Exemple #1
0
def remove_small_vectors(U, S):
    """
    Remove negligible values in S and corresponding columns in U.
    The inputs are not directly modified, but the results are returned.
    @param U: columns are eigenvectors
    @param S: conformant singular values
    @return: U_reduced, S_reduced
    """
    columns = [U.T[i] for i, w in enumerate(S) if not util.is_small(w)]
    U_reduced = np.vstack(columns).T
    S_reduced = [w for w in S if not util.is_small(w)]
    return U_reduced, S_reduced
Exemple #2
0
def get_fiedler_vector(U, S):
    """
    The first element of the output vector is forced to be nonnegative.
    @param U: columns are eigenvectors
    @param S: conformant singular values
    @return: the eigenvector corresponding to the smallest nonsmall eigenvalue
    """
    best_w, best_i = min((w, i) for i, w in enumerate(S) if not util.is_small(w))
    v = U.T[best_i]
    if v[0] < 0:
        return -v
    else:
        return v
Exemple #3
0
def data_to_laplacian_sqrt(X):
    """
    If the output is U, S then (U*S)(U*S)' is like a Laplacian.
    @param X: a data matrix
    @return: U, S
    """
    logging.debug('data_to_laplacian_sqrt: creating the standardized matrix')
    Z = get_standardized_matrix(X)
    logging.debug('data_to_laplacian_sqrt: creating the augmented matrix')
    Q = standardized_to_augmented_C(Z)
    logging.debug('data_to_laplacian_sqrt: creating the column centered matrix')
    W = util.get_column_centered_matrix(Q)
    logging.debug('data_to_laplacian_sqrt: manually cleaning up old matrices')
    del Z
    del Q
    logging.debug('data_to_laplacian_sqrt: doing a singular value decomposition')
    U, S_array, VT = np.linalg.svd(W, full_matrices=0)
    S_pinv_array = np.array([0 if util.is_small(x) else 1/x for x in S_array])
    return U, S_pinv_array