a_3x3)

    inception_3a_5x5 = Conv2D(16, (1, 1), name='inception_3a_5x5_conv1')(x)
    inception_3a_5x5 = BatchNormalization(
        axis=3, epsilon=0.00001, name='inception_3a_5x5_bn1')(inception_3a_5x5)
    inception_3a_5x5 = Activation('relu')(inception_3a_5x5)
    inception_3a_5x5 = ZeroPadding2D(padding=(2, 2))(inception_3a_5x5)
    inception_3a_5x5 = Conv2D(32, (5, 5),
                              name='inception_3a_5x5_conv2')(inception_3a_5x5)
    inception_3a_5x5 = BatchNormalization(
        axis=3, epsilon=0.00001, name='inception_3a_5x5_bn2')(inception_3a_5x5)
    inception_3a_5x5 = Activation('relu')(inception_3a_5x5)

    inception_3a_pool = MaxPooling2D(pool_size=3, strides=2)(x)
    inception_3a_pool = Conv2D(
        32, (1, 1), name='inception_3a_pool_conv')(inception_3a_pool)
    inception_3a_pool = BatchNormalization(
        axis=3, epsilon=0.00001,
        name='inception_3a_pool_bn')(inception_3a_pool)
    inception_3a_pool = Activation('relu')(inception_3a_pool)
    inception_3a_pool = ZeroPadding2D(padding=((3, 4), (3,
                                                        4)))(inception_3a_pool)

    inception_3a_1x1 = Conv2D(64, (1, 1), name='inception_3a_1x1_conv')(x)
    inception_3a_1x1 = BatchNormalization(
        axis=3, epsilon=0.00001, name='inception_3a_1x1_bn')(inception_3a_1x1)
    inception_3a_1x1 = Activation('relu')(inception_3a_1x1)

    inception_3a = concatenate([
        inception_3a_3x3, inception_3a_5x5, inception_3a_pool, inception_3a_1x1
    ],
                               axis=3)

    # Inception3b
    inception_3b_3x3 = Conv2D(96, (1, 1),
                              name='inception_3b_3x3_conv1')(inception_3a)
    inception_3b_3x3 = BatchNormalization(
        axis=3, epsilon=0.00001, name='inception_3b_3x3_bn1')(inception_3b_3x3)
    inception_3b_3x3 = Activation('relu')(inception_3b_3x3)
    inception_3b_3x3 = ZeroPadding2D(padding=(1, 1))(inception_3b_3x3)
    inception_3b_3x3 = Conv2D(128, (3, 3),
                              name='inception_3b_3x3_conv2')(inception_3b_3x3)
    inception_3b_3x3 = BatchNormalization(
        axis=3, epsilon=0.00001, name='inception_3b_3x3_bn2')(inception_3b_3x3)
    inception_3b_3x3 = Activation('relu')(inception_3b_3x3)

    inception_3b_5x5 = Conv2D(32, (1, 1),
                              name='inception_3b_5x5_conv1')(inception_3a)
    inception_3b_5x5 = BatchNormalization(
        axis=3, epsilon=0.00001, name='inception_3b_5x5_bn1')(inception_3b_5x5)
    inception_3b_5x5 = Activation('relu')(inception_3b_5x5)
    inception_3b_5x5 = ZeroPadding2D(padding=(2, 2))(inception_3b_5x5)
    inception_3b_5x5 = Conv2D(64, (5, 5),
                              name='inception_3b_5x5_conv2')(inception_3b_5x5)
    inception_3b_5x5 = BatchNormalization(
        axis=3, epsilon=0.00001, name='inception_3b_5x5_bn2')(inception_3b_5x5)
    inception_3b_5x5 = Activation('relu')(inception_3b_5x5)

    inception_3b_pool = Lambda(lambda x: x**2, name='power2_3b')(inception_3a)
    inception_3b_pool = AveragePooling2D(pool_size=(3, 3),
                                         strides=(3, 3))(inception_3b_pool)
    inception_3b_pool = Lambda(lambda x: x * 9,
                               name='mult9_3b')(inception_3b_pool)
    inception_3b_pool = Lambda(lambda x: K.sqrt(x),
                               name='sqrt_3b')(inception_3b_pool)
    inception_3b_pool = Conv2D(
        64, (1, 1), name='inception_3b_pool_conv')(inception_3b_pool)
    inception_3b_pool = BatchNormalization(
        axis=3, epsilon=0.00001,
        name='inception_3b_pool_bn')(inception_3b_pool)
    inception_3b_pool = Activation('relu')(inception_3b_pool)
    inception_3b_pool = ZeroPadding2D(padding=(4, 4))(inception_3b_pool)

    inception_3b_1x1 = Conv2D(64, (1, 1),
                              name='inception_3b_1x1_conv')(inception_3a)
    inception_3b_1x1 = BatchNormalization(
        axis=3, epsilon=0.00001, name='inception_3b_1x1_bn')(inception_3b_1x1)
    inception_3b_1x1 = Activation('relu')(inception_3b_1x1)

    inception_3b = concatenate([
        inception_3b_3x3, inception_3b_5x5, inception_3b_pool, inception_3b_1x1
    ],
                               axis=3)

    # Inception3c
    inception_3c_3x3 = Conv2D(128, (1, 1),
                              strides=(1, 1),
                              name='inception_3c_3x3_conv1')(inception_3b)
    inception_3c_3x3 = BatchNormalization(
        axis=3, epsilon=0.00001, name='inception_3c_3x3_bn1')(inception_3c_3x3)
    inception_3c_3x3 = Activation('relu')(inception_3c_3x3)
    inception_3c_3x3 = ZeroPadding2D(padding=(1, 1))(inception_3c_3x3)
    inception_3c_3x3 = Conv2D(256, (3, 3),
                              strides=(2, 2),
                              name='inception_3c_3x3_conv' +
                              '2')(inception_3c_3x3)
    inception_3c_3x3 = BatchNormalization(axis=3,
                                          epsilon=0.00001,
                                          name='inception_3c_3x3_bn' +
                                          '2')(inception_3c_3x3)
    inception_3c_3x3 = Activation('relu')(inception_3c_3x3)

    inception_3c_5x5 = Conv2D(32, (1, 1),
                              strides=(1, 1),
                              name='inception_3c_5x5_conv1')(inception_3b)
    inception_3c_5x5 = BatchNormalization(
        axis=3, epsilon=0.00001, name='inception_3c_5x5_bn1')(inception_3c_5x5)
    inception_3c_5x5 = Activation('relu')(inception_3c_5x5)
    inception_3c_5x5 = ZeroPadding2D(padding=(2, 2))(inception_3c_5x5)
    inception_3c_5x5 = Conv2D(64, (5, 5),
                              strides=(2, 2),
                              name='inception_3c_5x5_conv' +
                              '2')(inception_3c_5x5)
    inception_3c_5x5 = BatchNormalization(axis=3,
                                          epsilon=0.00001,
                                          name='inception_3c_5x5_bn' +
                                          '2')(inception_3c_5x5)
    inception_3c_5x5 = Activation('relu')(inception_3c_5x5)

    inception_3c_pool = MaxPooling2D(pool_size=3, strides=2)(inception_3b)
    inception_3c_pool = ZeroPadding2D(padding=((0, 1), (0,
                                                        1)))(inception_3c_pool)

    inception_3c = concatenate(
        [inception_3c_3x3, inception_3c_5x5, inception_3c_pool], axis=3)

    # inception 4a
    inception_4a_3x3 = Conv2D(96, (1, 1),
                              strides=(1, 1),
                              name='inception_4a_3x3_conv' + '1')(inception_3c)
    inception_4a_3x3 = BatchNormalization(axis=3,
                                          epsilon=0.00001,
                                          name='inception_4a_3x3_bn' +
                                          '1')(inception_4a_3x3)
    inception_4a_3x3 = Activation('relu')(inception_4a_3x3)
    inception_4a_3x3 = ZeroPadding2D(padding=(1, 1))(inception_4a_3x3)
    inception_4a_3x3 = Conv2D(192, (3, 3),
                              strides=(1, 1),
                              name='inception_4a_3x3_conv' +
                              '2')(inception_4a_3x3)
    inception_4a_3x3 = BatchNormalization(axis=3,
                                          epsilon=0.00001,
                                          name='inception_4a_3x3_bn' +
                                          '2')(inception_4a_3x3)
    inception_4a_3x3 = Activation('relu')(inception_4a_3x3)

    inception_4a_5x5 = Conv2D(32, (1, 1),
                              strides=(1, 1),
                              name='inception_4a_5x5_conv1')(inception_3c)
    inception_4a_5x5 = BatchNormalization(
        axis=3, epsilon=0.00001, name='inception_4a_5x5_bn1')(inception_4a_5x5)
    inception_4a_5x5 = Activation('relu')(inception_4a_5x5)
    inception_4a_5x5 = ZeroPadding2D(padding=(2, 2))(inception_4a_5x5)
    inception_4a_5x5 = Conv2D(64, (5, 5),
                              strides=(1, 1),
                              name='inception_4a_5x5_conv' +
                              '2')(inception_4a_5x5)
    inception_4a_5x5 = BatchNormalization(axis=3,
                                          epsilon=0.00001,
                                          name='inception_4a_5x5_bn' +
                                          '2')(inception_4a_5x5)
    inception_4a_5x5 = Activation('relu')(inception_4a_5x5)

    inception_4a_pool = Lambda(lambda x: x**2, name='power2_4a')(inception_3c)
    inception_4a_pool = AveragePooling2D(pool_size=(3, 3),
                                         strides=(3, 3))(inception_4a_pool)
    inception_4a_pool = Lambda(lambda x: x * 9,
                               name='mult9_4a')(inception_4a_pool)
    inception_4a_pool = Lambda(lambda x: K.sqrt(x),
                               name='sqrt_4a')(inception_4a_pool)

    inception_4a_pool = Conv2D(128, (1, 1),
                               strides=(1, 1),
                               name='inception_4a_pool_conv' +
                               '')(inception_4a_pool)
    inception_4a_pool = BatchNormalization(axis=3,
                                           epsilon=0.00001,
                                           name='inception_4a_pool_bn' +
                                           '')(inception_4a_pool)
    inception_4a_pool = Activation('relu')(inception_4a_pool)
    inception_4a_pool = ZeroPadding2D(padding=(2, 2))(inception_4a_pool)

    inception_4a_1x1 = Conv2D(256, (1, 1),
                              strides=(1, 1),
                              name='inception_4a_1x1_conv' + '')(inception_3c)
    inception_4a_1x1 = BatchNormalization(axis=3,
                                          epsilon=0.00001,
                                          name='inception_4a_1x1_bn' +
                                          '')(inception_4a_1x1)
    inception_4a_1x1 = Activation('relu')(inception_4a_1x1)

    inception_4a = concatenate([
        inception_4a_3x3, inception_4a_5x5, inception_4a_pool, inception_4a_1x1
    ],
                               axis=3)

    # inception4e
    inception_4e_3x3 = Conv2D(160, (1, 1),
                              strides=(1, 1),
                              name='inception_4e_3x3_conv' + '1')(inception_4a)
    inception_4e_3x3 = BatchNormalization(axis=3,
                                          epsilon=0.00001,
                                          name='inception_4e_3x3_bn' +
                                          '1')(inception_4e_3x3)
    inception_4e_3x3 = Activation('relu')(inception_4e_3x3)
    inception_4e_3x3 = ZeroPadding2D(padding=(1, 1))(inception_4e_3x3)
    inception_4e_3x3 = Conv2D(256, (3, 3),
                              strides=(2, 2),
                              name='inception_4e_3x3_conv' +
                              '2')(inception_4e_3x3)
    inception_4e_3x3 = BatchNormalization(axis=3,
                                          epsilon=0.00001,
                                          name='inception_4e_3x3_bn' +
                                          '2')(inception_4e_3x3)
    inception_4e_3x3 = Activation('relu')(inception_4e_3x3)

    inception_4e_5x5 = Conv2D(64, (1, 1),
                              strides=(1, 1),
                              name='inception_4e_5x5_conv' + '1')(inception_4a)
    inception_4e_5x5 = BatchNormalization(axis=3,
                                          epsilon=0.00001,
                                          name='inception_4e_5x5_bn' +
                                          '1')(inception_4e_5x5)
    inception_4e_5x5 = Activation('relu')(inception_4e_5x5)
    inception_4e_5x5 = ZeroPadding2D(padding=(2, 2))(inception_4e_5x5)
    inception_4e_5x5 = Conv2D(128, (5, 5),
                              strides=(2, 2),
                              name='inception_4e_5x5_conv' +
                              '2')(inception_4e_5x5)
    inception_4e_5x5 = BatchNormalization(axis=3,
                                          epsilon=0.00001,
                                          name='inception_4e_5x5_bn' +
                                          '2')(inception_4e_5x5)
    inception_4e_5x5 = Activation('relu')(inception_4e_5x5)

    inception_4e_pool = MaxPooling2D(pool_size=3, strides=2)(inception_4a)
    inception_4e_pool = ZeroPadding2D(padding=((0, 1), (0,
                                                        1)))(inception_4e_pool)

    inception_4e = concatenate(
        [inception_4e_3x3, inception_4e_5x5, inception_4e_pool], axis=3)

    # inception5a
    inception_5a_3x3 = Conv2D(96, (1, 1),
                              strides=(1, 1),
                              name='inception_5a_3x3_conv' + '1')(inception_4e)
    inception_5a_3x3 = BatchNormalization(axis=3,
                                          epsilon=0.00001,
                                          name='inception_5a_3x3_bn' +
                                          '1')(inception_5a_3x3)
    inception_5a_3x3 = Activation('relu')(inception_5a_3x3)
    inception_5a_3x3 = ZeroPadding2D(padding=(1, 1))(inception_5a_3x3)
    inception_5a_3x3 = Conv2D(384, (3, 3),
                              strides=(1, 1),
                              name='inception_5a_3x3_conv' +
                              '2')(inception_5a_3x3)
    inception_5a_3x3 = BatchNormalization(axis=3,
                                          epsilon=0.00001,
                                          name='inception_5a_3x3_bn' +
                                          '2')(inception_5a_3x3)
    inception_5a_3x3 = Activation('relu')(inception_5a_3x3)

    inception_5a_pool = Lambda(lambda x: x**2, name='power2_5a')(inception_4e)
    inception_5a_pool = AveragePooling2D(pool_size=(3, 3),
                                         strides=(3, 3))(inception_5a_pool)
    inception_5a_pool = Lambda(lambda x: x * 9,
                               name='mult9_5a')(inception_5a_pool)
    inception_5a_pool = Lambda(lambda x: K.sqrt(x),
                               name='sqrt_5a')(inception_5a_pool)

    inception_5a_pool = Conv2D(96, (1, 1),
                               strides=(1, 1),
                               name='inception_5a_pool_conv' +
                               '')(inception_5a_pool)
    inception_5a_pool = BatchNormalization(axis=3,
                                           epsilon=0.00001,
                                           name='inception_5a_pool_bn' +
                                           '')(inception_5a_pool)
    inception_5a_pool = Activation('relu')(inception_5a_pool)
    inception_5a_pool = ZeroPadding2D(padding=(1, 1))(inception_5a_pool)

    inception_5a_1x1 = Conv2D(256, (1, 1),
                              strides=(1, 1),
                              name='inception_5a_1x1_conv' + '')(inception_4e)
    inception_5a_1x1 = BatchNormalization(axis=3,
                                          epsilon=0.00001,
                                          name='inception_5a_1x1_bn' +
                                          '')(inception_5a_1x1)
    inception_5a_1x1 = Activation('relu')(inception_5a_1x1)

    inception_5a = concatenate(
        [inception_5a_3x3, inception_5a_pool, inception_5a_1x1], axis=3)

    # inception_5b
    inception_5b_3x3 = Conv2D(96, (1, 1),
                              strides=(1, 1),
                              name='inception_5b_3x3_conv' + '1')(inception_5a)
    inception_5b_3x3 = BatchNormalization(axis=3,
                                          epsilon=0.00001,
                                          name='inception_5b_3x3_bn' +
                                          '1')(inception_5b_3x3)
    inception_5b_3x3 = Activation('relu')(inception_5b_3x3)
    inception_5b_3x3 = ZeroPadding2D(padding=(1, 1))(inception_5b_3x3)
    inception_5b_3x3 = Conv2D(384, (3, 3),
                              strides=(1, 1),
                              name='inception_5b_3x3_conv' +
                              '2')(inception_5b_3x3)
    inception_5b_3x3 = BatchNormalization(axis=3,
                                          epsilon=0.00001,
                                          name='inception_5b_3x3_bn' +
                                          '2')(inception_5b_3x3)
    inception_5b_3x3 = Activation('relu')(inception_5b_3x3)

    inception_5b_pool = MaxPooling2D(pool_size=3, strides=2)(inception_5a)

    inception_5b_pool = Conv2D(96, (1, 1),
                               strides=(1, 1),
                               name='inception_5b_pool_conv' +
                               '')(inception_5b_pool)
    inception_5b_pool = BatchNormalization(axis=3,
                                           epsilon=0.00001,
                                           name='inception_5b_pool_bn' +
                                           '')(inception_5b_pool)
    inception_5b_pool = Activation('relu')(inception_5b_pool)

    inception_5b_pool = ZeroPadding2D(padding=(1, 1))(inception_5b_pool)

    inception_5b_1x1 = Conv2D(256, (1, 1),
                              strides=(1, 1),
                              name='inception_5b_1x1_conv' + '')(inception_5a)
    inception_5b_1x1 = BatchNormalization(axis=3,
                                          epsilon=0.00001,
                                          name='inception_5b_1x1_bn' +
                                          '')(inception_5b_1x1)
    inception_5b_1x1 = Activation('relu')(inception_5b_1x1)

    inception_5b = concatenate(
        [inception_5b_3x3, inception_5b_pool, inception_5b_1x1], axis=3)

    av_pool = AveragePooling2D(pool_size=(3, 3), strides=(1, 1))(inception_5b)
    reshape_layer = Flatten()(av_pool)
    dense_layer = Dense(128, name='dense_layer')(reshape_layer)
    norm_layer = Lambda(lambda x: tf.math.l2_normalize(x, axis=1),
                        name='norm_layer')(dense_layer)

    # Final Model
    model = Model(inputs=[myInput], outputs=norm_layer)

    home = str(Path.home())
    if not os.path.isfile(home + '/.deepface/weights/openface_weights.h5'):
        print("openface_weights.h5 will be downloaded...")
        url = 'https://drive.google.com/uc?id=1LSe1YCV1x-BfNnfb7DFZTNpv_Q9jITxn'
        output = home + '/.deepface/weights/openface_weights.h5'
        gdown.download(url, output, quiet=False)
    model.load_weights(home + '/.deepface/weights/openface_weights.h5')
    return model
Exemple #17
0
def InceptionResNetV2(include_top=True,
                      weights='imagenet',
                      input_tensor=None,
                      input_shape=None,
                      pooling=None,
                      classes=1000):
  """Instantiates the Inception-ResNet v2 architecture.

  Optionally loads weights pre-trained on ImageNet.
  Note that when using TensorFlow, for best performance you should
  set `"image_data_format": "channels_last"` in your Keras config
  at `~/.keras/keras.json`.

  The model and the weights are compatible with TensorFlow, Theano and
  CNTK backends. The data format convention used by the model is
  the one specified in your Keras config file.

  Note that the default input image size for this model is 299x299, instead
  of 224x224 as in the VGG16 and ResNet models. Also, the input preprocessing
  function is different (i.e., do not use `imagenet_utils.preprocess_input()`
  with this model. Use `preprocess_input()` defined in this module instead).

  Arguments:
      include_top: whether to include the fully-connected
          layer at the top of the network.
      weights: one of `None` (random initialization),
            'imagenet' (pre-training on ImageNet),
            or the path to the weights file to be loaded.
      input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
          to use as image input for the model.
      input_shape: optional shape tuple, only to be specified
          if `include_top` is `False` (otherwise the input shape
          has to be `(299, 299, 3)` (with `'channels_last'` data format)
          or `(3, 299, 299)` (with `'channels_first'` data format).
          It should have exactly 3 inputs channels,
          and width and height should be no smaller than 139.
          E.g. `(150, 150, 3)` would be one valid value.
      pooling: Optional pooling mode for feature extraction
          when `include_top` is `False`.
          - `None` means that the output of the model will be
              the 4D tensor output of the last convolutional layer.
          - `'avg'` means that global average pooling
              will be applied to the output of the
              last convolutional layer, and thus
              the output of the model will be a 2D tensor.
          - `'max'` means that global max pooling will be applied.
      classes: optional number of classes to classify images
          into, only to be specified if `include_top` is `True`, and
          if no `weights` argument is specified.

  Returns:
      A Keras `Model` instance.

  Raises:
      ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
  """
  if not (weights in {'imagenet', None} or os.path.exists(weights)):
    raise ValueError('The `weights` argument should be either '
                     '`None` (random initialization), `imagenet` '
                     '(pre-training on ImageNet), '
                     'or the path to the weights file to be loaded.')

  if weights == 'imagenet' and include_top and classes != 1000:
    raise ValueError('If using `weights` as imagenet with `include_top`'
                     ' as true, `classes` should be 1000')

  # Determine proper input shape
  input_shape = _obtain_input_shape(
      input_shape,
      default_size=299,
      min_size=139,
      data_format=K.image_data_format(),
      require_flatten=False,
      weights=weights)

  if input_tensor is None:
    img_input = Input(shape=input_shape)
  else:
    if not K.is_keras_tensor(input_tensor):
      img_input = Input(tensor=input_tensor, shape=input_shape)
    else:
      img_input = input_tensor

  # Stem block: 35 x 35 x 192
  x = conv2d_bn(img_input, 32, 3, strides=2, padding='valid')
  x = conv2d_bn(x, 32, 3, padding='valid')
  x = conv2d_bn(x, 64, 3)
  x = MaxPooling2D(3, strides=2)(x)
  x = conv2d_bn(x, 80, 1, padding='valid')
  x = conv2d_bn(x, 192, 3, padding='valid')
  x = MaxPooling2D(3, strides=2)(x)

  # Mixed 5b (Inception-A block): 35 x 35 x 320
  branch_0 = conv2d_bn(x, 96, 1)
  branch_1 = conv2d_bn(x, 48, 1)
  branch_1 = conv2d_bn(branch_1, 64, 5)
  branch_2 = conv2d_bn(x, 64, 1)
  branch_2 = conv2d_bn(branch_2, 96, 3)
  branch_2 = conv2d_bn(branch_2, 96, 3)
  branch_pool = AveragePooling2D(3, strides=1, padding='same')(x)
  branch_pool = conv2d_bn(branch_pool, 64, 1)
  branches = [branch_0, branch_1, branch_2, branch_pool]
  channel_axis = 1 if K.image_data_format() == 'channels_first' else 3
  x = Concatenate(axis=channel_axis, name='mixed_5b')(branches)

  # 10x block35 (Inception-ResNet-A block): 35 x 35 x 320
  for block_idx in range(1, 11):
    x = inception_resnet_block(
        x, scale=0.17, block_type='block35', block_idx=block_idx)

  # Mixed 6a (Reduction-A block): 17 x 17 x 1088
  branch_0 = conv2d_bn(x, 384, 3, strides=2, padding='valid')
  branch_1 = conv2d_bn(x, 256, 1)
  branch_1 = conv2d_bn(branch_1, 256, 3)
  branch_1 = conv2d_bn(branch_1, 384, 3, strides=2, padding='valid')
  branch_pool = MaxPooling2D(3, strides=2, padding='valid')(x)
  branches = [branch_0, branch_1, branch_pool]
  x = Concatenate(axis=channel_axis, name='mixed_6a')(branches)

  # 20x block17 (Inception-ResNet-B block): 17 x 17 x 1088
  for block_idx in range(1, 21):
    x = inception_resnet_block(
        x, scale=0.1, block_type='block17', block_idx=block_idx)

  # Mixed 7a (Reduction-B block): 8 x 8 x 2080
  branch_0 = conv2d_bn(x, 256, 1)
  branch_0 = conv2d_bn(branch_0, 384, 3, strides=2, padding='valid')
  branch_1 = conv2d_bn(x, 256, 1)
  branch_1 = conv2d_bn(branch_1, 288, 3, strides=2, padding='valid')
  branch_2 = conv2d_bn(x, 256, 1)
  branch_2 = conv2d_bn(branch_2, 288, 3)
  branch_2 = conv2d_bn(branch_2, 320, 3, strides=2, padding='valid')
  branch_pool = MaxPooling2D(3, strides=2, padding='valid')(x)
  branches = [branch_0, branch_1, branch_2, branch_pool]
  x = Concatenate(axis=channel_axis, name='mixed_7a')(branches)

  # 10x block8 (Inception-ResNet-C block): 8 x 8 x 2080
  for block_idx in range(1, 10):
    x = inception_resnet_block(
        x, scale=0.2, block_type='block8', block_idx=block_idx)
  x = inception_resnet_block(
      x, scale=1., activation=None, block_type='block8', block_idx=10)

  # Final convolution block: 8 x 8 x 1536
  x = conv2d_bn(x, 1536, 1, name='conv_7b')

  if include_top:
    # Classification block
    x = GlobalAveragePooling2D(name='avg_pool')(x)
    x = Dense(classes, activation='softmax', name='predictions')(x)
  else:
    if pooling == 'avg':
      x = GlobalAveragePooling2D()(x)
    elif pooling == 'max':
      x = GlobalMaxPooling2D()(x)

  # Ensure that the model takes into account
  # any potential predecessors of `input_tensor`
  if input_tensor is not None:
    inputs = layer_utils.get_source_inputs(input_tensor)
  else:
    inputs = img_input

  # Create model
  model = Model(inputs, x, name='inception_resnet_v2')

  # Load weights
  if weights == 'imagenet':
    if include_top:
      fname = 'inception_resnet_v2_weights_tf_dim_ordering_tf_kernels.h5'
      weights_path = get_file(
          fname,
          BASE_WEIGHT_URL + fname,
          cache_subdir='models',
          file_hash='e693bd0210a403b3192acc6073ad2e96')
    else:
      fname = 'inception_resnet_v2_weights_tf_dim_ordering_tf_kernels_notop.h5'
      weights_path = get_file(
          fname,
          BASE_WEIGHT_URL + fname,
          cache_subdir='models',
          file_hash='d19885ff4a710c122648d3b5c3b684e4')
    model.load_weights(weights_path)
  elif weights is not None:
    model.load_weights(weights)

  return model
Exemple #18
0
def EEGNet_SSVEP(nb_classes=12,
                 Chans=8,
                 Samples=256,
                 dropoutRate=0.5,
                 kernLength=256,
                 F1=96,
                 D=1,
                 F2=96,
                 dropoutType='Dropout'):
    """ SSVEP Variant of EEGNet, as used in [1]. 

    Inputs:
        
      nb_classes      : int, number of classes to classify
      Chans, Samples  : number of channels and time points in the EEG data
      dropoutRate     : dropout fraction
      kernLength      : length of temporal convolution in first layer
      F1, F2          : number of temporal filters (F1) and number of pointwise
                        filters (F2) to learn. 
      D               : number of spatial filters to learn within each temporal
                        convolution.
      dropoutType     : Either SpatialDropout2D or Dropout, passed as a string.
      
      
    [1]. Waytowich, N. et. al. (2018). Compact Convolutional Neural Networks
    for Classification of Asynchronous Steady-State Visual Evoked Potentials.
    Journal of Neural Engineering vol. 15(6). 
    http://iopscience.iop.org/article/10.1088/1741-2552/aae5d8

    """

    if dropoutType == 'SpatialDropout2D':
        dropoutType = SpatialDropout2D
    elif dropoutType == 'Dropout':
        dropoutType = Dropout
    else:
        raise ValueError('dropoutType must be one of SpatialDropout2D '
                         'or Dropout, passed as a string.')

    input1 = Input(shape=(1, Chans, Samples))

    ##################################################################
    block1 = Conv2D(F1, (1, kernLength),
                    padding='same',
                    input_shape=(1, Chans, Samples),
                    use_bias=False)(input1)
    block1 = BatchNormalization(axis=1)(block1)
    block1 = DepthwiseConv2D((Chans, 1),
                             use_bias=False,
                             depth_multiplier=D,
                             depthwise_constraint=max_norm(1.))(block1)
    block1 = BatchNormalization(axis=1)(block1)
    block1 = Activation('elu')(block1)
    block1 = AveragePooling2D((1, 4))(block1)
    block1 = dropoutType(dropoutRate)(block1)

    block2 = SeparableConv2D(F2, (1, 16), use_bias=False,
                             padding='same')(block1)
    block2 = BatchNormalization(axis=1)(block2)
    block2 = Activation('elu')(block2)
    block2 = AveragePooling2D((1, 8))(block2)
    block2 = dropoutType(dropoutRate)(block2)

    flatten = Flatten(name='flatten')(block2)

    dense = Dense(nb_classes, name='dense')(flatten)
    softmax = Activation('softmax', name='softmax')(dense)

    return Model(inputs=input1, outputs=softmax)