plt.bar(y_pos, quantities, align='center')
    plt.title("notes pulled from wave by quantity, naive")
    plt.xlabel("Note names and octaves")
    plt.ylabel("quantity")
    plt.xticks(y_pos, objects)
    plt.show()


if __name__ == '__main__':
    global dt
    # figure out the correct dt length based on the tempo of the output wave you want
    dt = compute_dt(bpm)
    # read and parse each sample wave
    for i in range(1, len(sys.argv) - 2):
        #read in the wave file and unpack its data
        wave_data = waveIO.read_wav_file(sys.argv[i])
        wave_data = waveIO.unpack(wave_data)
        wave_time = len(wave_data) / sr

        note_length = dt * sr

        wave_chunks = split_wave(wave_data, int(note_length))

        #test_sample_wave(wave_chunks)

        for i in range(len(wave_chunks)):
            chunk = wave_chunks[i]
            if len(chunk) != int(note_length):
                continue

            store_note(chunk)
Exemple #2
0
import numpy
import sys
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import waveIO

musicwave = waveIO.read_wav_file(sys.argv[1])
musicwave = waveIO.unpack(musicwave)
data, freqs, bins, im = plt.specgram(musicwave, NFFT=2048, Fs=44100, noverlap=900)
plt.ylim(0,800)
plt.title("Spectrogram of {!s}".format(sys.argv[1]))
plt.show()
import numpy
import sys
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import waveIO

sr = 44100.

wave_data = waveIO.read_wav_file('vocalscales.wav')
wave_data = waveIO.unpack(wave_data)

data, freqs, bins, im = plt.specgram(wave_data, NFFT=1024, Fs=sr, noverlap=900)
plt.ylim(0,2000)
plt.title("Spectrogram of vocalscales.wav")
plt.xlabel("Time (s)")
plt.ylabel("amplitude")
plt.show()

time = len(wave_data) / sr
time = numpy.linspace(0,time,len(wave_data))
plt.plot(time,wave_data)
plt.title("Time domain of vocalscales.wav")
plt.xlabel("Time (s)")
plt.ylabel("Amplitude")
plt.show()
	plt.bar(y_pos, quantities, align='center', width=0.75)
	plt.title("notes pulled from wave by quantity, stft")
	plt.xlabel("Note names and octaves")
	plt.ylabel("quantity")
	plt.xticks(y_pos, objects, fontsize=10)
	plt.show()


if __name__ == '__main__':
	WINDOW_FUNC = window_hanning

	# read and parse each input wave
	for i in range(1, len(sys.argv) - 2):
		#read in the wave file and unpack its data
		wave_data = waveIO.read_wav_file(sys.argv[i])
		wave_data = waveIO.unpack(wave_data)
		wave_time = len(wave_data)/sr


		wave_chunks = []

		#Instead of multiplying the entire wave by the windowing function, we can simply examine window-sized pieces of the wave at a time
		#counting by WINDOW_LENGTH*(1-OVERLAP_PERCENT) allows adjustment of what percent of each window overlaps with the next
		#Example: OVERLAP_PERCENT = 0 means the next window will start where the previous window ended
		#Example: OVERLAP_PERCENT = 0.5 means the next window will start at the halfway mark of the previous window
		#This is necessary when using nonrectangular window functions, to prevent loss of data
		for i in range(0, len(wave_data), int(WINDOW_LENGTH*(1-OVERLAP_PERCENT))):
			window = []
			window.extend(wave_data[i:i+WINDOW_LENGTH])
			#multiply by the window function
import numpy
import sys
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import waveIO

sr = 44100.

wave_data = waveIO.read_wav_file('vocalscales.wav')
wave_data = waveIO.unpack(wave_data)

data, freqs, bins, im = plt.specgram(wave_data, NFFT=1024, Fs=sr, noverlap=900)
plt.ylim(0, 2000)
plt.title("Spectrogram of vocalscales.wav")
plt.xlabel("Time (s)")
plt.ylabel("amplitude")
plt.show()

time = len(wave_data) / sr
time = numpy.linspace(0, time, len(wave_data))
plt.plot(time, wave_data)
plt.title("Time domain of vocalscales.wav")
plt.xlabel("Time (s)")
plt.ylabel("Amplitude")
plt.show()