Exemple #1
0
 def __init__(self, vocab_size, embed_size, hidden_size):
     super(EncoderDecoder, self).__init__(
         enc=Encoder(vocab_size, embed_size, hidden_size),
         dec=Decoder(vocab_size, embed_size, hidden_size),
     )
     self.vocab_size = vocab_size
     self.embed_size = embed_size
     self.hidden_size = hidden_size
     self.common_function = CommonFunction()
Exemple #2
0
 def __init__(self, parameter_dict):
     self.parameter_dict = parameter_dict
     self.source = parameter_dict["source"]
     self.target = parameter_dict["target"]
     self.test_source = parameter_dict["test_source"]
     self.test_target = parameter_dict["test_target"]
     self.vocab = parameter_dict["vocab"]
     self.embed = parameter_dict["embed"]
     self.hidden = parameter_dict["hidden"]
     self.epoch = parameter_dict["epoch"]
     self.minibatch = parameter_dict["minibatch"]
     self.generation_limit = parameter_dict["generation_limit"]
     self.word2vec = parameter_dict["word2vec"]
     self.word2vecFlag = parameter_dict["word2vecFlag"]
     self.common_function = CommonFunction()
     self.model = "ChainerDialogue"
     self.encdec = parameter_dict["encdec"]
 def __init__(self, vocab_size, embed_size, hidden_size):
     super(EncoderDecoder, self).__init__(
         enc=Encoder(vocab_size, embed_size, hidden_size),
         dec=Decoder(vocab_size, embed_size, hidden_size),
     )
     self.vocab_size = vocab_size
     self.embed_size = embed_size
     self.hidden_size = hidden_size
     self.common_function = CommonFunction()
Exemple #4
0
class EncoderDecoder(Chain):
    def __init__(self, vocab_size, embed_size, hidden_size):
        super(EncoderDecoder, self).__init__(
            enc=Encoder(vocab_size, embed_size, hidden_size),
            dec=Decoder(vocab_size, embed_size, hidden_size),
        )
        self.vocab_size = vocab_size
        self.embed_size = embed_size
        self.hidden_size = hidden_size
        self.common_function = CommonFunction()

    def reset(self, batch_size):
        self.zerograds()
        self.c = self.common_function.my_zeros((batch_size, self.hidden_size),
                                               np.float32)
        self.h = self.common_function.my_zeros((batch_size, self.hidden_size),
                                               np.float32)

    def encode(self, x):
        self.c, self.h = self.enc(x, self.c, self.h)

    def decode(self, y):
        y, self.c, self.h = self.dec(y, self.c, self.h)
        return y

    def save_spec(self, filename):
        with open(filename, 'w') as fp:
            print(self.vocab_size, file=fp)
            print(self.embed_size, file=fp)
            print(self.hidden_size, file=fp)

    @staticmethod
    def load_spec(filename):
        with open(filename) as fp:
            vocab_size = int(next(fp))
            embed_size = int(next(fp))
            hidden_size = int(next(fp))
            return EncoderDecoder(vocab_size, embed_size, hidden_size)
 def __init__(self, parameter_dict):
     self.parameter_dict       = parameter_dict
     self.source               = parameter_dict["source"]
     self.target               = parameter_dict["target"]
     self.test_source          = parameter_dict["test_source"]
     self.test_target          = parameter_dict["test_target"]
     self.vocab                = parameter_dict["vocab"]
     self.embed                = parameter_dict["embed"]
     self.hidden               = parameter_dict["hidden"]
     self.epoch                = parameter_dict["epoch"]
     self.minibatch            = parameter_dict["minibatch"]
     self.generation_limit     = parameter_dict["generation_limit"]
     self.word2vec             = parameter_dict["word2vec"]
     self.word2vecFlag         = parameter_dict["word2vecFlag"]
     self.common_function = CommonFunction()
     self.model = "ChainerDialogue"
     self.encdec               = parameter_dict["encdec"]
class EncoderDecoder(Chain):
    def __init__(self, vocab_size, embed_size, hidden_size):
        super(EncoderDecoder, self).__init__(
            enc=Encoder(vocab_size, embed_size, hidden_size),
            dec=Decoder(vocab_size, embed_size, hidden_size),
        )
        self.vocab_size = vocab_size
        self.embed_size = embed_size
        self.hidden_size = hidden_size
        self.common_function = CommonFunction()

    def reset(self, batch_size):
        self.zerograds()
        self.c = self.common_function.my_zeros((batch_size, self.hidden_size), np.float32)
        self.h = self.common_function.my_zeros((batch_size, self.hidden_size), np.float32)

    def encode(self, x):
        self.c, self.h = self.enc(x, self.c, self.h)

    def decode(self, y):
        y, self.c, self.h = self.dec(y, self.c, self.h)
        return y

    def save_spec(self, filename):
        with open(filename, 'w') as fp:
            print(self.vocab_size, file=fp)
            print(self.embed_size, file=fp)
            print(self.hidden_size, file=fp)

    @staticmethod
    def load_spec(filename):
        with open(filename) as fp:
            vocab_size = int(next(fp))
            embed_size = int(next(fp))
            hidden_size = int(next(fp))
            return EncoderDecoder(vocab_size, embed_size, hidden_size)
Exemple #7
0
class EncoderDecoderModel:
    def __init__(self, parameter_dict):
        self.parameter_dict = parameter_dict
        self.source = parameter_dict["source"]
        self.target = parameter_dict["target"]
        self.test_source = parameter_dict["test_source"]
        self.test_target = parameter_dict["test_target"]
        self.vocab = parameter_dict["vocab"]
        self.embed = parameter_dict["embed"]
        self.hidden = parameter_dict["hidden"]
        self.epoch = parameter_dict["epoch"]
        self.minibatch = parameter_dict["minibatch"]
        self.generation_limit = parameter_dict["generation_limit"]
        self.word2vec = parameter_dict["word2vec"]
        self.word2vecFlag = parameter_dict["word2vecFlag"]
        self.common_function = CommonFunction()
        self.model = "ChainerDialogue"
        self.encdec = parameter_dict["encdec"]

    def forward(self, src_batch, trg_batch, src_vocab, trg_vocab, encdec,
                is_training, generation_limit):
        pass

    def forward_implement(self, src_batch, trg_batch, src_vocab, trg_vocab,
                          encdec, is_training, generation_limit):
        pass
        batch_size = len(src_batch)
        src_len = len(src_batch[0])
        trg_len = len(trg_batch[0]) if trg_batch else 0
        src_stoi = src_vocab.stoi
        trg_stoi = trg_vocab.stoi
        trg_itos = trg_vocab.itos
        encdec.reset(batch_size)

        x = self.common_function.my_array(
            [src_stoi('</s>') for _ in range(batch_size)], np.int32)
        encdec.encode(x)
        for l in reversed(range(src_len)):
            x = self.common_function.my_array(
                [src_stoi(src_batch[k][l]) for k in range(batch_size)],
                np.int32)
            encdec.encode(x)

        t = self.common_function.my_array(
            [trg_stoi('<s>') for _ in range(batch_size)], np.int32)
        hyp_batch = [[] for _ in range(batch_size)]

        if is_training:
            loss = self.common_function.my_zeros((), np.float32)
            for l in range(trg_len):
                y = encdec.decode(t)
                t = self.common_function.my_array(
                    [trg_stoi(trg_batch[k][l]) for k in range(batch_size)],
                    np.int32)
                loss += functions.softmax_cross_entropy(y, t)
                output = cuda.to_cpu(y.data.argmax(1))
                for k in range(batch_size):
                    hyp_batch[k].append(trg_itos(output[k]))
            return hyp_batch, loss

        else:
            while len(hyp_batch[0]) < generation_limit:
                y = encdec.decode(t)
                output = cuda.to_cpu(y.data.argmax(1))
                t = self.common_function.my_array(output, np.int32)
                for k in range(batch_size):
                    hyp_batch[k].append(trg_itos(output[k]))
                if all(hyp_batch[k][-1] == '</s>' for k in range(batch_size)):
                    break

        return hyp_batch

    def train(self):
        trace('making vocabularies ...')
        src_vocab = Vocabulary.new(gens.word_list(self.source), self.vocab)
        trg_vocab = Vocabulary.new(gens.word_list(self.target), self.vocab)

        trace('making model ...')
        encdec = EncoderDecoder(self.vocab, self.embed, self.hidden)
        if self.word2vecFlag:
            self.copy_model(self.word2vec, encdec.enc)
            self.copy_model(self.word2vec, encdec.dec, dec_flag=True)

        for epoch in range(self.epoch):
            trace('epoch %d/%d: ' % (epoch + 1, self.epoch))
            trained = 0
            gen1 = gens.word_list(self.source)
            gen2 = gens.word_list(self.target)
            gen3 = gens.batch(
                gens.sorted_parallel(gen1, gen2, 100 * self.minibatch),
                self.minibatch)
            opt = optimizers.AdaGrad(lr=0.01)
            opt.setup(encdec)
            opt.add_hook(optimizer.GradientClipping(5))

            random_number = random.randint(0, self.minibatch - 1)
            for src_batch, trg_batch in gen3:
                src_batch = fill_batch(src_batch)
                trg_batch = fill_batch(trg_batch)
                K = len(src_batch)
                # If you use the ipython note book you hace to use the forward function
                # hyp_batch, loss = self.forward(src_batch, trg_batch, src_vocab, trg_vocab, encdec, True, 0)
                hyp_batch, loss = self.forward_implement(
                    src_batch, trg_batch, src_vocab, trg_vocab, encdec, True,
                    0)
                loss.backward()
                opt.update()

                self.print_out(random_number, epoch, trained, src_batch,
                               trg_batch, hyp_batch)

                trained += K

        trace('saving model ...')
        prefix = self.model
        src_vocab.save(prefix + '.srcvocab')
        trg_vocab.save(prefix + '.trgvocab')
        encdec.save_spec(prefix + '.spec')
        serializers.save_hdf5(prefix + '.weights', encdec)

        trace('finished.')

    def test(self):
        trace('loading model ...')
        src_vocab = Vocabulary.load(self.model + '.srcvocab')
        trg_vocab = Vocabulary.load(self.model + '.trgvocab')
        encdec = EncoderDecoder.load_spec(self.model + '.spec')
        serializers.load_hdf5(self.model + '.weights', encdec)

        trace('generating translation ...')
        generated = 0

        with open(self.target, 'w') as fp:
            for src_batch in gens.batch(gens.word_list(self.source),
                                        self.minibatch):
                src_batch = fill_batch(src_batch)
                K = len(src_batch)

                trace('sample %8d - %8d ...' % (generated + 1, generated + K))
                # If you use the ipython note book you hace to use the forward function
                # hyp_batch = self.forward(src_batch, None, src_vocab, trg_vocab, encdec, False, self.generation_limit)
                hyp_batch = self.forward_implement(src_batch, None, src_vocab,
                                                   trg_vocab, encdec, False,
                                                   self.generation_limit)

                source_cuont = 0
                for hyp in hyp_batch:
                    hyp.append('</s>')
                    hyp = hyp[:hyp.index('</s>')]
                    print("src : " +
                          "".join(src_batch[source_cuont]).replace("</s>", ""))
                    print('hyp : ' + ''.join(hyp))
                    print(' '.join(hyp), file=fp)
                    source_cuont = source_cuont + 1

                generated += K

        trace('finished.')

    def print_out(self, K, i_epoch, trained, src_batch, trg_batch, hyp_batch):
        """
        Print out
        :param K(int): setting the random number()
        :param i_epoch(int): epoch times
        :param trained: train times
        :param src_batch: source data
        :param trg_batch: target data
        :param hyp_batch: hypothesis data
        :return:
        """
        if K > len(src_batch) and K > len(trg_batch) and K > len(hyp_batch):
            K = len(src_batch) - 1

        trace('epoch %3d/%3d, sample %8d' %
              (i_epoch + 1, self.epoch, trained + K + 1))
        trace('  src = ' +
              ' '.join([x if x != '</s>' else '*' for x in src_batch[K]]))
        trace('  trg = ' +
              ' '.join([x if x != '</s>' else '*' for x in trg_batch[K]]))
        trace('  hyp = ' +
              ' '.join([x if x != '</s>' else '*' for x in hyp_batch[K]]))

    def copy_model(self, src, dst, dec_flag=False):
        print("start copy")
        for child in src.children():
            if dec_flag:
                if dst["weight_jy"] and child.name == "weight_xi" and self.word2vecFlag:
                    for a, b in zip(child.namedparams(),
                                    dst["weight_jy"].namedparams()):
                        b[1].data = a[1].data
                    print('Copy weight_jy')
            if child.name not in dst.__dict__: continue
            dst_child = dst[child.name]
            if type(child) != type(dst_child): continue
            if isinstance(child, link.Chain):
                self.copy_model(child, dst_child)
            if isinstance(child, link.Link):
                match = True
                for a, b in zip(child.namedparams(), dst_child.namedparams()):
                    if a[0] != b[0]:
                        match = False
                        break
                    if a[1].data.shape != b[1].data.shape:
                        match = False
                        break
                if not match:
                    print('Ignore %s because of parameter mismatch' %
                          child.name)
                    continue
                for a, b in zip(child.namedparams(), dst_child.namedparams()):
                    b[1].data = a[1].data
                print('Copy %s' % child.name)
class EncoderDecoderModel:

    def __init__(self, parameter_dict):
        self.parameter_dict       = parameter_dict
        self.source               = parameter_dict["source"]
        self.target               = parameter_dict["target"]
        self.test_source          = parameter_dict["test_source"]
        self.test_target          = parameter_dict["test_target"]
        self.vocab                = parameter_dict["vocab"]
        self.embed                = parameter_dict["embed"]
        self.hidden               = parameter_dict["hidden"]
        self.epoch                = parameter_dict["epoch"]
        self.minibatch            = parameter_dict["minibatch"]
        self.generation_limit     = parameter_dict["generation_limit"]
        self.word2vec             = parameter_dict["word2vec"]
        self.word2vecFlag         = parameter_dict["word2vecFlag"]
        self.common_function = CommonFunction()
        self.model = "ChainerDialogue"
        self.encdec               = parameter_dict["encdec"]

    def forward(self, src_batch, trg_batch, src_vocab, trg_vocab, encdec, is_training, generation_limit):
        pass

    def forward_implement(self, src_batch, trg_batch, src_vocab, trg_vocab, encdec, is_training, generation_limit):
        pass
        batch_size = len(src_batch)
        src_len = len(src_batch[0])
        trg_len = len(trg_batch[0]) if trg_batch else 0
        src_stoi = src_vocab.stoi
        trg_stoi = trg_vocab.stoi
        trg_itos = trg_vocab.itos
        encdec.reset(batch_size)

        x = self.common_function.my_array([src_stoi('</s>') for _ in range(batch_size)], np.int32)
        encdec.encode(x)
        for l in reversed(range(src_len)):
            x = self.common_function.my_array([src_stoi(src_batch[k][l]) for k in range(batch_size)], np.int32)
            encdec.encode(x)

        t = self.common_function.my_array([trg_stoi('<s>') for _ in range(batch_size)], np.int32)
        hyp_batch = [[] for _ in range(batch_size)]

        if is_training:
            loss = self.common_function.my_zeros((), np.float32)
            for l in range(trg_len):
                y = encdec.decode(t)
                t = self.common_function.my_array([trg_stoi(trg_batch[k][l]) for k in range(batch_size)], np.int32)
                loss += functions.softmax_cross_entropy(y, t)
                output = cuda.to_cpu(y.data.argmax(1))
                for k in range(batch_size):
                    hyp_batch[k].append(trg_itos(output[k]))
            return hyp_batch, loss

        else:
            while len(hyp_batch[0]) < generation_limit:
                y = encdec.decode(t)
                output = cuda.to_cpu(y.data.argmax(1))
                t = self.common_function.my_array(output, np.int32)
                for k in range(batch_size):
                    hyp_batch[k].append(trg_itos(output[k]))
                if all(hyp_batch[k][-1] == '</s>' for k in range(batch_size)):
                    break

        return hyp_batch


    def train(self):
        trace('making vocabularies ...')
        src_vocab = Vocabulary.new(gens.word_list(self.source), self.vocab)
        trg_vocab = Vocabulary.new(gens.word_list(self.target), self.vocab)

        trace('making model ...')
        encdec = EncoderDecoder(self.vocab, self.embed, self.hidden)
        if self.word2vecFlag:
            self.copy_model(self.word2vec, encdec.enc)
            self.copy_model(self.word2vec, encdec.dec, dec_flag=True)

        for epoch in range(self.epoch):
            trace('epoch %d/%d: ' % (epoch + 1, self.epoch))
            trained = 0
            gen1 = gens.word_list(self.source)
            gen2 = gens.word_list(self.target)
            gen3 = gens.batch(gens.sorted_parallel(gen1, gen2, 100 * self.minibatch), self.minibatch)
            opt = optimizers.AdaGrad(lr = 0.01)
            opt.setup(encdec)
            opt.add_hook(optimizer.GradientClipping(5))

            random_number = random.randint(0, self.minibatch - 1)
            for src_batch, trg_batch in gen3:
                src_batch = fill_batch(src_batch)
                trg_batch = fill_batch(trg_batch)
                K = len(src_batch)
                # If you use the ipython note book you hace to use the forward function
                # hyp_batch, loss = self.forward(src_batch, trg_batch, src_vocab, trg_vocab, encdec, True, 0)
                hyp_batch, loss = self.forward_implement(src_batch, trg_batch, src_vocab, trg_vocab, encdec, True, 0)
                loss.backward()
                opt.update()

                self.print_out(random_number, epoch, trained, src_batch, trg_batch, hyp_batch)

                trained += K

        trace('saving model ...')
        prefix = self.model
        src_vocab.save(prefix + '.srcvocab')
        trg_vocab.save(prefix + '.trgvocab')
        encdec.save_spec(prefix + '.spec')
        serializers.save_hdf5(prefix + '.weights', encdec)

        trace('finished.')

    def test(self):
        trace('loading model ...')
        src_vocab = Vocabulary.load(self.model + '.srcvocab')
        trg_vocab = Vocabulary.load(self.model + '.trgvocab')
        encdec = EncoderDecoder.load_spec(self.model + '.spec')
        serializers.load_hdf5(self.model + '.weights', encdec)

        trace('generating translation ...')
        generated = 0

        with open(self.target, 'w') as fp:
            for src_batch in gens.batch(gens.word_list(self.source), self.minibatch):
                src_batch = fill_batch(src_batch)
                K = len(src_batch)

                trace('sample %8d - %8d ...' % (generated + 1, generated + K))
                # If you use the ipython note book you hace to use the forward function
                # hyp_batch = self.forward(src_batch, None, src_vocab, trg_vocab, encdec, False, self.generation_limit)
                hyp_batch = self.forward_implement(src_batch, None, src_vocab, trg_vocab, encdec, False, self.generation_limit)

                source_cuont = 0
                for hyp in hyp_batch:
                    hyp.append('</s>')
                    hyp = hyp[:hyp.index('</s>')]
                    print("src : " + "".join(src_batch[source_cuont]).replace("</s>", ""))
                    print('hyp : ' +''.join(hyp))
                    print(' '.join(hyp), file=fp)
                    source_cuont = source_cuont + 1

                generated += K

        trace('finished.')

    def print_out(self, K, i_epoch, trained, src_batch, trg_batch, hyp_batch):
        """
        Print out
        :param K(int): setting the random number()
        :param i_epoch(int): epoch times
        :param trained: train times
        :param src_batch: source data
        :param trg_batch: target data
        :param hyp_batch: hypothesis data
        :return:
        """
        if K > len(src_batch) and K > len(trg_batch) and K > len(hyp_batch):
            K = len(src_batch) - 1

        trace('epoch %3d/%3d, sample %8d' % (i_epoch + 1, self.epoch, trained + K + 1))
        trace('  src = ' + ' '.join([x if x != '</s>' else '*' for x in src_batch[K]]))
        trace('  trg = ' + ' '.join([x if x != '</s>' else '*' for x in trg_batch[K]]))
        trace('  hyp = ' + ' '.join([x if x != '</s>' else '*' for x in hyp_batch[K]]))

    def copy_model(self, src, dst, dec_flag=False):
        print("start copy")
        for child in src.children():
            if dec_flag:
                if dst["weight_jy"] and child.name == "weight_xi" and self.word2vecFlag:
                    for a, b in zip(child.namedparams(), dst["weight_jy"].namedparams()):
                        b[1].data = a[1].data
                    print('Copy weight_jy')
            if child.name not in dst.__dict__: continue
            dst_child = dst[child.name]
            if type(child) != type(dst_child): continue
            if isinstance(child, link.Chain):
                self.copy_model(child, dst_child)
            if isinstance(child, link.Link):
                match = True
                for a, b in zip(child.namedparams(), dst_child.namedparams()):
                    if a[0] != b[0]:
                        match = False
                        break
                    if a[1].data.shape != b[1].data.shape:
                        match = False
                        break
                if not match:
                    print('Ignore %s because of parameter mismatch' % child.name)
                    continue
                for a, b in zip(child.namedparams(), dst_child.namedparams()):
                    b[1].data = a[1].data
                print('Copy %s' % child.name)