def __init__(self, vocab_size, embed_size, hidden_size): super(EncoderDecoder, self).__init__( enc=Encoder(vocab_size, embed_size, hidden_size), dec=Decoder(vocab_size, embed_size, hidden_size), ) self.vocab_size = vocab_size self.embed_size = embed_size self.hidden_size = hidden_size self.common_function = CommonFunction()
def __init__(self, parameter_dict): self.parameter_dict = parameter_dict self.source = parameter_dict["source"] self.target = parameter_dict["target"] self.test_source = parameter_dict["test_source"] self.test_target = parameter_dict["test_target"] self.vocab = parameter_dict["vocab"] self.embed = parameter_dict["embed"] self.hidden = parameter_dict["hidden"] self.epoch = parameter_dict["epoch"] self.minibatch = parameter_dict["minibatch"] self.generation_limit = parameter_dict["generation_limit"] self.word2vec = parameter_dict["word2vec"] self.word2vecFlag = parameter_dict["word2vecFlag"] self.common_function = CommonFunction() self.model = "ChainerDialogue" self.encdec = parameter_dict["encdec"]
class EncoderDecoder(Chain): def __init__(self, vocab_size, embed_size, hidden_size): super(EncoderDecoder, self).__init__( enc=Encoder(vocab_size, embed_size, hidden_size), dec=Decoder(vocab_size, embed_size, hidden_size), ) self.vocab_size = vocab_size self.embed_size = embed_size self.hidden_size = hidden_size self.common_function = CommonFunction() def reset(self, batch_size): self.zerograds() self.c = self.common_function.my_zeros((batch_size, self.hidden_size), np.float32) self.h = self.common_function.my_zeros((batch_size, self.hidden_size), np.float32) def encode(self, x): self.c, self.h = self.enc(x, self.c, self.h) def decode(self, y): y, self.c, self.h = self.dec(y, self.c, self.h) return y def save_spec(self, filename): with open(filename, 'w') as fp: print(self.vocab_size, file=fp) print(self.embed_size, file=fp) print(self.hidden_size, file=fp) @staticmethod def load_spec(filename): with open(filename) as fp: vocab_size = int(next(fp)) embed_size = int(next(fp)) hidden_size = int(next(fp)) return EncoderDecoder(vocab_size, embed_size, hidden_size)
class EncoderDecoderModel: def __init__(self, parameter_dict): self.parameter_dict = parameter_dict self.source = parameter_dict["source"] self.target = parameter_dict["target"] self.test_source = parameter_dict["test_source"] self.test_target = parameter_dict["test_target"] self.vocab = parameter_dict["vocab"] self.embed = parameter_dict["embed"] self.hidden = parameter_dict["hidden"] self.epoch = parameter_dict["epoch"] self.minibatch = parameter_dict["minibatch"] self.generation_limit = parameter_dict["generation_limit"] self.word2vec = parameter_dict["word2vec"] self.word2vecFlag = parameter_dict["word2vecFlag"] self.common_function = CommonFunction() self.model = "ChainerDialogue" self.encdec = parameter_dict["encdec"] def forward(self, src_batch, trg_batch, src_vocab, trg_vocab, encdec, is_training, generation_limit): pass def forward_implement(self, src_batch, trg_batch, src_vocab, trg_vocab, encdec, is_training, generation_limit): pass batch_size = len(src_batch) src_len = len(src_batch[0]) trg_len = len(trg_batch[0]) if trg_batch else 0 src_stoi = src_vocab.stoi trg_stoi = trg_vocab.stoi trg_itos = trg_vocab.itos encdec.reset(batch_size) x = self.common_function.my_array( [src_stoi('</s>') for _ in range(batch_size)], np.int32) encdec.encode(x) for l in reversed(range(src_len)): x = self.common_function.my_array( [src_stoi(src_batch[k][l]) for k in range(batch_size)], np.int32) encdec.encode(x) t = self.common_function.my_array( [trg_stoi('<s>') for _ in range(batch_size)], np.int32) hyp_batch = [[] for _ in range(batch_size)] if is_training: loss = self.common_function.my_zeros((), np.float32) for l in range(trg_len): y = encdec.decode(t) t = self.common_function.my_array( [trg_stoi(trg_batch[k][l]) for k in range(batch_size)], np.int32) loss += functions.softmax_cross_entropy(y, t) output = cuda.to_cpu(y.data.argmax(1)) for k in range(batch_size): hyp_batch[k].append(trg_itos(output[k])) return hyp_batch, loss else: while len(hyp_batch[0]) < generation_limit: y = encdec.decode(t) output = cuda.to_cpu(y.data.argmax(1)) t = self.common_function.my_array(output, np.int32) for k in range(batch_size): hyp_batch[k].append(trg_itos(output[k])) if all(hyp_batch[k][-1] == '</s>' for k in range(batch_size)): break return hyp_batch def train(self): trace('making vocabularies ...') src_vocab = Vocabulary.new(gens.word_list(self.source), self.vocab) trg_vocab = Vocabulary.new(gens.word_list(self.target), self.vocab) trace('making model ...') encdec = EncoderDecoder(self.vocab, self.embed, self.hidden) if self.word2vecFlag: self.copy_model(self.word2vec, encdec.enc) self.copy_model(self.word2vec, encdec.dec, dec_flag=True) for epoch in range(self.epoch): trace('epoch %d/%d: ' % (epoch + 1, self.epoch)) trained = 0 gen1 = gens.word_list(self.source) gen2 = gens.word_list(self.target) gen3 = gens.batch( gens.sorted_parallel(gen1, gen2, 100 * self.minibatch), self.minibatch) opt = optimizers.AdaGrad(lr=0.01) opt.setup(encdec) opt.add_hook(optimizer.GradientClipping(5)) random_number = random.randint(0, self.minibatch - 1) for src_batch, trg_batch in gen3: src_batch = fill_batch(src_batch) trg_batch = fill_batch(trg_batch) K = len(src_batch) # If you use the ipython note book you hace to use the forward function # hyp_batch, loss = self.forward(src_batch, trg_batch, src_vocab, trg_vocab, encdec, True, 0) hyp_batch, loss = self.forward_implement( src_batch, trg_batch, src_vocab, trg_vocab, encdec, True, 0) loss.backward() opt.update() self.print_out(random_number, epoch, trained, src_batch, trg_batch, hyp_batch) trained += K trace('saving model ...') prefix = self.model src_vocab.save(prefix + '.srcvocab') trg_vocab.save(prefix + '.trgvocab') encdec.save_spec(prefix + '.spec') serializers.save_hdf5(prefix + '.weights', encdec) trace('finished.') def test(self): trace('loading model ...') src_vocab = Vocabulary.load(self.model + '.srcvocab') trg_vocab = Vocabulary.load(self.model + '.trgvocab') encdec = EncoderDecoder.load_spec(self.model + '.spec') serializers.load_hdf5(self.model + '.weights', encdec) trace('generating translation ...') generated = 0 with open(self.target, 'w') as fp: for src_batch in gens.batch(gens.word_list(self.source), self.minibatch): src_batch = fill_batch(src_batch) K = len(src_batch) trace('sample %8d - %8d ...' % (generated + 1, generated + K)) # If you use the ipython note book you hace to use the forward function # hyp_batch = self.forward(src_batch, None, src_vocab, trg_vocab, encdec, False, self.generation_limit) hyp_batch = self.forward_implement(src_batch, None, src_vocab, trg_vocab, encdec, False, self.generation_limit) source_cuont = 0 for hyp in hyp_batch: hyp.append('</s>') hyp = hyp[:hyp.index('</s>')] print("src : " + "".join(src_batch[source_cuont]).replace("</s>", "")) print('hyp : ' + ''.join(hyp)) print(' '.join(hyp), file=fp) source_cuont = source_cuont + 1 generated += K trace('finished.') def print_out(self, K, i_epoch, trained, src_batch, trg_batch, hyp_batch): """ Print out :param K(int): setting the random number() :param i_epoch(int): epoch times :param trained: train times :param src_batch: source data :param trg_batch: target data :param hyp_batch: hypothesis data :return: """ if K > len(src_batch) and K > len(trg_batch) and K > len(hyp_batch): K = len(src_batch) - 1 trace('epoch %3d/%3d, sample %8d' % (i_epoch + 1, self.epoch, trained + K + 1)) trace(' src = ' + ' '.join([x if x != '</s>' else '*' for x in src_batch[K]])) trace(' trg = ' + ' '.join([x if x != '</s>' else '*' for x in trg_batch[K]])) trace(' hyp = ' + ' '.join([x if x != '</s>' else '*' for x in hyp_batch[K]])) def copy_model(self, src, dst, dec_flag=False): print("start copy") for child in src.children(): if dec_flag: if dst["weight_jy"] and child.name == "weight_xi" and self.word2vecFlag: for a, b in zip(child.namedparams(), dst["weight_jy"].namedparams()): b[1].data = a[1].data print('Copy weight_jy') if child.name not in dst.__dict__: continue dst_child = dst[child.name] if type(child) != type(dst_child): continue if isinstance(child, link.Chain): self.copy_model(child, dst_child) if isinstance(child, link.Link): match = True for a, b in zip(child.namedparams(), dst_child.namedparams()): if a[0] != b[0]: match = False break if a[1].data.shape != b[1].data.shape: match = False break if not match: print('Ignore %s because of parameter mismatch' % child.name) continue for a, b in zip(child.namedparams(), dst_child.namedparams()): b[1].data = a[1].data print('Copy %s' % child.name)
class EncoderDecoderModel: def __init__(self, parameter_dict): self.parameter_dict = parameter_dict self.source = parameter_dict["source"] self.target = parameter_dict["target"] self.test_source = parameter_dict["test_source"] self.test_target = parameter_dict["test_target"] self.vocab = parameter_dict["vocab"] self.embed = parameter_dict["embed"] self.hidden = parameter_dict["hidden"] self.epoch = parameter_dict["epoch"] self.minibatch = parameter_dict["minibatch"] self.generation_limit = parameter_dict["generation_limit"] self.word2vec = parameter_dict["word2vec"] self.word2vecFlag = parameter_dict["word2vecFlag"] self.common_function = CommonFunction() self.model = "ChainerDialogue" self.encdec = parameter_dict["encdec"] def forward(self, src_batch, trg_batch, src_vocab, trg_vocab, encdec, is_training, generation_limit): pass def forward_implement(self, src_batch, trg_batch, src_vocab, trg_vocab, encdec, is_training, generation_limit): pass batch_size = len(src_batch) src_len = len(src_batch[0]) trg_len = len(trg_batch[0]) if trg_batch else 0 src_stoi = src_vocab.stoi trg_stoi = trg_vocab.stoi trg_itos = trg_vocab.itos encdec.reset(batch_size) x = self.common_function.my_array([src_stoi('</s>') for _ in range(batch_size)], np.int32) encdec.encode(x) for l in reversed(range(src_len)): x = self.common_function.my_array([src_stoi(src_batch[k][l]) for k in range(batch_size)], np.int32) encdec.encode(x) t = self.common_function.my_array([trg_stoi('<s>') for _ in range(batch_size)], np.int32) hyp_batch = [[] for _ in range(batch_size)] if is_training: loss = self.common_function.my_zeros((), np.float32) for l in range(trg_len): y = encdec.decode(t) t = self.common_function.my_array([trg_stoi(trg_batch[k][l]) for k in range(batch_size)], np.int32) loss += functions.softmax_cross_entropy(y, t) output = cuda.to_cpu(y.data.argmax(1)) for k in range(batch_size): hyp_batch[k].append(trg_itos(output[k])) return hyp_batch, loss else: while len(hyp_batch[0]) < generation_limit: y = encdec.decode(t) output = cuda.to_cpu(y.data.argmax(1)) t = self.common_function.my_array(output, np.int32) for k in range(batch_size): hyp_batch[k].append(trg_itos(output[k])) if all(hyp_batch[k][-1] == '</s>' for k in range(batch_size)): break return hyp_batch def train(self): trace('making vocabularies ...') src_vocab = Vocabulary.new(gens.word_list(self.source), self.vocab) trg_vocab = Vocabulary.new(gens.word_list(self.target), self.vocab) trace('making model ...') encdec = EncoderDecoder(self.vocab, self.embed, self.hidden) if self.word2vecFlag: self.copy_model(self.word2vec, encdec.enc) self.copy_model(self.word2vec, encdec.dec, dec_flag=True) for epoch in range(self.epoch): trace('epoch %d/%d: ' % (epoch + 1, self.epoch)) trained = 0 gen1 = gens.word_list(self.source) gen2 = gens.word_list(self.target) gen3 = gens.batch(gens.sorted_parallel(gen1, gen2, 100 * self.minibatch), self.minibatch) opt = optimizers.AdaGrad(lr = 0.01) opt.setup(encdec) opt.add_hook(optimizer.GradientClipping(5)) random_number = random.randint(0, self.minibatch - 1) for src_batch, trg_batch in gen3: src_batch = fill_batch(src_batch) trg_batch = fill_batch(trg_batch) K = len(src_batch) # If you use the ipython note book you hace to use the forward function # hyp_batch, loss = self.forward(src_batch, trg_batch, src_vocab, trg_vocab, encdec, True, 0) hyp_batch, loss = self.forward_implement(src_batch, trg_batch, src_vocab, trg_vocab, encdec, True, 0) loss.backward() opt.update() self.print_out(random_number, epoch, trained, src_batch, trg_batch, hyp_batch) trained += K trace('saving model ...') prefix = self.model src_vocab.save(prefix + '.srcvocab') trg_vocab.save(prefix + '.trgvocab') encdec.save_spec(prefix + '.spec') serializers.save_hdf5(prefix + '.weights', encdec) trace('finished.') def test(self): trace('loading model ...') src_vocab = Vocabulary.load(self.model + '.srcvocab') trg_vocab = Vocabulary.load(self.model + '.trgvocab') encdec = EncoderDecoder.load_spec(self.model + '.spec') serializers.load_hdf5(self.model + '.weights', encdec) trace('generating translation ...') generated = 0 with open(self.target, 'w') as fp: for src_batch in gens.batch(gens.word_list(self.source), self.minibatch): src_batch = fill_batch(src_batch) K = len(src_batch) trace('sample %8d - %8d ...' % (generated + 1, generated + K)) # If you use the ipython note book you hace to use the forward function # hyp_batch = self.forward(src_batch, None, src_vocab, trg_vocab, encdec, False, self.generation_limit) hyp_batch = self.forward_implement(src_batch, None, src_vocab, trg_vocab, encdec, False, self.generation_limit) source_cuont = 0 for hyp in hyp_batch: hyp.append('</s>') hyp = hyp[:hyp.index('</s>')] print("src : " + "".join(src_batch[source_cuont]).replace("</s>", "")) print('hyp : ' +''.join(hyp)) print(' '.join(hyp), file=fp) source_cuont = source_cuont + 1 generated += K trace('finished.') def print_out(self, K, i_epoch, trained, src_batch, trg_batch, hyp_batch): """ Print out :param K(int): setting the random number() :param i_epoch(int): epoch times :param trained: train times :param src_batch: source data :param trg_batch: target data :param hyp_batch: hypothesis data :return: """ if K > len(src_batch) and K > len(trg_batch) and K > len(hyp_batch): K = len(src_batch) - 1 trace('epoch %3d/%3d, sample %8d' % (i_epoch + 1, self.epoch, trained + K + 1)) trace(' src = ' + ' '.join([x if x != '</s>' else '*' for x in src_batch[K]])) trace(' trg = ' + ' '.join([x if x != '</s>' else '*' for x in trg_batch[K]])) trace(' hyp = ' + ' '.join([x if x != '</s>' else '*' for x in hyp_batch[K]])) def copy_model(self, src, dst, dec_flag=False): print("start copy") for child in src.children(): if dec_flag: if dst["weight_jy"] and child.name == "weight_xi" and self.word2vecFlag: for a, b in zip(child.namedparams(), dst["weight_jy"].namedparams()): b[1].data = a[1].data print('Copy weight_jy') if child.name not in dst.__dict__: continue dst_child = dst[child.name] if type(child) != type(dst_child): continue if isinstance(child, link.Chain): self.copy_model(child, dst_child) if isinstance(child, link.Link): match = True for a, b in zip(child.namedparams(), dst_child.namedparams()): if a[0] != b[0]: match = False break if a[1].data.shape != b[1].data.shape: match = False break if not match: print('Ignore %s because of parameter mismatch' % child.name) continue for a, b in zip(child.namedparams(), dst_child.namedparams()): b[1].data = a[1].data print('Copy %s' % child.name)