Exemple #1
0
def test_aniso(view=False):
    pmap = vigra.readHDF5('./test_data/anisotropic/pmap.h5', 'data')

    ws_aniso_dt, n_labels_aniso = ws_anisotropic_distance_transform(
        pmap, 0.4, 10., 2.)
    check_consecutive(ws_aniso_dt)
    assert n_labels_aniso == ws_aniso_dt.max() + 1
    print "Anisotropic distance transform watershed done"

    res_dt = []
    res_gray = []
    for n_threads in (1, 4):
        ws_dt, n_labels_dt = ws_distance_transform_2d_stacked(
            pmap, 0.4, 2., n_threads=n_threads)
        check_consecutive(ws_dt)
        assert n_labels_dt == ws_dt.max() + 1, "%i, %i" % (n_labels_dt,
                                                           ws_dt.max() + 1)
        res_dt.append(n_labels_dt)
        print "Distance transform watershed done"

        ws_gray, n_labels_gray = ws_grayscale_distance_transform_2d_stacked(
            pmap, 0.1, 2., n_threads=n_threads)
        check_consecutive(ws_gray)
        assert n_labels_gray == ws_gray.max() + 1
        res_gray.append(n_labels_gray)
        print "Grayscale distance transform watershed done"

    assert res_dt[0] == res_dt[1]
    assert res_gray[0] == res_gray[1]

    if view:
        raw = vigra.readHDF5('./test_data/anisotropic/raw.h5', 'data')
        volumina_n_layer([raw, pmap, ws_aniso_dt, ws_dt, ws_gray],
                         ['raw', 'pmap', 'ws_aniso_dt', 'ws_dt', 'ws_gray'])
Exemple #2
0
def learn_rf():
    import cremi_tools.segmentation as cseg
    raw_path = '/home/papec/Work/neurodata_hdd/fib25/traintest/raw_train_normalized.h5'
    pmap_path = '/home/papec/Work/neurodata_hdd/fib25/traintest/probabilities_train.h5'
    assert os.path.exists(pmap_path), pmap_path
    ws_path = '/home/papec/Work/neurodata_hdd/fib25/traintest/overseg_train.h5'
    assert os.path.exists(ws_path), ws_path

    # load pmap and watersheds
    raw = vigra.readHDF5(raw_path, 'data').astype('float32')
    pmap = vigra.readHDF5(pmap_path, 'data')
    ws = vigra.readHDF5(ws_path, 'data').astype('uint64')
    assert ws.shape == pmap.shape

    # feature extractor and multicut
    rag = nrag.gridRag(ws, numberOfLabels=int(ws.max() + 1))
    # feature extractor and multicut
    feature_extractor = cseg.FeatureExtractor(True)
    features = feature_extractor(rag, pmap, ws, raw)

    gt_path = '/home/papec/Work/neurodata_hdd/fib25/traintest/gt_train.h5'
    gt = vigra.readHDF5(gt_path, 'data')
    node_labels = nrag.gridRagAccumulateLabels(rag, gt)
    uv_ids = rag.uvIds()
    labels = node_labels[uv_ids[:, 0]] != node_labels[uv_ids[:, 1]]
    assert len(labels) == len(features), "%i, %i" % (len(labels), len(features))

    print("learning rf from features", features.shape)
    rf = RandomForestClassifier(n_jobs=40, n_estimators=500)
    rf.fit(features, labels)
    with open('./rf.pkl', 'wb') as f:
        pickle.dump(rf, f)
def get_target(ds_str = "sopnetcompare_train"):

    assert ds_str in ("sopnetcompare_train",), ds_str # TODO more datasets!!!
    print "Loading Features and Labels for:", ds_str

    labelpath = '/home/constantin/Work/data_hdd/data_110915/sopnet_comparison/processed/facelabs/facelabs_mitooff.h5'
    ffeatpath = '/home/constantin/Work/data_hdd/cache/cached_datasets/sopnetcompare_train/features/ffeats/ffeat_bert_0_True.h5'

    feats = np.nan_to_num( vigra.readHDF5(ffeatpath, 'data') )

    import h5py
    lab_file = h5py.File(labelpath)
    key = lab_file.keys()[0]
    lab_file.close()

    labels = np.array( vigra.readHDF5(labelpath, key) )

    feats = feats[labels != 0.5]
    labels = labels[labels != 0.5]
    labels = labels[:,np.newaxis]

    assert all(np.unique(labels) == np.array([0, 1]))
    assert labels.shape[0] == feats.shape[0]

    labels = np.squeeze(labels)

    return (feats, labels)
def regression_test_cremi(samples):

    # run all multicuts
    for ds_test in samples:

        train_inputs = './cremi_inputs/%s/train_files.json' % ds_test
        assert os.path.exists(train_inputs), train_inputs

        test_inputs = './cremi_inputs/%s/test_files.json' % ds_test
        assert os.path.exists(test_inputs), test_inputs

        subprocess.call(['python', 'learn.py', train_inputs])

        subprocess.call(['python', 'mc.py', test_inputs])

    print "Eval Cremi"
    for ds_test in samples:

        vi_split_ref, vi_merge_ref, adapted_ri_ref = reference_values_mc[
            ds_test]

        test_inputs = './cremi_inputs/%s/test_files.json' % ds_test
        assert os.path.exists(test_inputs), test_inputs

        with open(test_inputs) as f:
            in_files = json.load(f)
            gt_p = in_files['gt']
            mc_p = os.path.join(in_files['cache'], 'MulticutSegmentation.h5')
        gt = vigra.readHDF5(gt_p, 'data')
        mc_seg = vigra.readHDF5(mc_p, 'data')

        print "Regression Test MC for %s..." % ds_test
        regression_test(gt, mc_seg, vi_split_ref, vi_merge_ref, adapted_ri_ref)
def compare_caches_train(cache_folder_1, cache_folder_2):

    files_1 = os.listdir(cache_folder_1)
    files_2 = os.listdir(cache_folder_2)

    # compare edge labels
    edge_labels_1 = [ff for ff in files_1 if ff.startswith('edge_gt')]
    assert len(edge_labels_1) == 1
    labels_1 = vigra.readHDF5(os.path.join(cache_folder_1, edge_labels_1[0]),
                              'data')

    edge_labels_2 = [ff for ff in files_2 if ff.startswith('edge_gt')]
    assert len(edge_labels_2) == 1
    labels_2 = vigra.readHDF5(os.path.join(cache_folder_2, edge_labels_2[0]),
                              'data')
    assert np.allclose(labels_1, labels_2), "%i / %i" % (np.sum(
        np.isclose(labels_1, labels_2)), len(labels_1))
    print "Passed labels check"

    # compare filters
    compare_caches_filters(cache_folder_1 + '/filters/filters_2d/inp_0',
                           cache_folder_2 + '/filters/filters_2d/inp_0')
    compare_caches_filters(cache_folder_1 + '/filters/filters_2d/inp_1',
                           cache_folder_2 + '/filters/filters_2d/inp_1')
    print "Passed filters check"

    # compare features
    compate_caches_feats(os.path.join(cache_folder_1, 'features'),
                         os.path.join(cache_folder_2, 'features'))
def view(filepaths,
         filekeys,
         names=None,
         types=None,
         swapaxes=None,
         crop=None):
    inputs = []
    this_type = None
    swp = None
    if crop is None:
        crop = np.s_[:, :, :]
    for idx, filepath in enumerate(filepaths):
        if types is not None:
            this_type = types[idx]
        if swapaxes is not None:
            swp = swapaxes[idx]
        if this_type is not None:
            inputs.append(
                vigra.readHDF5(filepath,
                               filekeys[idx]).astype(this_type)[crop])
        else:
            inputs.append(vigra.readHDF5(filepath, filekeys[idx])[crop])
        if swp is not None:
            inputs[-1] = inputs[-1].swapaxes(*swp)
        print inputs[-1].shape

        inputs[0][inputs[0] != 25] = 0
        # inputs[0][inputs[0] == 25] = 1

    volumina_viewer.volumina_n_layer(inputs, names)
    def get_data_x(self, data_name="train"):
        """Returns the desired data as a ready-to-use n x d sample (n instances with d features).

        :param data_name: name of the data, either "train" or "test"
        :return: data
        """
        if not data_name in ["train", "test"]:
            raise Exception(
                'LPData.get_data_x(): Parameter data_name must be either "train" or "test".'
            )

        if data_name == "train":
            file_names = self.feature_file_names_train
        elif data_name == "test":
            file_names = self.feature_file_names_test

        if len(file_names) == 0:
            raise Exception(
                "LPData.get_data_x(): There is no data that can be returned.")

        # Load the first feature to get the number of instances.
        d = vigra.readHDF5(file_names[0], self.feat_h5_key).flatten()
        data = numpy.zeros((d.shape[0], len(file_names)))
        data[:, 0] = d

        # Load the other features.
        for i, file_name in enumerate(file_names[1:]):
            data[:, i + 1] = vigra.readHDF5(file_name,
                                            self.feat_h5_key).flatten()

        return data
def segment_block(block_id, weight_edges=False, cached=False):
    import cremi_tools.segmentation as cseg
    raw_path = '/home/papec/Work/neurodata_hdd/fib25/raw/raw_block%i.h5' % block_id
    pmap_path = '/home/papec/Work/neurodata_hdd/fib25/pmaps/probs_squeezed_block%i.h5' % block_id
    ws_path = '/home/papec/Work/neurodata_hdd/fib25/watersheds/watershed_agglomerated_0.075000_block%i.h5' % block_id

    # load pmap and watersheds
    raw = vigra.readHDF5(raw_path, 'data').astype('float32')
    pmap = vigra.readHDF5(pmap_path, 'data')
    ws = vigra.readHDF5(ws_path, 'data')

    if cached:
        edge_probs = vigra.readHDF5('edge_probs_%i.h5' % block_id, 'data')
        rag = nrag.gridRag(ws, numberOfLabels=int(ws.max()) + 1)
        # TODO edge sizes
    else:
        # feature extractor and multicut
        feature_extractor = cseg.RandomForestFeatures('./rf.pkl', True)
        # make graph and costs
        rag, edge_probs, _, edge_sizes = feature_extractor(pmap, ws, raw=raw)
        vigra.writeHDF5(edge_probs, 'edge_probs_%i.h5' % block_id, 'data')
    graph = nifty.graph.undirectedGraph(rag.numberOfNodes)
    graph.insertEdges(rag.uvIds())

    mc = cseg.Multicut('kernighan-lin', weight_edges=weight_edges)
    if weight_edges:
        costs = mc.probabilities_to_costs(edge_probs, edge_sizes)
    else:
        costs = mc.probabilities_to_costs(edge_probs)
    node_labels = mc(graph, costs)
    return nrag.projectScalarNodeDataToPixels(rag, node_labels)
Exemple #9
0
def load_data(labels=None):
    """
    Load the data sets.

    :param labels: list with the labels that should be used
    :return: train_x, train_y, test_x, test_y
    """
    # Load the data.
    train_x = numpy.array(
        vigra.readHDF5("data/mnist/train.h5", "data").transpose())
    train_y = vigra.readHDF5("data/mnist/train.h5", "labels")
    test_x = numpy.array(
        vigra.readHDF5("data/mnist/test.h5", "data").transpose())
    test_y = vigra.readHDF5("data/mnist/test.h5", "labels")

    # Reduce the data to the given labels.
    if labels is not None:
        train_indices = numpy.array(
            [i for i, t in enumerate(train_y) if t in labels])
        train_x = train_x[train_indices]
        train_y = train_y[train_indices]
        test_indices = numpy.array(
            [i for i, t in enumerate(test_y) if t in labels])
        test_x = test_x[test_indices]
        test_y = test_y[test_indices]

    return train_x, train_y, test_x, test_y
Exemple #10
0
    def get_data_y(self, data_name="train", data_type="gt"):
        """Returns the desired ground truth labels.

        :param data_name: name of the data, either "train" or "test"
        :param data_type: type of the ground truth, either "gt" or "dists"
        :return:
        """
        if not data_name in ["train", "test"]:
            raise Exception(
                'LPData.get_data_y(): Parameter data_name must be either "train" or "test".'
            )
        if not data_type in ["gt", "dists"]:
            raise Exception(
                'LPData.get_data_y(): Parameter data_type must be either "gt" or "dists".'
            )

        # Load the desired data.
        if data_name == "train" and data_type == "gt":
            return vigra.readHDF5(self.gt_train_path,
                                  self.gt_train_key).flatten()
        if data_name == "train" and data_type == "dists":
            return vigra.readHDF5(self.dists_train_path,
                                  self.dists_h5_key).flatten()
        if data_name == "test" and data_type == "gt":
            return vigra.readHDF5(self.gt_test_path,
                                  self.gt_test_key).flatten()
        if data_name == "test" and data_type == "dists":
            return vigra.readHDF5(self.dists_test_path,
                                  self.dists_h5_key).flatten()
        raise Exception(
            "LPData.get_data_y(): Congratulations, you have reached unreachable code."
        )
Exemple #11
0
def eval_all(res):

    from NeuroMetrics import Metrics

    m = Metrics()

    res = vigra.readHDF5(res, "data").astype(np.uint32)
    gt = vigra.readHDF5(
        "/home/constantin/Work/neurodata_hdd/neuroproof_data/gt_test.h5",
        "data").astype(np.uint32)

    m.computeContingencyTable(gt.ravel(), res.ravel())

    #print "RI", m.randIndex()
    #print "VI", m.variationOfInformation()

    print
    #print "RandScore:", m.randScore()
    print "RandRecall:", m.randRecall()
    print "RandPrecision:", m.randPrecision()

    print
    #print "ViScore:", m.viScore()
    print "ViRecall:", m.viRecall()
    print "ViPrecision:", m.viPrecision()
Exemple #12
0
def load_neuro_data():
    """
    Load the neuro dataset.

    :return: train_x, train_y, test_x, test_y
    """
    # Load the data.
    train_x = vigra.readHDF5("data/neuro/train/ffeat_br_segid0.h5", "ffeat_br")
    train_y = numpy.array(
        vigra.readHDF5("data/neuro/train/gt_face_segid0.h5", "gt_face")[:, 0])
    test_x = vigra.readHDF5("data/neuro/test/ffeat_br_segid0.h5", "ffeat_br")
    test_y = numpy.array(
        vigra.readHDF5("data/neuro/test/gt_face_segid0.h5", "gt_face")[:, 0])
    assert train_x.shape[0] == train_y.shape[0]
    assert test_x.shape[0] == test_y.shape[0]
    assert train_x.shape[1] == test_x.shape[1]

    # Remove NaN values.
    to_remove = numpy.where(numpy.isnan(train_x))
    train_x = numpy.delete(train_x, to_remove, axis=0)
    train_y = numpy.delete(train_y, to_remove)
    to_remove = numpy.where(numpy.isnan(test_x))
    test_x = numpy.delete(test_x, to_remove, axis=0)
    test_y = numpy.delete(test_y, to_remove)

    return train_x, train_y, test_x, test_y
Exemple #13
0
def eval_block(block_id, res_prefix):
    gt = Volume(vigra.readHDF5('/home/papec/Work/neurodata_hdd/fib25/gt/gt_block%i.h5' % block_id,
                               'data'))
    res = Volume(vigra.readHDF5('%s_%i.h5' % (res_prefix, block_id), 'data'))
    metrics = NeuronIds(gt)
    are = metrics.adapted_rand(res)
    vi_s, vi_m = metrics.voi(res)
    return are, vi_s, vi_m
Exemple #14
0
def regression_test_nproof(cache_folder, data_folder):

    # if the cache does not exist, create it
    if not os.path.exists( os.path.join(cache_folder, 'nproof_train') ):
        meta = init(cache_folder, data_folder, 'nproof')
    else:
        meta = MetaSet(cache_folder)
        meta.load()

    # isbi params
    params = ExperimentSettings()
    params.rf_cache_folder = os.path.join(cache_folder, "rf_cache")
    params.use_2d = False
    params.anisotropy_factor = 1.
    params.ignore_mask = False
    params.n_trees = 500
    params.solver = "multicut_fusionmoves"
    params.lifted_neighborhood = 2

    local_feats_list  = ("raw", "prob", "reg", "topo")
    lifted_feats_list = ("cluster", "reg")

    ds_train = meta.get_dataset('nproof_train')
    ds_test  = meta.get_dataset('nproof_test')
    mc_seg  = run_mc( ds_train, ds_test, local_feats_list, params)

    lmc_seg = run_lmc(ds_train, ds_test, local_feats_list, lifted_feats_list, params, 2.)

    print "Regression Test MC..."
    # Eval differences with same parameters and according regression thresholds
    # vi-split: 0.31985479849 -> 0.35
    vi_split_ref = 0.35
    # vi-merge: 0.402968960935 -> 0.45
    vi_merge_ref = 0.45
    # adapted-ri: 0.122123986224 -> 0.15
    adapted_ri_ref = 0.15
    regression_test(
            vigra.readHDF5(os.path.join(data_folder,'gt_test.h5'), 'data'),
            mc_seg,
            vi_split_ref,
            vi_merge_ref,
            adapted_ri_ref
            )
    print "... passed"

    # Eval differences with same parameters and according regression thresholds
    # vi-split: 0.332745302066 => 0.4
    vi_split_ref = 0.4
    # vi-merge: 0.332349723508 => 0.4
    vi_merge_ref = 0.4
    # adapted-ri: 0.0942531472586 => 0.12
    adapted_ri_ref = 0.12

    regression_test(
            vigra.readHDF5(os.path.join(data_folder,'gt_test.h5'), 'data'),
            lmc_seg
            )
    print "... passed"
def merge_blocks(ovlp_ids, tmp_folder, offsets, ovlp_threshold):
    id_a, id_b = ovlp_ids
    path_a = os.path.join(tmp_folder, 'block_%i_%i.h5' % (id_a, id_b))
    path_b = os.path.join(tmp_folder, 'block_%i_%i.h5' % (id_b, id_a))
    ovlp_a = vigra.readHDF5(path_a, 'data')
    ovlp_b = vigra.readHDF5(path_b, 'data')
    offset_a, offset_b = offsets[id_a], offsets[id_b]

    assert ovlp_a.shape == ovlp_b.shape, "%s, %s" % (str(ovlp_a.shape), str(ovlp_b.shape))

    # need additional attributes to deterimine the actual overlap
    with h5py.File(path_a, 'r') as f:
        attrs = f['data'].attrs
        # we should maybe sanity check that these agree for block b
        ovlp_dim = attrs['overlap_dimension']
        ovlp_begin = attrs['overlap_begin']
        ovlp_end = attrs['overlap_end']

    # find the ids ON the actual block boundary
    ovlp_len = ovlp_a.shape[ovlp_dim]
    ovlp_dim_begin = ovlp_len // 2 if ovlp_len % 2 == 1 else ovlp_len // 2 - 1
    ovlp_dim_end = ovlp_len // 2 + 1
    boundary = tuple(slice(ovlp_begin[i], ovlp_end[i]) if i != ovlp_dim else
                     slice(ovlp_dim_begin, ovlp_dim_end) for i in range(3))

    # measure all overlaps
    overlaps_ab = ngt.overlap(ovlp_a, ovlp_b)
    overlaps_ba = ngt.overlap(ovlp_b, ovlp_a)
    node_assignment = []

    # find the ids ON the actual block boundary
    segments_a = np.unique(ovlp_a[boundary])
    segments_b = np.unique(ovlp_b[boundary])

    for seg_a in segments_a:

        # skip ignore label
        if seg_a == 0:
            continue
        ovlp_seg_a, counts_seg_a = overlaps_ab.overlapArraysNormalized(seg_a, sorted=True)

        seg_b = ovlp_seg_a[0]
        # skip ignore label
        if seg_b == 0:
            continue

        ovlp_seg_b, counts_seg_b = overlaps_ba.overlapArraysNormalized(seg_b, sorted=True)
        if ovlp_seg_b[0] != seg_a or seg_b not in segments_b:
            continue

        ovlp_measure = (counts_seg_a[0] + counts_seg_b[0]) / 2.
        if ovlp_measure > ovlp_threshold:
            node_assignment.append([seg_a + offset_a, seg_b + offset_b])

    if node_assignment:
        return np.array(node_assignment, dtype='uint64')
    else:
        return None
Exemple #16
0
def regression_test_isbi(cache_folder, data_folder):

    # if the cache does not exist, create it
    if not os.path.exists(os.path.join(cache_folder, 'isbi_train')):
        meta = init(cache_folder, data_folder, 'isbi')
    else:
        meta = MetaSet(cache_folder)
        meta.load()

    # isbi params
    params = ExperimentSettings()
    params.rf_cache_folder = os.path.join(cache_folder, "rf_cache")
    params.use_2d = True
    params.anisotropy_factor = 25.
    params.learn_2d = True
    params.ignore_mask = False
    params.n_trees = 500
    params.weighting_scheme = "z"
    params.solver = "multicut_fusionmoves"

    local_feats_list = ("raw", "prob", "reg", "topo")
    lifted_feats_list = ("mc", "cluster", "reg")

    ds_train = meta.get_dataset('isbi_train')
    ds_test = meta.get_dataset('isbi_test')
    mc_seg = run_mc(ds_train, ds_test, local_feats_list, params)
    lmc_seg = run_lmc(ds_train, ds_test, local_feats_list, lifted_feats_list,
                      params, 2.)

    #vigra.writeHDF5(mc_seg, './cache_isbi/isbi_test/mc_seg.h5', 'data', compression = 'gzip')
    #vigra.writeHDF5(lmc_seg, './cache_isbi/isbi_test/lmc_seg.h5', 'data', compression = 'gzip')

    print "Regression Test MC..."
    # Eval differences with same parameters and according regression thresholds
    # vi-split:   0.0718660622942 -> 0.1
    vi_split_ref = 0.1
    # vi-merge:   0.0811051987574 -> 0.1
    vi_merge_ref = 0.1
    # adapted-ri: 0.0218391269081 -> 0.05
    adapted_ri_ref = 0.05
    regression_test(
        vigra.readHDF5(os.path.join(data_folder, 'mc_seg.h5'), 'data'), mc_seg,
        vi_split_ref, vi_merge_ref, adapted_ri_ref)
    print "... passed"

    print "Regression Test LMC..."
    # Eval differences with same parameters and according regression thresholds
    # vi-split: 0.161923549092 -> 0.2
    vi_split_ref = 0.2
    # vi-merge: 0.0792288680404 -> 0.1
    vi_merge_ref = 0.1
    # adapted-ri: 0.0334914933439 -> 0.05
    adapted_ri_ref = 0.05
    regression_test(
        vigra.readHDF5(os.path.join(data_folder, 'lmc_seg.h5'), 'data'),
        lmc_seg, vi_split_ref, vi_merge_ref, adapted_ri_ref)
    print "... passed"
Exemple #17
0
def view_res(res):
    from volumina_viewer import volumina_n_layer

    raw = vigra.readHDF5(
        "/home/constantin/Work/neurodata_hdd/neuroproof_data/raw_test.h5",
        "data")
    res = vigra.readHDF5(res, "data").astype(np.uint32)
    gt = vigra.readHDF5(
        "/home/constantin/Work/neurodata_hdd/neuroproof_data/gt_test.h5",
        "data").astype(np.uint32)

    volumina_n_layer([raw, res, gt])
def compare_caches_filters(filter_folder_1, filter_folder_2):
    filters = os.listdir(filter_folder_1)

    for ff in filters:
        ff1 = os.path.join(filter_folder_1, ff)
        ff2 = os.path.join(filter_folder_2, ff) + '00000'
        assert os.path.exists(ff2), ff2
        filt1 = vigra.readHDF5(ff1, 'data')
        filt2 = vigra.readHDF5(ff2, 'data')
        assert np.allclose(
            filt1, filt2), "%s: %i / %i" % (ff, np.sum(np.isclose(
                filt1, filt2)), filt1.size)
Exemple #19
0
def path_eval_on_sample(sample, half, defect_correct, project_folder,
                        thresh_range):

    from evaluation import compute_path_error_rates

    print '\nEvaluating spl{}_z{}'.format(sample, half)
    print '--------------------'

    if defect_correct:
        defect_correct_str = '_defect_correct'
    else:
        defect_correct_str = ''

    # Load stuff
    source_folder = '/mnt/ssd/jhennies/neuraldata/cremi_2016/170606_resolve_false_merges/'
    # TODO: Change here
    experiment_folder = os.path.join(project_folder,
                                     'spl{}_z{}/'.format(sample, half))
    meta_folder = os.path.join(project_folder, 'cache/')

    test_name = 'spl{}_z{}'.format(sample, half)

    path_data_path = os.path.join(meta_folder,
                                  'spl{}_z{}/path_data'.format(sample, half))
    path_data_filepath = os.path.join(path_data_path,
                                      'paths_ds_{}.h5'.format(test_name))

    # TODO Change here when switching sample
    gt_file = os.path.join(
        source_folder,
        'cremi.spl{}.train.raw_neurons{}.crop.axes_xyz.split_z.h5').format(
            sample, defect_correct_str)
    # TODO Change here when switching half
    gt_key = 'z/{}/neuron_ids'.format(half)
    gt = vigra.readHDF5(gt_file, gt_key)

    # Load paths
    paths = vigra.readHDF5(path_data_filepath, 'all_paths')
    if paths.size:
        paths = np.array([path.reshape((len(path) / 3, 3)) for path in paths])
    paths_to_objs = vigra.readHDF5(path_data_filepath, 'paths_to_objs')
    with open(os.path.join(path_data_path,
                           'false_paths_predictions.pkl')) as f:
        false_merge_probs = pickle.load(f)

    print 'Number of paths = {}'.format(len(paths_to_objs))
    print 'Number of objects = {}'.format(len(np.unique(paths_to_objs)))

    # Determine path error rates
    result_path, result_obj = compute_path_error_rates(
        paths_to_objs, paths, gt, false_merge_probs, thresh_range=thresh_range)

    return result_path, result_obj
def make_superpix_isbi2013(superpix = True):
    path_probs = "/home/constantin/Work/data_ssd/data_150615/isbi2013/pixel_probs/test-probs-nn.h5"
    key_probs  = "exported_data"

    path_raw = "/home/constantin/Work/data_ssd/data_150615/isbi2013/test-input.h5"
    key_raw  = "data"

    probs = vigra.readHDF5(path_probs, key_probs)
    probs = np.squeeze(probs)

    probs = np.array(probs)
    probs  = 1. - probs

    raw = vigra.readHDF5(path_raw, key_raw)

    #volumina_n_layer( (raw, probs) )
    #quit()

    if superpix:
        # use superpixel algorithm to segment the image
        # stack 2d segmented images
        segmentation = np.zeros( (probs.shape[0], probs.shape[1], probs.shape[2]) ,dtype = np.uint32)
        seeds = np.zeros( (probs.shape[0], probs.shape[1], probs.shape[2]) ,dtype = np.uint32)
        weights = np.zeros( (probs.shape[0], probs.shape[1], probs.shape[2]) ,dtype = np.uint32)
        # need offset to keep superpixel of the individual layers seperate!
        offset = 0
        for layer in range(probs.shape[2]):
        	if layer != 0:
        		offset = np.max(segmentation[:,:,layer-1])
        	#segmentation[:,:,layer] = watershed_superpixel_vigra(probs[:,:,layer], offset)
                res_wsdt = watershed_distancetransform_2d(probs[:,:,layer], offset)
        	segmentation[:,:,layer] = res_wsdt[0]
                seeds[:,:,layer] = res_wsdt[1]
        	weights[:,:,layer] = res_wsdt[2]

        #segmentation[:,:,2] = watershed_distancetransform_2d( probs[:,:,2], 0 )
        volumina_n_layer( (probs, segmentation, seeds, weights) )

    else:
        # use supervoxel algorithm to segment the image
        segmentation = watershed_distancetransform_3d(probs)
        volumina_n_layer( (raw, probs, segmentation) )

    print "Number of superpixels:", segmentation.max()
    #quit()

    path = "/home/constantin/Work/data_ssd/data_150615/isbi2013/superpixel/"

    name = "watershed_nn_dt_supervox_test"

    fpath = path + name + ".h5"
    vigra.impex.writeHDF5(segmentation, fpath, "superpixel" )
def view_isbi():
    raw = vigra.readHDF5('./cache_isbi/isbi_test/inp0.h5', 'data')
    pmap = vigra.readHDF5('./cache_isbi/isbi_test/inp1.h5', 'data')
    seg = vigra.readHDF5('./cache_isbi/isbi_test/seg0.h5', 'data')

    seg_mc = vigra.readHDF5('./cache_isbi/isbi_test/mc_seg.h5', 'data')
    seg_ref_mc = vigra.readHDF5('./data/isbi/mc_seg.h5', 'data')

    #seg_lmc = vigra.readHDF5('./cache_isbi/isbi_test/lmc_seg.h5', 'data')
    #seg_ref_lmc = vigra.readHDF5('./data/isbi/lmc_seg.h5', 'data')

    volumina_n_layer([raw, pmap, seg, seg_mc, seg_ref_mc],
                     ['raw', 'pmap', 'seg', 'seg_mc', 'seg_ref_mc'])
def get_source(ds_str = "pedunculus"):
    assert ds_str in ("pedunculus",), ds_str # TODO more datasets!!!
    print "Loading Features and Labels for:", ds_str

    labelpath = '/home/constantin/Work/data_hdd/cache/cached_datasets/pedunculus/gt_face_segid1.h5'
    ffeatpath = '/home/constantin/Work/data_hdd/cache/cached_datasets/pedunculus/features/ffeats/ffeat_bert_1_True.h5'

    feats  = np.nan_to_num( vigra.readHDF5(ffeatpath, 'data') )
    labels = np.squeeze( vigra.readHDF5(labelpath, 'gt_face') )

    assert feats.shape[0] == labels.shape[0]

    return (feats, labels)
Exemple #23
0
    def read(self):
        labelsPath = vigra.readHDF5(self.path, "labelsPath")
        labelsKey = vigra.readHDF5(self.path, "labelsKey")
        with h5py.File(self.path) as f:
            dtype = f.attrs['dtype']

        if PipelineParameter().useN5Backend:
            labels = nz5.datasetWrapper(dtype, os.path.join(labelsPath, labelsKey))
        else:
            h5_file = nh5.openFile(labelsPath)
            labels = nh5.Hdf5Array(dtype, h5_file, labelsKey)
        nNodes = vigra.readHDF5(self.path, "numberOfNodes")
        return nrag.readStackedRagFromHdf5(labels, nNodes, self.path)
Exemple #24
0
def gt_isbi2012():
    labels_path = "/home/constantin/Work/data_ssd/data_090615/isbi2012/train-labels.h5"
    raw_path    = "/home/constantin/Work/data_ssd/data_090615/isbi2012/train-volume.h5"

    labels      = vigra.readHDF5(labels_path, "labels")
    raw         = vigra.readHDF5(raw_path, "data")

    labels      = preprocess_for_bgsmoothing_isbi2012(labels)
    gt          = smooth_background(labels).astype(np.uint32)

    volumina_n_layer( (raw, labels, gt) )

    gt_path = "/home/constantin/Work/data_ssd/data_090615/isbi2012/groundtruth/ground_truth_seg.h5"
Exemple #25
0
def regression_test_snemi(cache_folder, data_folder):

    # if the cache does not exist, create it
    if not os.path.exists(os.path.join(cache_folder, 'snmei_train')):
        meta = init(cache_folder, data_folder, 'snemi')
    else:
        meta = MetaSet(cache_folder)
        meta.load()

    # isbi params
    params = ExperimentSettings()
    params.rf_cache_folder = os.path.join(cache_folder, "rf_cache")
    params.use_2d = True
    params.learn_fuzzy = True
    params.anisotropy_factor = 5.
    params.ignore_mask = False
    params.n_trees = 500
    params.weighting_scheme = "all"
    params.solver = "multicut_exact"
    params.lifted_neighborhood = 3

    local_feats_list = ("raw", "prob", "reg", "topo")
    lifted_feats_list = ("cluster", "reg")

    ds_train = meta.get_dataset('snemi_train')
    ds_test = meta.get_dataset('snemi_test')
    mc_seg = run_mc(ds_train, ds_test, local_feats_list, params)
    gamma = 10000.
    lmc_seg = run_lmc(ds_train, ds_test, local_feats_list, lifted_feats_list,
                      params, gamma)

    print "Regression Test MC..."
    # Eval differences with same parameters and according regression thresholds
    # vi-split: 0.0501385345177 -> 0.1
    vi_split_ref = 0.1
    # vi-merge: 0.049803253098 -> 0.1
    vi_merge_ref = 0.1
    # adaptred-ri: 0.0170138077554 -> 0.05
    adapted_ri_ref = 0.05
    regression_test(
        vigra.readHDF5(os.path.join(data_folder, 'mc_seg.h5'), 'data'), mc_seg,
        vi_split_ref, vi_merge_ref, adapted_ri_ref)
    print "... passed"

    print "Regression Test LMC..."
    # FIXME why are these differences so big?
    # vi-split: 0.291149212478 0.141228313621 0.0536859650649
    regression_test(
        vigra.readHDF5(os.path.join(data_folder, 'lmc_seg.h5'), 'data'),
        lmc_seg)
    print "... passed"
Exemple #26
0
def view_test():

    raw = vigra.readHDF5(
        "/home/constantin/Work/neurodata_hdd/snemi3d_data/raw/test-input.h5",
        "data")
    icv1 = vigra.readHDF5(
        "/home/constantin/Work/neurodata_hdd/snemi3d_data/probabilities/pmaps_icv1_test.h5",
        "data")
    ciresan = vigra.readHDF5(
        "/home/constantin/Work/neurodata_hdd/snemi3d_data/probabilities/pmaps_ciresan_test.h5",
        "data")

    volumina_n_layer([raw, icv1, ciresan],
                     ["raw", "pmap-icv1", "pmap-ciresan"])
    def merge_blocks(ovlp_ids):
        id_a, id_b = ovlp_ids
        path_a = os.path.join(tmp_folder, 'block_%i_%i.h5' % (id_a, id_b))
        path_b = os.path.join(tmp_folder, 'block_%i_%i.h5' % (id_b, id_a))
        ovlp_a = vigra.readHDF5(path_a, 'data')
        ovlp_b = vigra.readHDF5(path_b, 'data')
        offset_a, offset_b = offsets[id_a], offsets[id_b]
        ovlp_a += offset_a
        ovlp_b += offset_b

        with h5py.File(path_a) as f:
            coords_a = f['data'].attrs['coords']
        with h5py.File(path_b) as f:
            coords_b = f['data'].attrs['coords']

        if ovlp_a.shape != ovlp_b.shape:
            print(coords_a)
            print(coords_b)
            assert ovlp_a.shape == ovlp_b.shape, "%s, %s" % (str(
                ovlp_a.shape), str(ovlp_b.shape))

        # bb_a = tuple(slice(c_a[0], c_a[1]) for c_a in coords_a)
        # bb_b = tuple(slice(c_b[0], c_b[1]) for c_b in coords_b)
        # affs_a = ds_xy[bb_a]
        # affs_b = ds_xy[bb_b]
        # view([affs_a, ovlp_a, affs_b, ovlp_b], ['affs_a', 'seg_b', 'affs_b', 'seg_b'])
        # # quit()

        # measure all overlaps
        segments_a = np.unique(ovlp_a)
        overlaps_ab = ngt.overlap(ovlp_a, ovlp_b)
        overlaps_ba = ngt.overlap(ovlp_b, ovlp_a)
        node_assignment = []
        for seg_a in segments_a:
            ovlp_seg_a, counts_seg_a = overlaps_ab.overlapArraysNormalized(
                seg_a, sorted=True)
            seg_b = ovlp_seg_a[0]
            ovlp_seg_b, counts_seg_b = overlaps_ba.overlapArraysNormalized(
                seg_b, sorted=True)
            if ovlp_seg_b[0] != seg_a:
                continue

            ovlp_measure = (counts_seg_a[0] + counts_seg_b[0]) / 2.
            if ovlp_measure > ovlp_threshold:
                node_assignment.append([seg_a, seg_b])

        if node_assignment:
            return np.array(node_assignment, dtype='uint64')
        else:
            return None
        def singleFunctionTest(feature_function, name):

            def singleFeatureTest(fu, typ, zDir):
                xname = 'feats_%s_%s_%i_xy.h5' % (name, typ, zDir)
                zname = 'feats_%s_%s_%i_z.h5' % (name, typ, zDir)
                xy_file = nh5.createFile(xname)
                z_file = nh5.createFile(zname)
                xy_shape = [
                    rag.totalNumberOfInSliceEdges if typ in ('xy', 'both') else 1,
                    9 if name == 'standard' else 9 * 12
                ]
                xy_chunks = [min(2500, xy_shape[0]), xy_shape[1]]
                z_shape = [
                    rag.totalNumberOfInBetweenSliceEdges if typ in ('z', 'both') else 1,
                    9 if name == 'standard' else 9 * 12
                ]
                z_chunks = [min(2500, z_shape[0]), z_shape[1]]
                xy_array = nh5.hdf5Array('float32', xy_file, 'data', xy_shape, xy_chunks)
                z_array = nh5.hdf5Array('float32', z_file, 'data', z_shape, z_chunks)
                fu(rag, self.dataArray, xy_array, z_array, zDirection=zDir)
                xfeats = xy_array.readSubarray([0, 0], xy_shape)
                zfeats = z_array.readSubarray([0, 0], z_shape)
                nh5.closeFile(xy_file)
                nh5.closeFile(z_file)
                os.remove(xname)
                os.remove(zname)
                return xname, zname, xfeats, zfeats

            for typ in ('both', 'xy', 'z'):
                if typ == 'both':
                    new_fu = partial(feature_function, keepXYOnly=False, keepZOnly=False)
                elif typ == 'xy':
                    new_fu = partial(feature_function, keepXYOnly=True, keepZOnly=False)
                elif typ == 'z':
                    new_fu = partial(feature_function, keepXYOnly=False, keepZOnly=True)

                if typ == 'z':
                    for zDir in (0, 1, 2):
                        _, zname, _, zfeats = singleFeatureTest(new_fu, typ, zDir)
                        ref_feats = vigra.readHDF5(os.path.join('./features', zname), 'data')
                        self.assertTrue(numpy.allclose(zfeats, ref_feats))

                else:
                    zDir = 0
                    xname, zname, xfeats, zfeats = singleFeatureTest(new_fu, typ, zDir)
                    ref_feats_xy = vigra.readHDF5(os.path.join('./features', xname), 'data')
                    self.assertTrue(numpy.allclose(xfeats, ref_feats_xy))
                    if typ == 'both':
                        ref_feats_z = vigra.readHDF5(os.path.join('./features', zname), 'data')
                        self.assertTrue(numpy.allclose(zfeats, ref_feats_z))
def compare_all_segmentations():
    aff_path = '/home/papec/mnt/papec/sampleB+_affs_cut.h5'
    print("Loading affinities")
    affs = 1. - vigra.readHDF5(aff_path, 'data')
    print(affs.dtype, affs.min(), affs.max())
    print("Computing watershed")
    lrws = cseg.LRAffinityWatershed(threshold_cc=0.1, threshold_dt=0.2, sigma_seeds=2.)
    ws, n_labels = lrws(affs)
    print("Computing RAG")
    rag = nrag.gridRag(ws, numberOfLabels=n_labels+1)

    offsets = [[-1, 0, 0], [0, -1, 0], [0, 0, -1],
               [-2, 0, 0], [0, -3, 0], [0, 0, -3],
               [-3, 0, 0], [0, -9, 0], [0, 0, -9],
               [-4, 0, 0], [0, -27, 0], [0, 0, -27]]

    print("computing features")
    lifted_uvs, local_features, lifted_features = full_features(rag, affs, offsets)
    # nearest_probs = nearest_features(rag, affs)
    local_probs = local_features[:, 0]
    lifted_probs = lifted_features[:, 0]

    # load random forests
    rf_folder = '/home/papec/mnt/papec/Work/neurodata_hdd/cremi_warped/random_forests'
    with open(os.path.join(rf_folder, 'rf_ABC_local_affinity_feats.pkl'), 'rb') as f:
        rf1 = pickle.load(f)

    rf_local_probs = rf1.predict_proba(local_features)[:, 1]
    with open(os.path.join(rf_folder, 'rf_ABC_lifted_affinity_feats.pkl'), 'rb') as f:
        rf2 = pickle.load(f)
    rf_lifted_probs = rf2.predict_proba(lifted_features)[:, 1]

    print("computing multicuts")
    mc_local = mc(rag, local_probs)
    # mc_nearest = mc(rag, nearest_probs)
    mc_rf = mc(rag, rf_local_probs)

    print("computing lifted multicuts")
    lmc_local = lmc(rag, lifted_uvs, local_probs, lifted_probs)
    # lmc_nearest = lmc(rag, lifted_uvs, nearest_probs, lifted_probs)
    lmc_rf = lmc(rag, lifted_uvs, rf_local_probs, rf_lifted_probs)

    # print("Running MWS clustering")
    # mws_seg = mws_clustering(*lifted_problem)

    raw_path = '/home/papec/mnt/papec/sampleB+_raw_cut.h5'
    raw = vigra.readHDF5(raw_path, 'data')
    view([raw, ws, mc_local, mc_rf, lmc_local, lmc_rf],
         ['raw', 'ws', 'mc-local', 'mc-rf', 'lmc-local', 'lmc-rf'])
Exemple #30
0
def load_large_neuro_data():
    """
    Load the large neuro dataset.

    :return: data_x, data_y
    """
    data_x = vigra.readHDF5("data/neuro/test/ffeat_br_segid0.h5", "ffeat_br")
    data_y = numpy.array(vigra.readHDF5("data/neuro/test/gt_face_segid0.h5", "gt_face")[:, 0])
    assert data_x.shape[0] == data_y.shape[0]

    # Remove NaN values.
    to_remove = numpy.where(numpy.isnan(data_x))
    data_x = numpy.delete(data_x, to_remove, axis=0)
    data_y = numpy.delete(data_y, to_remove)
    return data_x, data_y
Exemple #31
0
def load_very_small_neuro_data():
    """
    Load the 1000 neuro dataset.

    :return: data_x, data_y
    """
    data_x = vigra.readHDF5("data/neuro/neuro_1000_raw_gt.h5", "raw")
    data_y = vigra.readHDF5("data/neuro/neuro_1000_raw_gt.h5", "gt")

    # Remove NaN values.
    to_remove = numpy.where(numpy.isnan(data_x))
    data_x = numpy.delete(data_x, to_remove, axis=0)
    data_y = numpy.delete(data_y, to_remove)

    return data_x, data_y
Exemple #32
0
def view_res(sample):

    in_file = './cremi_inputs/%s/test_files.json' % sample
    with open(in_file) as f:
        inputs = json.load(f)
    raw = vigra.readHDF5(inputs['data'][0], 'data').astype('uint32')
    pmap = vigra.readHDF5(inputs['data'][1], 'data')
    seg = vigra.readHDF5(inputs['seg'], 'data')
    gt = vigra.readHDF5(inputs['gt'], 'data')
    mc_path = os.path.join(inputs['cache'], 'MulticutSegmentation.h5')
    assert os.path.exists(mc_path)
    mc = vigra.readHDF5(mc_path, 'data')

    volumina_n_layer([raw, pmap, seg, gt, mc],
                     ['raw', 'pmap', 'seg', 'gt', 'mc'])
Exemple #33
0
def load_very_small_neuro_data():
    """
    Load the 1000 neuro dataset.

    :return: data_x, data_y
    """
    data_x = vigra.readHDF5("data/neuro/neuro_1000_raw_gt.h5", "raw")
    data_y = vigra.readHDF5("data/neuro/neuro_1000_raw_gt.h5", "gt")

    # Remove NaN values.
    to_remove = numpy.where(numpy.isnan(data_x))
    data_x = numpy.delete(data_x, to_remove, axis=0)
    data_y = numpy.delete(data_y, to_remove)

    return data_x, data_y
Exemple #34
0
    def process_overlap(ovlp_ids):
        id_a, id_b = ovlp_ids
        ovlp_a = vigra.readHDF5(
            os.path.join(tmp_folder, 'block_%i_%i.h5' % (id_a, id_b)), 'data')
        ovlp_b = vigra.readHDF5(
            os.path.join(tmp_folder, 'block_%i_%i.h5' % (id_b, id_a)), 'data')

        # match the non-zero ids
        labeled = ovlp_a != 0
        ids_a, ids_b = ovlp_a[labeled], ovlp_b[labeled]
        node_assignment = np.concatenate([ids_a[None], ids_b[None]],
                                         axis=0).transpose()
        if node_assignment.size:
            node_assignment = np.unique(node_assignment, axis=0)
            return node_assignment
Exemple #35
0
def save_all_features_for_all_files(path_to_files,features_path=None,classes_path=None):
    """
    Computes all paths for all soundfiles and saves them in a feature_vector to a file with the names if wanted

    :param path_to_files:
    :param path_to_save:
    :return: 1. array with all features for all soundwaves and 2. all the according classes
    """

    if features_path!=None and classes_path!=None:
        if os.path.exists(features_path) and os.path.exists(classes_path):
            print("Features and classes exist, loading")
            features_of_all=readHDF5(features_path, "features")
            soundtypes=np.load(classes_path)

            return features_of_all,soundtypes

    soundwaves,soundtypes,actual_file_names=import_sounds(path_to_files)

    features_of_all=np.array([extract_features(np.float64(soundwave),samplingrate,soundtypes[idx_soundwave]) for idx_soundwave,(samplingrate,soundwave)
                      in enumerate(soundwaves)])

    if features_path!=None and classes_path!=None:
        print("Saving features")

        writeHDF5(features_of_all,features_path,"features",compression="gzip")
        np.save(classes_path,soundtypes)

    return features_of_all,soundtypes
def extract_paths_from_segmentation(
        ds,
        seg_path,
        key,
        paths_cache_folder=None, anisotropy=[1,1,10]):
    """
        extract paths from segmentation, for pipeline
    """

    if False:
        pass

    else:

        seg = vigra.readHDF5(seg_path, key)
        dt = ds.inp(ds.n_inp - 1)
        all_paths = []
        paths_to_objs = []

        # #creating distance transform of whole volume for border near paths
        # volume_expanded = np.ones((dt.shape[0]+2,dt.shape[1]+2,dt.shape[1]+2))
        # volume_expanded[1:-1, 1:-1, 1:-1] = 0
        # volume_dt = vigra.filters.distanceTransform(
        #     volume_expanded.astype("uint32"), background=True,
        #     pixel_pitch=[10, 1, 1])[1:-1, 1:-1, 1:-1]
        #
        # #threshhold for distance transform for picking terminal
        # #points near boundary
        # threshhold_boundary=30
        # volume_where_threshhold = np.where(volume_dt > threshhold_boundary)
        # volume_dt_boundaries = np.s_[min(volume_where_threshhold[0]):max(volume_where_threshhold[0]),
        #                        min(volume_where_threshhold[1]):max(volume_where_threshhold[1]),
        #                        min(volume_where_threshhold[2]):max(volume_where_threshhold[2])]

        #for counting and debugging purposes
        len_uniq=len(np.unique(seg))-1

        centres_dict = compute_border_contacts_old(seg, dt)

        #parallelized path computation
        parallel_array=[parallel_wrapper(seg, dt, gt,
                                       anisotropy, key, len_uniq,
                                         centres_dict[key],"testing")
                         if len(centres_dict[key]) > 0 else parallel_wrapper(seg, dt, gt,
                                       anisotropy, key, len_uniq,
                                         [],"testing") for key in centres_dict.keys()]

        [[all_paths.append(path)
           for path in seg_array[0] if seg_array!=[]]
            for seg_array in parallel_array]

        [[paths_to_objs.append(path_to_obj)
          for path_to_obj in seg_array[1] if seg_array!=[]]
            for seg_array in parallel_array]

        all_paths=np.array(all_paths)
        paths_to_objs=np.array(paths_to_objs, dtype="float64")


    return all_paths, paths_to_objs
    def run(self):

        inp = self.input()
        seg = inp["seg"]
        seg.open(self.keyToSeg)

        # if we have defects, we need to skip the completly defected slices in the node extraction,
        # because nodes inside them are completely excluded from the graph now
        if PipelineParameter().defectPipeline:
            defect_slices = vigra.readHDF5(inp["defect_slices"].path, 'defect_slices').astype('int64').tolist()
            workflow_logger.info("NodesToBlocks: Skipping slices %s due to defects." % str(defect_slices))
        else:
            defect_slices = []

        blocking = nifty.tools.blocking(roiBegin=[0, 0, 0],
                                        roiEnd=seg.shape(self.keyToSeg),
                                        blockShape=self.blockShape)
        number_of_blocks = blocking.numberOfBlocks
        block_overlap = list(self.blockOverlap)

        n_workers = min(number_of_blocks, PipelineParameter().nThreads)
        # nWorkers = 1
        block_result = nifty.tools.nodesToBlocksStacked(seg.get(self.keyToSeg),
                                                        blocking,
                                                        block_overlap,
                                                        defect_slices,
                                                        n_workers)

        block_result = [np.array(b_res, dtype=self.dtype) for b_res in block_result]
        self.output().writeVlen(block_result)
        seg.close()
Exemple #38
0
    def label_names(self):
        """Returns the names of the labels of the dataset.

        :return: names of the labels of the dataset
        :rtype: numpy.ndarray
        """
        return vigra.readHDF5(self.project_filename, const.label_names())
def make_superpix_isbi2012():
    path_probs = "/home/constantin/Work/data_ssd/data_090615/isbi2012/pixel_probabilities/probs_train_final.h5"
    #path_unet = "/home/constantin/Work/data_ssd/data_090615/isbi2012/u-net_probs/u-net_probs_test.h5"
    key_probs  = "exported_data"

    probs = vigra.readHDF5(path_probs, key_probs)
    probs = np.squeeze(probs)
    #probs  = 1. - probs

    # use superpixel algorithm to segment the image
    # stack 2d segmented images
    segmentation = np.zeros( (probs.shape[0], probs.shape[1], probs.shape[2]) )

    # need offset to keep superpixel of the individual layers seperate!
    offset = 0

    for layer in range(probs.shape[2]):
    	if layer != 0:
    		offset = np.max(segmentation[:,:,layer-1])

        res_wsdt = watershed_distancetransform_2d(probs[:,:,layer], offset)
        segmentation[:,:,layer] = res_wsdt[0]

    #volumina_double_layer(probs,segmentation)
    #quit()

    path = "/home/constantin/Work/data_ssd/data_090615/isbi2012/superpixel/"

    name = "watershed_dt_train"

    fpath = path + name + ".h5"
    vigra.impex.writeHDF5(segmentation, fpath, "superpixel" )
def project_gt_isbi2012():
    labels_path = "/home/constantin/Work/data_ssd/data_090615/isbi2012/train-labels.h5"
    gt_path     = "/home/constantin/Work/data_ssd/data_090615/isbi2012/groundtruth/gt_mc.h5"
    raw_path    = "/home/constantin/Work/data_ssd/data_090615/isbi2012/train-volume.h5"

    labels  = vigra.readHDF5(labels_path, "labels")
    gt      = vigra.readHDF5(gt_path, "gt")
    raw     = vigra.readHDF5(raw_path, "data")

    gt = project_gt(labels, gt)

    save_path     = "/home/constantin/Work/data_ssd/data_090615/isbi2012/groundtruth/gt_mc_bkg.h5"

    volumina_n_layer( (raw, gt, labels) )

    vigra.writeHDF5(gt, save_path, "gt")
def make_superpix_sopnetcomparison():
    path_probs = "/home/constantin/Work/data_ssd/data_110915/sopnet_comparison/pixel_probabilities/probs-final_autocontext.h5"
    key_probs = "data"

    probs = vigra.readHDF5(path_probs, key_probs)

    segmentation = np.zeros( (probs.shape[0], probs.shape[1], probs.shape[2]) ,dtype = np.uint32)
    seeds        = np.zeros( (probs.shape[0], probs.shape[1], probs.shape[2]) ,dtype = np.uint32)
    weights      = np.zeros( (probs.shape[0], probs.shape[1], probs.shape[2]) ,dtype = np.uint32)

    # need offset to keep superpixel of the individual layers seperate!
    offset = 0
    for layer in range(probs.shape[2]):
    	if layer != 0:
    		offset = np.max(segmentation[:,:,layer-1])
    	#segmentation[:,:,layer] = watershed_superpixel_vigra(probs[:,:,layer], offset)
        res_wsdt = watershed_distancetransform_2d(probs[:,:,layer], offset)
    	segmentation[:,:,layer] = res_wsdt[0]
        seeds[:,:,layer] = res_wsdt[1]
    	weights[:,:,layer] = res_wsdt[2]

    #segmentation[:,:,2] = watershed_distancetransform_2d( probs[:,:,2], 0 )

    print "Number of superpixels:", segmentation.max()

    path = "/home/constantin/Work/data_ssd/data_110915/sopnet_comparison/superpixel/"
    name = "watershed_dt_mitooff"
    fpath = path + name + ".h5"

    vigra.impex.writeHDF5(segmentation, fpath, "superpixel" )
def make_superpix_from_intepolation(prob_path, prob_key, save_path, anisotropy):
    from wsDtSegmentation import wsDtSegmentation

    pmem = vigra.readHDF5(prob_path, prob_key)

    print pmem.shape
    print anisotropy

    # for some datasets, we have to invert the probabilities
    #probs = 1. - probs

    # interpolate the probability in z - direction
    print "doing spline interpolation"
    pmem_interpol = vigra.sampling.resize(pmem, shape=(pmem.shape[0], pmem.shape[1], anisotropy* pmem.shape[2]))
    pmem_interpol = np.array(pmem_interpol)
    print "Finished interpolation"

    superpix = wsDtSegmentation(pmem_interpol, 0.45, 20, 100, 1.6, 2.)[0]

    superpix = superpix[:,:,::anisotropy]

    #volumina_n_layer( [pmem, superpix.astype(np.uint32)] )

    assert superpix.shape == pmem.shape

    vigra.writeHDF5(superpix, save_path, "superpixel")
Exemple #43
0
    def compare_rags_from_files(labels_file, labels_key):

        with vigra.Timer("Chunked Nifty Rag"):
            rag_c = chunked_rag(labels_file, labels_key, numberOfThreads = 1)
        edges_c = rag_c.numberOfEdges
        print edges_c
        nodes_c = rag_c.numberOfNodes
        del rag_c


        labels = vigra.readHDF5(labels_file, labels_key).astype('uint32')

        with vigra.Timer("Nifty Rag"):
            rag_n = normal_rag(labels, numberOfThreads = -1 )
        edges_n = rag_n.numberOfEdges
        nodes_n = rag_n.numberOfNodes

        with vigra.Timer("Vigra Rag"):
            rag_v = vigra.graphs.regionAdjacencyGraph(vigra.graphs.gridGraph(labels.shape), labels)
        nodes_v = rag_v.nodeNum
        edges_v = rag_v.edgeNum

        assert nodes_c == nodes_n, str(nodes_c) + " , " + str(nodes_n)
        #assert nodes_v == nodes_n, str(nodes_v) + " , " + str(nodes_n)

        assert edges_c == edges_n, str(edges_c) + " , " + str(edges_n)
        assert edges_v == edges_n, str(edges_v) + " , " + str(edges_n)

        print "Checks out"
Exemple #44
0
    def get_output_data(self, data_nr):
        """Returns the dataset that was produced by ilastik.

        :param data_nr: number of dataset
        :return: output dataset of ilastik
        """
        return vigra.readHDF5(self._get_output_data_path(data_nr), const.default_export_key())
def get_train_data(path):

    label_to_num, num_to_label = get_label_dictionary(path)

    data   = []
    labels = []

    keys = label_to_num.keys()

    for key in keys:
        data_i = vigra.readHDF5(path, key)
        data_i = np.array([x.flatten() for x in data_i])
        label  = label_to_num[key]
        labels_i = label*np.ones( data_i.shape[0] )

        data.append(data_i)
        labels.append(labels_i)

    # shuffle all the data
    data   = np.concatenate(data)
    labels = np.concatenate(labels)

    assert len(data.shape) == 2
    assert len(labels.shape) == 1
    assert labels.shape[0] == data.shape[0]

    p = np.random.permutation(data.shape[0])

    data   = data[p]
    labels = labels[p]

    return data, labels
def load_feats_and_gt_pedunculus():

    #raw_data = vigra.readHDF5(
    #        "/home/constantin/Work/data_ssd/data_080515/pedunculus/150401pedunculus_middle_512x512_first30_sliced.h5",
    #        "data"
    #        )

    gt = vigra.readVolume(
            "/home/constantin/Work/data_ssd/data_080515/pedunculus/150401_pedunculus_membrane_labeling.tif")
    gt = np.squeeze(gt)

    # delete black slice
    gt = np.delete(gt, 6, axis = 2)

    gt[gt == 0.] = 1
    gt[gt == 255.] = 0
    gt = gt.astype(np.uint32)

    save_path = "/home/constantin/Work/data_ssd/data_080515/pedunculus/features"
    #compute_ilastik_2dfeatures(raw_data, save_path)

    feats_path = os.path.join( save_path, "all_features.h5")
    # make sure that features are computed!
    #feats = load_precomputed_feats(save_path, raw_data.shape)
    #vigra.writeHDF5(feats, feats_path, "data")

    feats = vigra.readHDF5(feats_path, "data")

    return (feats, gt)
Exemple #47
0
def crossvalidation_mnist():
    dat_train = vigra.readHDF5("../data/mnist/mnist-train.h5", "data")
    dat_train = dat_train.reshape( (dat_train.shape[0], dat_train.shape[1]*dat_train.shape[2]) )
    lbl_train = vigra.readHDF5("../data/mnist/mnist-train.h5", "label")

    dat_test = vigra.readHDF5("../data/mnist/mnist-test.h5", "data")
    dat_test = dat_test.reshape( (dat_test.shape[0], dat_test.shape[1]*dat_test.shape[2]) )
    lbl_test = vigra.readHDF5("../data/mnist/mnist-test.h5", "label")

    min_error = 1.
    best_params = (0,0)

    out = open('crossvalidation_mnist.txt','w')
    out.write("Estimators, min_samples, test_error, train_time, test_time")
    out.write('\n')
    for estimators in (100,255,500,750):
        for min_samples in (1,5,10,20):
            print "Start run with n_estimators =",estimators, "min_samples =", min_samples

            # 5 runs to account for randomness
            errors = []
            times_train = []
            times_test  = []
            for _ in range(5):

                t_0 = t.time()
                rf = learn_rf(dat_train, lbl_train, estimators, min_samples)
                times_train.append(t.time() - t_0)

                t_1 = t.time()
                errors.append(evaluate_rf(rf, dat_test, lbl_test))
                times_test = t.time() - t_1

            err = np.mean(errors)
            t_train = np.mean(times_train)
            t_test  = np.mean(times_test)

            res = str(estimators) + '\t' + str(min_samples) + '\t ' + str(err) + '\t' + str(t_train) + '\t ' + str(t_test) + '\n'
            out.write(res)

            if err < min_error:
                min_error = err
                best_params = (estimators, min_samples)

    print "Cross Validation found best test_error:", min_error, "for", best_params
    return best_params
Exemple #48
0
    def get_axistags(self, data_nr):
        """Returns the axistags of the dataset as they are in the project file.

        :param data_nr: number of dataset
        :return: axistags of dataset
        :rtype: str
        """
        return vigra.readHDF5(self.project_filename, const.axistags(data_nr))
Exemple #49
0
    def get_axisorder(self, data_nr):
        """Returns the axisorder of the dataset.

        :param data_nr: number of dataset
        :return: axisorder of dataset
        :rtype: str
        """
        return vigra.readHDF5(self.project_filename, const.axisorder(data_nr))
Exemple #50
0
def train_mnist(estimators, min_samples):
    dat_train = vigra.readHDF5("../data/mnist/mnist-train.h5", "data")
    dat_train = dat_train.reshape( (dat_train.shape[0], dat_train.shape[1]*dat_train.shape[2]) )
    lbl_train = vigra.readHDF5("../data/mnist/mnist-train.h5", "label")

    dat_test = vigra.readHDF5("../data/mnist/mnist-test.h5", "data")
    dat_test = dat_test.reshape( (dat_test.shape[0], dat_test.shape[1]*dat_test.shape[2]) )
    lbl_test = vigra.readHDF5("../data/mnist/mnist-test.h5", "label")

    print "Training sklearn on MNIST"
    rf_mnist = learn_rf(dat_train, lbl_train,estimators,min_samples)
    print "Finished Training"
    err = evaluate_rf(rf_mnist, dat_test, lbl_test)
    print "Error on training set:", err
    save_path ='../data/rf/rf_mnist.pkl'
    print "Saving RF to", save_path
    with open(save_path, 'wb') as f:
        cPickle.dump(rf_mnist,f)
Exemple #51
0
    def get_data(self, data_nr):
        """Returns the dataset.

        :param data_nr: number of dataset
        :return: the dataset
        """
        if self._datatype(data_nr) == "hdf5" or self.is_internal(data_nr):
            return vigra.readHDF5(self.get_data_path(data_nr), self.get_data_key(data_nr))
        else:
            return vigra.readImage(self.get_data_path(data_nr))
Exemple #52
0
    def get_dataset_id(self, data_nr):
        """Returns the ilp dataset id.

        :param data_nr: number of dataset
        :return: dataset id
        :rtype: str
        """
        h5_key = const.datasetid(data_nr)
        dataset_id = vigra.readHDF5(self.project_filename, h5_key)
        return dataset_id
Exemple #53
0
    def get_data_location(self, data_nr):
        """Returns the data location (either "ProjectInternal" or "FileSystem").

        :param data_nr: number of dataset
        :return: data location
        :rtype: str
        """
        h5_key = const.datalocation(data_nr)
        data_location = vigra.readHDF5(self.project_filename, h5_key)
        return data_location
def project_gt_pedunculus():
    labels_path = "/home/constantin/Work/data_ssd/data_080515/pedunculus/150401_pedunculus_membrane_labeling.tif"
    gt_path     = "/home/constantin/Work/data_ssd/data_080515/pedunculus/gt_mc.h5"
    raw_path    = "/home/constantin/Work/data_ssd/data_080515/pedunculus/150401pedunculus_middle_512x512_first30_sliced.h5"

    labels = vigra.readVolume(labels_path)
    labels = np.squeeze(labels)
    labels = np.delete(labels, 6, axis = 2)

    gt = vigra.readHDF5(gt_path, "gt")
    raw = vigra.readHDF5(raw_path, "data")

    gt = project_gt(labels, gt)

    save_path     = "/home/constantin/Work/data_ssd/data_080515/pedunculus/gt_mc_bkg.h5"

    volumina_n_layer( (raw, gt, labels) )

    vigra.writeHDF5(gt, save_path, "gt")
def compute_features_isbi2012():
    raw_path = "/home/constantin/Work/data_ssd/data_090615/isbi2012/train-volume.h5"
    raw_key = "data"

    raw = vigra.readHDF5(raw_path, raw_key)

    sigmas = ( 0.3, 0.7, 1.0, 1.6, 3.5, 5.0 )

    feature_path = "/home/constantin/Work/data_ssd/data_090615/isbi2012/features/train-"

    compute_ilastik_2dfeatures(raw, feature_path, sigmas)
def synapse_images(two_dim = True):
    in_old = "/home/akreshuk/data/connector_archive_2g0y0b/distance_tests/*2d_pred.h5"
    in_new = "/data/connector_archive_2g0y0b/test_data/stage_2_output/*.h5"
    outdir = "/data/connector_archive_2g0y0b/compare_membranes/"

    in_old_list = glob.glob(in_old)
    in_old_list = sorted(in_old_list, key=str.lower)

    in_new_list = glob.glob(in_new)
    in_new_list = sorted(in_new_list, key=str.lower)

    for old_name, new_name in zip(in_old_list, in_new_list):
        print old_name
        dnew = vigra.readHDF5(new_name, "exported_data")
        dold = vigra.readHDF5(old_name, "exported_data")

        print dnew.shape, dnew.dtype, numpy.min(dnew), numpy.max(dnew)
        print dold.shape, dold.dtype, numpy.min(dold), numpy.max(dold)

        #convert the old ones to uint8, 0-255
        dold = dold*255
        dold = dold.astype(numpy.uint8)
        _, old_fname = os.path.split(old_name)
        parts = old_fname.split("_")
        dset_name = parts[0]
        if not os.path.exists(outdir+dset_name):
            os.makedirs(outdir+dset_name)
        if not os.path.exists(outdir+dset_name+"/old"):
            os.makedirs(outdir+dset_name+"/old")
        if not os.path.exists(outdir+dset_name+"/autocontext"):
            os.makedirs(outdir+dset_name+"/autocontext")
        if two_dim:
            vigra.impex.writeImage(dnew[:, :, 5, 1], outdir+dset_name+"/autocontext/membranes_z5.png" )
            vigra.impex.writeImage(dold[:, :, 1], outdir+dset_name+"/old/membranes_z5.png")
        else:
            for z in range(dnew.shape[2]):
                vigra.impex.writeImage(dnew[:, :, z, 2], outdir+dset_name+"/autocontext/%.02d"%z+".png")
                vigra.impex.writeImage(dold[:, :, z, 2], outdir+dset_name+"/old/%.02d"%z+".png")
def malis_2d(aff_path):
    # import all the malis functionality we need
    from malis import mknhood2d, affgraph_to_edgelist, malis_loss_weights

    # load affinity graph ( only the zeroth slice and the x and y weights )
    aff = vigra.readHDF5(aff_path, "data")[:,:,0,:2].transpose( (2,1,0,3) )

    # make the 2d neighborhood
    nhood = mknhood2d()

    # get the node connectors and weights from the affinitygraph
    connectors1, connectors2, edge_weights = affgraph_to_edgelist(aff, nhood)

    print connectors1.shape, connectors2.shape, edge_weights.shape
Exemple #58
0
def load_data(labels=None):
    """
    Load the data sets.

    :param labels: list with the labels that should be used
    :return: train_x, train_y, test_x, test_y
    """
    # Load the data.
    train_x = numpy.array(vigra.readHDF5("data/train.h5", "data").transpose())
    train_y = vigra.readHDF5("data/train.h5", "labels")
    test_x = numpy.array(vigra.readHDF5("data/test.h5", "data").transpose())
    test_y = vigra.readHDF5("data/test.h5", "labels")

    # Reduce the data to the given labels.
    if labels is not None:
        train_indices = numpy.array([i for i, t in enumerate(train_y) if t in labels])
        train_x = train_x[train_indices]
        train_y = train_y[train_indices]
        test_indices = numpy.array([i for i, t in enumerate(test_y) if t in labels])
        test_x = test_x[test_indices]
        test_y = test_y[test_indices]

    return train_x, train_y, test_x, test_y
Exemple #59
0
def load_neuro_data():
    """
    Load the neuro dataset.

    :return: train_x, train_y, test_x, test_y
    """
    # Load the data.
    train_x = vigra.readHDF5("data/neuro/train/ffeat_br_segid0.h5", "ffeat_br")
    train_y = numpy.array(vigra.readHDF5("data/neuro/train/gt_face_segid0.h5", "gt_face")[:, 0])
    test_x = vigra.readHDF5("data/neuro/test/ffeat_br_segid0.h5", "ffeat_br")
    test_y = numpy.array(vigra.readHDF5("data/neuro/test/gt_face_segid0.h5", "gt_face")[:, 0])
    assert train_x.shape[0] == train_y.shape[0]
    assert test_x.shape[0] == test_y.shape[0]
    assert train_x.shape[1] == test_x.shape[1]

    # Remove NaN values.
    to_remove = numpy.where(numpy.isnan(train_x))
    train_x = numpy.delete(train_x, to_remove, axis=0)
    train_y = numpy.delete(train_y, to_remove)
    to_remove = numpy.where(numpy.isnan(test_x))
    test_x = numpy.delete(test_x, to_remove, axis=0)
    test_y = numpy.delete(test_y, to_remove)

    return train_x, train_y, test_x, test_y
def run(args):
    x = vigra.readHDF5(args.h5file, args.internal_path)
    t = x[:, 0]/float(24*60*60*1e6)
    data = vigra.taggedView(x[:, 1], axistags='t')

    op = OpExponentiallySegmentedPattern(graph=Graph())
    op.Input.setValue(data)
    op.BaselineSize.setValue(60)
    op.NumSegments.setValue(6)

    out = op.Output[...].wait()
    leg = ["mean cpu usage over {} hours".format(2**i)
           for i in range(out.shape[1])]
    plt.plot(t, out)
    plt.legend(leg)
    plt.show()