Exemple #1
0
def get_demographics_profile(geo_code, geo_level, session):
    try:
        sex_dist_data, total_pop = get_stat_data('sex', geo_level, geo_code, session, table_fields=['sex'])
        urban_dist_data, _ = get_stat_data('rural or urban', geo_level, geo_code, session,
                                           table_fields=['rural or urban'])
    except LocationNotFound:
        sex_dist_data, total_pop = LOCATIONNOTFOUND, 0
        urban_dist_data = LOCATIONNOTFOUND

    total_urbanised = 0
    for data, value in urban_dist_data.get('Urban', {}).iteritems():
        if data == 'numerators':
            total_urbanised += value['this']

    final_data = {
        'sex_ratio': sex_dist_data,
        'urban_distribution': urban_dist_data,
        'urbanised': {
            'name': 'In urban areas',
            'numerators': {'this': total_urbanised},

        },
        'total_population': {
            "name": "People",
            "values": {"this": total_pop}
        }}
    try:
        final_data['urbanised']['values'] = {
            'this': round(total_urbanised / total_pop * 100, 2)}
    except ZeroDivisionError:
        final_data['urbanised']['values'] = {'this': 0}
    return final_data
def get_demographics_profile(geo, session):
    year = current_context().get('year')

    with dataset_context(year=year):
        # gender
        gender_dist_data, total_pop = get_stat_data(
            'gender', geo, session,
            table_fields=['gender', 'age group'])

        # age group
        age_group_dist_data, _ = get_stat_data(
            'age group', geo, session,
            table_fields=['gender', 'age group'])
        total_under_15 = age_group_dist_data['0-14 Years']['numerators']['this']

        # rural or urban
        rural_dist_data, _ = get_stat_data(
            ['rural or urban','gender'], geo, session,
            table_fields=['gender', 'rural or urban'])

    final_data = {
        'gender_ratio': gender_dist_data,
        'age_group_distribution': age_group_dist_data,
        'under_15': {
            'name': 'Under 15 years',
            'values': {'this': total_under_15}
        },
        'rural_distribution': rural_dist_data,
        'total_population': {
            "name": "People",
            "values": {"this": total_pop}
        }}

    return final_data
Exemple #3
0
def get_disabilities_profile(geocode, geo_level, session):
    try:
        disabled_or_not, total_ = get_stat_data('disabled or not', geo_level, geocode, session,
                                                table_fields=['disabled or not'])
        disability, _ = get_stat_data('disability', geo_level, geocode, session, table_fields=['disability'])
    except LocationNotFound:
        disabled_or_not, total_ = LOCATIONNOTFOUND, 0
        disability = LOCATIONNOTFOUND

    total_disabled = 0
    for data, value in disabled_or_not.get('With disability', {}).iteritems():
        if data == 'numerators':
            total_disabled += value['this']

    final_data = {
        'disabled_or_not_distribution': disabled_or_not,
        'disability': disability,
        'total_disabled': {
            'name': 'Disabled',
            'numerators': {'this': total_disabled},

        },

        'total_': {
            "name": "Population",
            "values": {"this": total_}
        }
    }
    try:
        final_data['total_disabled']['values'] = {
            'this': round(total_disabled / total_ * 100, 2)}
    except ZeroDivisionError:
        final_data['total_disabled']['values'] = {'this': 0}
    return final_data
Exemple #4
0
def get_teachers_profile(geo,session,request):

    table = 'teachers_type_2005'
    if request.GET.get('release') is  not None:
        tablereq = 'teachers_type_' + request.GET.get('release')
        if tablereq  in ('teachers_type_2005','teachers_type_2006','teachers_type_2007','teachers_type_2008',
        'teachers_type_2009','teachers_type_2010','teachers_type_2011','teachers_type_2012','teachers_type_2013',
        'teachers_type_2015','teachers_type_default'):
            table = tablereq
        else:
            table = 'teachers_type_default'

    teachers_by_type,t_lit = get_stat_data(
        ['type'],geo,session,
        table_fields=['teachers','type','year'],
        table_name = table
    )

    
    teachers_by_school_type,_ = get_stat_data(
        ['teachers','type'],geo,session,
        table_fields=['teachers','type','year'],
        percent_grouping=['type'],
        table_name = table,
    )

    final_data = {
        'teachers_by_type_distribution':  teachers_by_type,
        'teachers_by_schools_type_distribution':teachers_by_school_type,
        'total_teachers': {
            "name": "Total teachers",
            "values": {"this":t_lit}
        }
    }
    return final_data
def get_contraceptive_use_profile(geo_code, geo_level, session):
    # contraceptive_use stats
    contraceptive_use_dist_data, _ = get_stat_data(
        'contraceptive_use', geo_level, geo_code, session,
        key_order=['Modern', 'Traditional', 'Not using'])

    modern = contraceptive_use_dist_data['Modern']['numerators']['this']
    traditional = contraceptive_use_dist_data['Traditional']['numerators']['this']
    cpr = modern + traditional

    contraceptive_modern_method_dist_data, _ = get_stat_data(
        'contraceptive_modern_method', geo_level, geo_code, session)
    contraceptive_traditional_method_dist_data, _ = get_stat_data(
        'contraceptive_traditional_method', geo_level, geo_code, session)

    return  {
        'contraceptive_use_distribution': contraceptive_use_dist_data,
        'modern_methods_distribution': contraceptive_modern_method_dist_data,
        'traditional_methods_distribution': contraceptive_traditional_method_dist_data,
        'cpr': {
            'name': 'Contraceptive prevalence rate',
            'numerators': {'this': cpr},
            'values': {'this': cpr},
        },
    }
Exemple #6
0
def get_crime_report_profile(geo, session):
    stats_dist, s_ = get_stat_data("crimereport", geo, session)
    crimes_dist, c_ = get_stat_data("typesofcrime", geo, session)
    crimes = stats_dist['Crimes']['numerators']['this']
    crimeindex = stats_dist['Crimesindex']['numerators']['this']
    return {
        'crimes': {
            'name': 'Number of crimes',
            'numerators': {
                'this': crimes
            },
            'values': {
                'this': crimes
            },
        },
        'crimesindex': {
            'name': 'Crime index per 100,000 people',
            'numerators': {
                'this': crimeindex
            },
            'values': {
                'this': crimeindex
            },
        },
        'crimes_dist': crimes_dist,
        'metadata': crimes_dist['metadata']
    }
Exemple #7
0
def get_demographics_profile(geo_code, geo_level, session):
    pop_dist_data, pop_total = get_stat_data(
            ['population group'], geo_level, geo_code, session)

    youth_pop_dist_data, youth_pop_total = get_stat_data(['age in completed years'], geo_level, geo_code, session, table_name='youth_gender_age_in_completed_years')

    youth_gender_data, _ = get_stat_data(['gender'], geo_level, geo_code, session, table_name='youth_gender_population_group')
    youth_pop_group_data, _ = get_stat_data(['population group'], geo_level, geo_code, session, table_name='youth_gender_population_group')

    final_data = {
        'total_population': {
            "name": "People",
            "values": {"this": pop_total}
        },
        'youth_population_total': {
            "name": "Youth aged 15-24",
            "values": {"this": youth_pop_total}
        },
        'youth_population_perc': {
            "name": "Of population are youth aged 15-24",
            "values": {"this": percent(youth_pop_total, pop_total)},
        },
        'youth_population_by_year': youth_pop_dist_data,
        'youth_population_by_gender': youth_gender_data,
        'youth_population_by_pop_group': youth_pop_group_data
    }

    geo = geo_data.get_geography(geo_code, geo_level)
    if geo.square_kms:
        final_data['population_density'] = {
            'name': "people per square kilometre",
            'values': {"this": pop_total / geo.square_kms}
        }

    return final_data
Exemple #8
0
def get_itn_profile(geo, session):
    # household possession and use of ITN
    possession_dist, _ = get_stat_data(
        ['household possession of itn'], geo, session)

    households_with_at_least_one_itn = \
        possession_dist['Households with at least one ITN']['numerators']['this']
    households_with_at_least_one_itn = get_dictionary(
        'Possess at least one ITN', 'No ITN', households_with_at_least_one_itn, possession_dist)

    percentage_households_with_ITN_for_every_two_people = \
        possession_dist['Percentage households with ITN for every 2 people in household']['numerators']['this']
    percentage_households_with_ITN_for_every_two_people = get_dictionary('1:2',
                                                                         'less than 1:2',
                                                                         percentage_households_with_ITN_for_every_two_people, possession_dist)

    average_itn_per_household = possession_dist['Average ITN per household']['numerators']['this']

    use_dist, _ = get_stat_data(
        ['household', 'users', 'itn_use'], geo, session)
    households_with_at_least_one_itn_use_dist = use_dist['With at least one ITN']
    all_households_use_dist = use_dist['All']

    return {
        'households_with_at_least_one_itn': households_with_at_least_one_itn,
        'percentage_households_with_ITN_for_every_two_people': percentage_households_with_ITN_for_every_two_people,
        'average_itn_per_household': {
            'name': 'Average number of insecticide-treated nets (ITNs) per household',
            'numerators': {'this': average_itn_per_household},
            'values': {'this': average_itn_per_household}
        },
        'households_with_at_least_one_itn_use_dist': households_with_at_least_one_itn_use_dist,
        'all_households_use_dist': all_households_use_dist
    }
Exemple #9
0
def get_contraceptive_use_profile(geo, session):
    # contraceptive_use stats
    contraceptive_use_dist_data, _ = get_stat_data(
        'contraceptive_use', geo, session,
        key_order=['Modern', 'Traditional', 'Not using'])

    modern = contraceptive_use_dist_data['Modern']['numerators']['this']
    traditional = contraceptive_use_dist_data['Traditional']['numerators']['this']
    cpr = modern + traditional

    contraceptive_modern_method_dist_data, _ = get_stat_data(
        'contraceptive_modern_method', geo, session)
    contraceptive_traditional_method_dist_data, _ = get_stat_data(
        'contraceptive_traditional_method', geo, session)

    return {
        'contraceptive_use_distribution': contraceptive_use_dist_data,
        'modern_methods_distribution': contraceptive_modern_method_dist_data,
        'traditional_methods_distribution': contraceptive_traditional_method_dist_data,
        'cpr': {
            'name': 'Contraceptive prevalence rate',
            'numerators': {'this': cpr},
            'values': {'this': cpr},
        }
    }
Exemple #10
0
def get_households_profile(geo, session, year):
    with dataset_context(year=year):
        try:
            permanency, _ = get_stat_data('household percentage by permanency', geo,
                                          session,
                                          table_fields=[
                                              'household percentage by permanency'])
        except Exception:
            permanency = LOCATIONNOTFOUND

        try:
            light_source, total_households = get_stat_data(
                'household distribution by light source', geo,
                session, table_fields=['household distribution by light source'])
            energy_source, _ = get_stat_data(
                'household distribution by energy source', geo, session,
                table_fields=['household distribution by energy source'])
        except Exception:
            total_households = 0
            light_source = LOCATIONNOTFOUND
            energy_source, _ = LOCATIONNOTFOUND, 0

        is_missing = permanency.get('is_missing') and light_source.get('is_missing') and energy_source.get('is_missing')

        final_data = {
            'is_missing': is_missing,
            'percentage_by_permanency': permanency,
            'light_source_distribution': light_source,
            'energy_source_distribution': energy_source,
            'total_households': {
                "name": "Households",
                "values": {"this": total_households}
            }
        }
    return final_data
Exemple #11
0
def get_health_centers_distribution_profile(geo, session):
    if geo.geo_level == 'ward': return {}

    hc_data, total = get_stat_data('health centers',
                                   geo=geo,
                                   session=session,
                                   order_by='-total')
    ho_data, _ = get_stat_data('health center ownership', geo, session)
    hiv_centers_data, hiv_c = get_stat_data('hiv centers', geo, session)

    return {
        'total': {
            'name': 'Total health centers in operation (2014)',
            'numerators': {
                'this': total
            },
            'values': {
                'this': total
            }
        },
        'hiv_centers': {
            'name': 'HIV care and treatment centers (2014)',
            'numerators': {
                'this': hiv_c
            },
            'values': {
                'this': hiv_c
            }
        },
        'health_center_data': hc_data,
        'health_center_ownership': ho_data,
        'source_link':
        'http://www.opendata.go.tz/dataset/list-of-health-facilities-with-geographical-location',
        'source_name': 'opendata.go.tz',
    }
def get_ITN_profile(geo_code, geo_level, session):
    # household possession and use of ITN
    possession_dist, _ = get_stat_data(['household possession of itn'], geo_level, geo_code, session)

    households_with_at_least_one_itn = \
        possession_dist['Households with at least one ITN']['numerators']['this']
    households_with_at_least_one_itn = get_dictionary('Possess at least one ITN', 'No ITN', households_with_at_least_one_itn, possession_dist)

    percentage_households_with_ITN_for_every_two_people = \
        possession_dist['Percentage households with ITN for every 2 people in household']['numerators']['this']
    percentage_households_with_ITN_for_every_two_people = get_dictionary('1:2',\
                                                                         'less than 1:2',\
                                                                         percentage_households_with_ITN_for_every_two_people, possession_dist)

    average_itn_per_household = possession_dist['Average ITN per household']['numerators']['this']

    use_dist, _ = get_stat_data(['household', 'users', 'itn_use'], geo_level, geo_code, session)
    households_with_at_least_one_itn_use_dist = use_dist['With at least one ITN']
    all_households_use_dist = use_dist['All']

    return {
        'households_with_at_least_one_itn': households_with_at_least_one_itn,
        'percentage_households_with_ITN_for_every_two_people': percentage_households_with_ITN_for_every_two_people,
        'average_itn_per_household': {
            'name': 'Average number of insecticide-treated nets (ITNs) per household',
            'numerators': {'this': average_itn_per_household},
            'values': {'this': average_itn_per_household},
            'metadata': possession_dist['metadata']
        },
        'households_with_at_least_one_itn_use_dist': households_with_at_least_one_itn_use_dist,
        'all_households_use_dist': all_households_use_dist
    }
Exemple #13
0
def get_child_households_profile(geo_code, geo_level, session):
    # head of household
    # gender
    head_gender_dist, total_households = get_stat_data(
            ['gender of head of household'], geo_level, geo_code, session,
            order_by='gender of head of household',
            table_name='genderofheadofhouseholdunder18')
    female_heads = head_gender_dist['Female']['numerators']['this']

    # annual household income
    income_dist_data, _ = get_stat_data(
            ['annual household income'], geo_level, geo_code, session,
            exclude=['Unspecified'],
            recode=HOUSEHOLD_INCOME_RECODE,
            key_order=HOUSEHOLD_INCOME_RECODE.values(),
            table_name='annualhouseholdincomeunder18')

    # median income
    median = calculate_median_stat(income_dist_data)
    median_income = HOUSEHOLD_INCOME_ESTIMATE[median]

    # type of dwelling
    type_of_dwelling_dist, _ = get_stat_data(
            ['type of main dwelling'], geo_level, geo_code, session,
            recode=TYPE_OF_DWELLING_RECODE,
            order_by='-total')
    informal = type_of_dwelling_dist['Shack']['numerators']['this']

    # size of household
    household_size_dist, _ = get_stat_data(
        ['household size', 'age of household head'],
        geo_level, geo_code, session
    )

    return {
        'total_households': {
            'name': 'Households with heads under 18 years old',
            'values': {'this': total_households},
        },
        'type_of_dwelling_distribution': type_of_dwelling_dist,
        'informal': {
            'name': 'Child-headed households that are informal dwellings (shacks)',
            'values': {'this': percent(informal, total_households)},
            'numerators': {'this': informal},
        },
        'annual_income_distribution': income_dist_data,
        'median_annual_income': {
            'name': 'Average annual child-headed household income',
            'values': {'this': median_income},
        },
        'household_size_distribution': household_size_dist,
        'head_of_household': {
            'gender_distribution': head_gender_dist,
            'female': {
                'name': 'Child-headed households with women as their head',
                'values': {'this': percent(female_heads, total_households)},
                'numerators': {'this': female_heads},
                },
        },
    }
Exemple #14
0
def get_access_profile(geo, session):

    view_ft_users = OrderedDict()
    view_ft_users_population = OrderedDict()

    REGION_RECODES = OrderedDict()
    REGION_POPULATION = OrderedDict()

    try:
        if geo.geo_level == 'country':
            REGION_RECODES = OrderedDict([('country', geo.name),
                                          ('continent', geo.parent.name)])
            view_ft_users, _ = get_stat_data(
                ['type'],
                geo,
                session,
                table_name='ft_users_country_continent',
                recode=dict(REGION_RECODES),
                key_order=REGION_RECODES.values())
        elif geo.geo_level == 'continent':
            REGION_RECODES = OrderedDict([('continent', geo.name),
                                          ('world', geo.parent.name)])
            view_ft_users, _ = get_stat_data(
                ['type'],
                geo,
                session,
                table_name='ft_users_continent_world',
                recode=dict(REGION_RECODES),
                key_order=REGION_RECODES.values())
        elif geo.geo_level == 'world':
            view_ft_users, _ = get_stat_data(
                ['type'], geo, session, table_name='ft_users_world_continent')
    except Exception as e:
        view_ft_users = None

    try:
        REGION_POPULATION = OrderedDict([('users', 'Users'),
                                         ('population', 'Non-users')])
        view_ft_users_population, _ = get_stat_data(
            ['type'],
            geo,
            session,
            table_name='ft_users_population',
            recode=dict(REGION_POPULATION),
            key_order=REGION_POPULATION.values())
    except Exception as e:
        view_ft_users_population = {'Non-users': {'numerators': {'this': 0}}}

    return {
        'view_ft_users_population_users': {
            "name": "World bank data.",
            "values": {
                "this":
                view_ft_users_population['Non-users']['numerators']['this']
            }
        },
        'view_ft_users': view_ft_users,
        'view_ft_users_population': view_ft_users_population,
    }
Exemple #15
0
def get_maternal_care_indicators_profile(geo, session):
    # maternal care indicators stats
    maternal_care_indicators_data, _ = get_stat_data(
        'maternal care indicators', geo, session)

    delivery_in_health_facility = \
        maternal_care_indicators_data['Percentage delivered in a health facility']['numerators']['this']

    antenatal_care_by_skilled_provider = \
        maternal_care_indicators_data['Percentage with antenatal care from a skilled provider']['numerators']['this']
    antenatal_dist = get_dictionary('From a skilled provider',
                                    'From a non-skilled provider',
                                    antenatal_care_by_skilled_provider,
                                    maternal_care_indicators_data)

    anc_visits = maternal_care_indicators_data[
        'Percentage with 4+ ANC visits']['numerators']['this']
    anc_visits_dist = get_dictionary('4+', 'Less than 4', anc_visits,
                                     maternal_care_indicators_data)

    delivery_by_skilled_provider = \
        maternal_care_indicators_data['Percentage delivered by a skilled provider']['numerators']['this']
    delivery_by_skilled_provider_dist = get_dictionary(
        'Skilled provider', 'Non-skilled provider',
        delivery_by_skilled_provider, maternal_care_indicators_data)

    # Use of IPT
    use_of_ipt_dist, _ = get_stat_data('use of ipt', geo, session)

    one_or_more_dist = use_of_ipt_dist['1 or more']['numerators']['this']
    one_or_more_dist = get_dictionary('1 or more', 'Less', one_or_more_dist,
                                      maternal_care_indicators_data)
    two_or_more_dist = use_of_ipt_dist['2 or more']['numerators']['this']
    two_or_more_dist = get_dictionary('2 or more', 'Less', two_or_more_dist,
                                      maternal_care_indicators_data)
    three_or_more_dist = use_of_ipt_dist['3 or more']['numerators']['this']
    three_or_more_dist = get_dictionary('3 or more', 'Less',
                                        three_or_more_dist,
                                        maternal_care_indicators_data)

    return {
        'maternal_care_indicators': maternal_care_indicators_data,
        'antenatal_dist': antenatal_dist,
        'anc_visits_dist': anc_visits_dist,
        'delivery_by_skilled_provider_dist': delivery_by_skilled_provider_dist,
        'delivery_in_health_facility': {
            'name': 'babies delivered in a health facility',
            'numerators': {
                'this': delivery_in_health_facility
            },
            'values': {
                'this': round(delivery_in_health_facility, 2)
            }
        },
        'one_or_more_dist': one_or_more_dist,
        'two_or_more_dist': two_or_more_dist,
        'three_or_more_dist': three_or_more_dist,
    }
Exemple #16
0
def get_households_profile(geo, session):
    # head of household
    # gender
    head_gender_dist, total_households = get_stat_data(
        ['gender of household head'], geo, session,
        order_by='gender of household head')
    female_heads = head_gender_dist['Female']['numerators']['this']

    # age
    db_model_u18 = get_model_from_fields(
        ['gender of head of household'], geo.geo_level,
        table_name='genderofheadofhouseholdunder18'
    )
    objects = get_objects_by_geo(db_model_u18, geo, session)
    total_under_18 = float(sum(o[0] for o in objects))

    # type of dwelling
    type_of_dwelling_dist, _ = get_stat_data(
        ['type of dwelling'], geo, session,
        recode=TYPE_OF_DWELLING_RECODE,
        order_by='-total')
    informal = type_of_dwelling_dist['Shack']['numerators']['this']

    _, total_ecd_children = get_stat_data(
        ['age in completed years'], geo, session,
        table_name='ageincompletedyears',
        only=['0', '1', '2', '3', '4', '5'])

    ecd_children_per_household = ratio(total_ecd_children, total_households)

    return {
        'total_households': {
            'name': 'Households',
            'values': {'this': total_households},
        },
        'type_of_dwelling_distribution': type_of_dwelling_dist,
        'informal': {
            'name': 'Households that are informal dwellings (shacks)',
            'values': {'this': percent(informal, total_households)},
            'numerators': {'this': informal},
        },
        'head_of_household': {
            'gender_distribution': head_gender_dist,
            'female': {
                'name': 'Households with women as their head',
                'values': {'this': percent(female_heads, total_households)},
                'numerators': {'this': female_heads},
            },
            'under_18': {
                'name': 'Households with heads under 18 years old',
                'values': {'this': total_under_18},
            }
        },
        'ecd_children_per_household': {
            'name': 'Average number of children (aged 0-5) in each household',
            'values': {'this': ecd_children_per_household},
        },
    }
def get_education_profile(geo_code, geo_level, session):
    # highest level reached
    edu_dist_data, total_pop = get_stat_data('highest education level reached',
                                             geo_level,
                                             geo_code,
                                             session,
                                             key_order=[
                                                 'None', 'Pre-primary',
                                                 'Primary', 'Secondary',
                                                 'Tertiary', 'University',
                                                 'Youth polytechnic',
                                                 'Basic literacy', 'Madrassa'
                                             ])

    secondary_or_higher = 0
    for key, data in edu_dist_data.iteritems():
        if key in ['Secondary', 'Tertiary', 'University', 'Youth polytechnic']:
            secondary_or_higher += data['numerators']['this']

    # school attendance by sex
    school_attendance_dist, _ = get_stat_data(
        ['school attendance', 'sex'],
        geo_level,
        geo_code,
        session,
        key_order={
            'school attendance':
            ['Never attended', 'At school', 'Left school', 'Unspecified'],
            'sex': ['Female', 'Male']
        })

    total_never = 0.0
    for data in school_attendance_dist['Never attended'].itervalues():
        if 'numerators' in data:
            total_never += data['numerators']['this']

    return {
        'education_reached_distribution': edu_dist_data,
        'education_reached_secondary_or_higher': {
            'name': 'Reached Secondary school or higher',
            'numerators': {
                'this': secondary_or_higher
            },
            'values': {
                'this': round(secondary_or_higher / total_pop * 100, 2)
            }
        },
        'school_attendance_distribution': school_attendance_dist,
        'school_attendance_never': {
            'name': 'Never attended school',
            'numerators': {
                'this': total_never
            },
            'values': {
                'this': round(total_never / total_pop * 100, 2)
            }
        },
    }
Exemple #18
0
def get_child_households_profile(geo, session):
    # head of household
    # gender
    head_gender_dist, total_households = get_stat_data(
            ['gender of head of household'], geo, session,
            order_by='gender of head of household',
            table_name='genderofheadofhouseholdunder18')
    female_heads = head_gender_dist['Female']['numerators']['this']

    # annual household income
    if geo.version == '2011':
        HOUSEHOLD_INCOME_RECODE = HOUSEHOLD_INCOME_RECODE_2011
    else:
        HOUSEHOLD_INCOME_RECODE = COLLAPSED_ANNUAL_INCOME_CATEGORIES
    income_dist_data, _ = get_stat_data(
            ['annual household income'], geo, session,
            exclude=['Unspecified'],
            recode=HOUSEHOLD_INCOME_RECODE,
            key_order=HOUSEHOLD_INCOME_RECODE.values(),
            table_name='annualhouseholdincomeunder18')

    # median income
    median = calculate_median_stat(income_dist_data)
    median_income = HOUSEHOLD_INCOME_ESTIMATE[median]

    # type of dwelling
    type_of_dwelling_dist, _ = get_stat_data(
            ['type of main dwelling'], geo, session,
            recode=TYPE_OF_DWELLING_RECODE,
            order_by='-total')
    informal = type_of_dwelling_dist['Shack']['numerators']['this']

    return {
        'total_households': {
            'name': 'Households with heads under 18 years old',
            'values': {'this': total_households},
        },
        'type_of_dwelling_distribution': type_of_dwelling_dist,
        'informal': {
            'name': 'Child-headed households that are informal dwellings (shacks)',
            'values': {'this': percent(informal, total_households)},
            'numerators': {'this': informal},
        },
        'annual_income_distribution': income_dist_data,
        'median_annual_income': {
            'name': 'Average annual child-headed household income',
            'values': {'this': median_income},
        },
        'head_of_household': {
            'gender_distribution': head_gender_dist,
            'female': {
                'name': 'Child-headed households with women as their head',
                'values': {'this': percent(female_heads, total_households)},
                'numerators': {'this': female_heads},
                },
        },
    }
Exemple #19
0
def get_education_profile(geo, session):
    edu_dist_data, total_over_20 = get_stat_data(
        ["highest educational level"],
        geo,
        session,
        recode=COLLAPSED_EDUCATION_CATEGORIES,
        table_universe="Individuals 20 and older",
        key_order=EDUCATION_KEY_ORDER,
    )

    GENERAL_EDU = (
        EDUCATION_GET_OR_HIGHER
        if str(current_context().get("year")) == "2011"
        else EDUCATION_GET_OR_HIGHER_2016
    )
    general_edu, total_general_edu = get_stat_data(
        ["highest educational level"],
        geo,
        session,
        table_universe="Individuals 20 and older",
        only=GENERAL_EDU,
    )

    FURTHER_EDU = (
        EDUCATION_FET_OR_HIGHER
        if str(current_context().get("year")) == "2011"
        else EDUCATION_FET_OR_HIGHER_2016
    )
    further_edu, total_further_edu = get_stat_data(
        ["highest educational level"],
        geo,
        session,
        table_universe="Individuals 20 and older",
        only=FURTHER_EDU,
    )

    edu_split_data = {
        "percent_general_edu": {
            "name": "Completed Grade 9 or higher",
            "numerators": {"this": total_general_edu},
            "values": {"this": round(total_general_edu / total_over_20 * 100, 2)},
        },
        "percent_further_edu": {
            "name": "Completed Matric or higher",
            "numerators": {"this": total_further_edu},
            "values": {"this": round(total_further_edu / total_over_20 * 100, 2)},
        },
        "metadata": general_edu["metadata"],
    }

    profile = {
        "educational_attainment_distribution": edu_dist_data,
        "educational_attainment": edu_split_data,
    }

    return profile
Exemple #20
0
def get_water_sources_profile(geo, session):

    if geo.geo_level == 'ward' or geo.geo_level == 'district':
        return {}

    try:
        _, total_pop = get_stat_data(
            'sex',
            geo=geo,
            session=session,
            table_fields=['age in completed years', 'sex', 'rural or urban'])

        WATER_POINT_STATUS_RECODES = OrderedDict([
            ('functional', 'Functional'), ('nonfunctional', 'Non Functional'),
            ('needsrepair', 'Functional Needs Repair')
        ])

        water_source_dist, n_sources  = get_stat_data('water sources', geo=geo,\
         session=session, recode=WATER_POINT_STATUS_RECODES)

    except Exception as e:
        #Location not found in dataset
        return {}
    #Functional  + Needs repair
    all_functional  = water_source_dist['Functional']['numerators']['this'] + \
            water_source_dist['Functional Needs Repair']['numerators']['this']

    #Number of people per water point
    n_people_per_point = round(total_pop / all_functional)

    return {
        'water_sources_dist': water_source_dist,
        'number_of_water_sources': {
            'name': 'Total number of water points',
            'numerators': {
                'this': n_sources
            },
            'values': {
                'this': n_sources
            }
        },
        'source_link':
        'http://www.opendata.go.tz/dataset/hali-halisi-ya-vitoa-maji-kwa-mikoa-yote-tanzania',
        'source_name': 'opendata.go.tz',
        'n_people_per_point': {
            'name':
            'Number of people using a working water point(Functional/Needs repair water point)',
            'numerators': {
                'this': n_people_per_point
            },
            'values': {
                'this': n_people_per_point
            }
        },
    }
Exemple #21
0
def get_type_treatment_profile(geo, session):
    # Treatment for acute respiratory infection symptoms, fever, and diarrhoea
    # stats
    dist, _ = get_stat_data(['type', 'treatment'], geo, session,
                            key_order={
                                'type': ['ARI', 'Fever', 'Diarrhoea'],
                                'treatment': ['Sought treatment from health facility or provider',
                                              'ORT', 'Zinc', 'ORS and zinc', 'Fluid from ORS packet'
                                              ]
    })
    # need to use numerators instead of values
    for key in dist:
        if key == 'metadata':
            continue
        for other_key in dist[key]:
            if other_key == 'metadata':
                continue
            try:
                dist[key][other_key]['values']['this'] = dist[key][other_key]['numerators']['this']
            except BaseException:
                dist[key][other_key] = {'values': {
                    'this': 0}, 'numerators': {'this': 0}}

    ari = dist['ARI']['Sought treatment from health facility or provider']['numerators']['this']
    fever = dist['Fever']['Sought treatment from health facility or provider']['numerators']['this']
    dist.pop('ARI')
    dist.pop('Fever')
    ari_dist = get_dictionary('Sought', 'Did not seek', ari, dist)
    fever_dist = get_dictionary('Sought', 'Did not seek', fever, dist)

    treatment_of_chidren_with_fever_dist, _ = get_stat_data(
        ['treatment of children with fever'], geo, session)
    children_with_fever = treatment_of_chidren_with_fever_dist['Had fever']['numerators']['this']
    treatment_of_chidren_with_fever_dist.pop('Had fever')

    # need to use numerators instead of values
    for v in treatment_of_chidren_with_fever_dist:
        if v == 'metadata':
            continue
        treatment_of_chidren_with_fever_dist[v]['values'][
            'this'] = treatment_of_chidren_with_fever_dist[v]['numerators']['this']

    return {
        'treatment_distribution': dist,
        'ari_dist': ari_dist,
        'fever_dist': fever_dist,
        'treatment_of_chidren_with_fever_dist': treatment_of_chidren_with_fever_dist,
        'children_with_fever': {
            'name': 'Percentage of children with fever in the two weeks preceding the survey',
            'numerators': {'this': children_with_fever},
            'values': {'this': children_with_fever}
        },
    }
Exemple #22
0
def get_land_audit_profile(geo, session):
    year = current_context().get('year')
    with dataset_context(year=year):
        land_use_dist = LOCATIONNOTFOUND
        land_user_dist = LOCATIONNOTFOUND
        land_distribution_gender = LOCATIONNOTFOUND
        land_ownership = LOCATIONNOTFOUND

        try:
            land_use_dist, _ = get_stat_data('land_use', geo, session,
                                             table_name='landuse',
                                             table_fields=['land_use'])
        except Exception as e:
            pass

        try:
            land_user_dist, _ = get_stat_data('land_user', geo, session,
                                              table_name='landuser',
                                              table_fields=['land_user'])
        except Exception:
            pass

        try:
            land_distribution_gender, _ = get_stat_data(
                'land_ownership_by_gender', geo, session,
                table_name='privatelanddistributionbygender',
                table_fields=['land_ownership_by_gender'])
        except Exception:
            pass

        try:
            land_ownership, _ = get_stat_data('private_vs_state_ownership', geo,
                                              session,
                                              table_name='landownership',
                                              table_fields=[
                                                  'private_vs_state_ownership'])
        except Exception:
            pass

        is_missing = land_user_dist.get('is_missing') and \
                     land_use_dist.get('is_missing') and \
                     land_distribution_gender.get('is_missing') and \
                     land_ownership.get('is_missing')

    return {
        'is_missing': is_missing,
        'land_user_dist': land_user_dist,
        'land_use_dist': land_use_dist,
        'land_distribution_gender': land_distribution_gender,
        'land_ownership': land_ownership,
    }
Exemple #23
0
def get_demographics_profile(geo, session):
    geo.version = str(geo.version)
    # sex
    try:
        sex_dist_data, total_pop = get_stat_data('sex',
                                                 geo,
                                                 session,
                                                 table_fields=['sex'])

    except LocationNotFound:
        sex_dist_data = LOCATIONNOTFOUND
        total_pop = 0

    # urban/rural by sex
    total_urbanised = 0
    try:
        urban_dist_data, _ = get_stat_data(['rural or urban'],
                                           geo,
                                           session,
                                           table_fields=['rural or urban'])

        for data in urban_dist_data['Urban'].itervalues():
            if 'numerators' in data:
                total_urbanised += data['numerators']['this']

    except LocationNotFound:
        urban_dist_data = LOCATIONNOTFOUND

    final_data = {
        'sex_ratio': sex_dist_data,
        'urban_distribution': urban_dist_data,
        'urbanised': {
            'name': 'In urban areas',
            'numerators': {
                'this': total_urbanised
            },
        },
        'total_population': {
            "name": "People",
            "values": {
                "this": total_pop
            }
        }
    }
    try:
        final_data['urbanised']['values'] = {
            'this': round(total_urbanised / total_pop * 100, 2)
        }
    except ZeroDivisionError:
        final_data['urbanised']['values'] = {'this': 0}
    return final_data
Exemple #24
0
def get_households_profile(geocode, geo_level, session):
    try:
        light_source, total_households = get_stat_data('household distribution by light source', geo_level, geocode,
                                                       session, table_fields=['household distribution by light source'])
        energy_source, _ = get_stat_data('household distribution by energy source', geo_level, geocode, session,
                                         table_fields=['household distribution by energy source'])
    except LocationNotFound:
        household_dist, total_households = LOCATIONNOTFOUND, 0
        light_source = LOCATIONNOTFOUND
        energy_source, _ = LOCATIONNOTFOUND, 0

    total_electrified_lighting = 0
    for data, value in light_source.get('Electricity', {}).iteritems():
        if data == 'numerators':
            total_electrified_lighting += value['this']

    total_charcoal_energy = 0
    for data, value in energy_source.get('Charcoal', {}).iteritems():
        if data == 'numerators':
            total_charcoal_energy += value['this']

    final_data = {
        'light_source_distribution': light_source,
        'electrified_lighting': {
            'name': 'Lighting with Electricity',
            'numerators': {'this': total_electrified_lighting},

        },
        'energy_source_distribution': energy_source,
        'charcoal_energy': {
            'name': 'Cooking with Charcoal',
            'numerators': {'this': total_charcoal_energy},
        },
        'total_households': {
            "name": "Households",
            "values": {"this": total_households}
        }
    }
    try:
        final_data['electrified_lighting']['values'] = {
            'this': round(total_electrified_lighting / total_households * 100, 2)}
    except ZeroDivisionError:
        final_data['electrified_lighting']['values'] = {'this': 0}

    try:
        final_data['charcoal_energy']['values'] = {
            'this': round(total_electrified_lighting / _ * 100, 2)}
    except ZeroDivisionError:
        final_data['charcoal_energy']['values'] = {'this': 0}
    return final_data
def get_type_treatment_profile(geo_code, geo_level, session):
    # Treatment for acute respiratory infection symptoms, fever, and diarrhoea stats
    dist, _ = get_stat_data(['type', 'treatment'], geo_level, geo_code, session,
                            key_order={
                                'type': ['ARI', 'Fever','Diarrhoea'],
                                'treatment': ['Sought treatment from health facility or provider', \
                                              'ORT', 'Zinc', 'ORS and zinc','Fluid from ORS packet'
                                              ]
                            })
    # need to use numerators instead of values
    for key in dist:
        if key == 'metadata': continue
        for other_key in dist[key]:
            if other_key == 'metadata': continue
            try:
                dist[key][other_key]['values']['this'] = dist[key][other_key]['numerators']['this']
            except:
                dist[key][other_key] = {'values': {'this': 0}, 'numerators': {'this': 0}}

    ari = dist['ARI']['Sought treatment from health facility or provider']['numerators']['this']
    fever = dist['Fever']['Sought treatment from health facility or provider']['numerators']['this']
    dist.pop('ARI')
    dist.pop('Fever')
    ari_dist = get_dictionary('Sought', 'Did not seek', ari, dist)
    fever_dist = get_dictionary('Sought', 'Did not seek', fever, dist)


    treatment_of_chidren_with_fever_dist, _ = get_stat_data(['treatment of children with fever'], geo_level, geo_code, session)
    children_with_fever = treatment_of_chidren_with_fever_dist['Had fever']['numerators']['this']
    treatment_of_chidren_with_fever_dist.pop('Had fever')

    # need to use numerators instead of values
    for v in treatment_of_chidren_with_fever_dist:
        if v == 'metadata': continue
        treatment_of_chidren_with_fever_dist[v]['values']['this'] = treatment_of_chidren_with_fever_dist[v]['numerators']['this']


    return {
        'treatment_distribution': dist,
        'ari_dist': ari_dist,
        'fever_dist': fever_dist,
        'treatment_of_chidren_with_fever_dist': treatment_of_chidren_with_fever_dist,
        'children_with_fever': {
            'name': 'Percentage of children with fever in the two weeks preceding the survey',
            'numerators': {'this': children_with_fever},
            'values': {'this': children_with_fever},
            'metadata': dist['metadata']
        },
    }
Exemple #26
0
def get_demographics_profile(geo, session, year):
    with dataset_context(year=year):
        geo.version = str(geo.version)
        # sex
        try:
            sex_dist_data, total_pop = get_stat_data(
                'sex', geo, session,
                table_fields=['sex'])

        except Exception:
            sex_dist_data = LOCATIONNOTFOUND
            total_pop = 0


        # urban/rural by sex
        total_urbanised = 0
        try:
            urban_dist_data, _ = get_stat_data(
                ['rural or urban'], geo, session,
                table_fields=['rural or urban'])

            for data in urban_dist_data['Urban'].values():
                if 'numerators' in data:
                    total_urbanised += data['numerators']['this']

        except Exception:
            urban_dist_data = LOCATIONNOTFOUND

        is_missing = sex_dist_data.get('is_missing') and urban_dist_data.get('is_missing')

        final_data = {
            'is_missing': is_missing,
            'sex_ratio': sex_dist_data,
            'urban_distribution': urban_dist_data,
            'urbanised': {
                'name': 'In urban areas',
                'numerators': {'this': total_urbanised},

            },
            'total_population': {
                "name": "People",
                "values": {"this": total_pop}
            }}
        try:
            final_data['urbanised']['values'] = {
                'this': round(total_urbanised / total_pop * 100, 2)}
        except ZeroDivisionError:
            final_data['urbanised']['values'] = {'this': 0}
    return final_data
Exemple #27
0
def get_population(geo, session):
    with dataset_context(year='2017'):
        sex_dist, total_population_sex = LOCATIONNOTFOUND, 0
        residence_dist, total_population_residence = LOCATIONNOTFOUND, 0
        religion_dist, total_population_religion = LOCATIONNOTFOUND, 0

        try:
            sex_dist, total_population_sex = get_stat_data(
                'sex', geo, session, table_fields=['sex'])
        except Exception:
            pass
        try:
            residence_dist, total_population_residence = get_stat_data(
                'residence', geo, session,
                table_fields=['residence'])
        except Exception:
            pass

        try:
            religion_dist, total_population_religion = get_stat_data(
                'religion', geo, session,
                table_fields=['religion'])
        except Exception:
            pass

        total_population = 0
        is_missing = sex_dist.get('is_missing') and \
            residence_dist.get('is_missing') and \
                     religion_dist.get('is_missing')
        if not is_missing:
            total_population = total_population_sex if total_population_sex > 0 else total_population_residence
        total_population_dist = _create_single_value_dist(
            'People', total_population)

    demographics_data = {
        'is_missing': is_missing,
        'sex_dist': sex_dist,
        'residence_dist': residence_dist,
        'religion_dist': religion_dist,
        'total_population': total_population_dist,
    }

    if geo.square_kms:
        demographics_data['population_density'] = {
            'name': "people per square kilometre",
            'values': {"this": total_population / geo.square_kms},
        }
    return demographics_data
Exemple #28
0
def get_hospitals_profile(geo, session):
    # population group
    _, total_pop = get_stat_data(['population group'],
                                 geo,
                                 session,
                                 table_dataset='Census 2011')

    # Hospitals
    table = get_datatable('hospitals_2012')
    keys = [
        'regional_hospital', 'central_hospital', 'district_hospital', 'clinic',
        'chc'
    ]
    hospital_breakdown, total_hospitals = table.get_stat_data(
        geo, keys, percent=False, recode={'chc': 'Community health centre'})

    people_per_hospital = ratio(total_pop, total_hospitals)

    _, ecd_children = get_stat_data(['age in completed years'],
                                    geo,
                                    session,
                                    table_name='ageincompletedyears',
                                    only=['0', '1', '2', '3', '4', '5'])

    children_0_to_5_per_hospital = ratio(ecd_children, total_hospitals)

    return {
        "total_hospitals": {
            "name": "Hospitals / Clinics",
            "values": {
                "this": total_hospitals
            }
        },
        "hospital_breakdown": hospital_breakdown,
        "people_per_hospital": {
            "name": "People living in the area for each hospital / clinic",
            "values": {
                "this": people_per_hospital
            }
        },
        "children_0_to_5_per_hospital": {
            "name":
            "Children (aged 0-5 years) living in the area for each hospital / clinic",
            "values": {
                "this": children_0_to_5_per_hospital
            }
        },
    }
Exemple #29
0
def get_fertility_profile(geo, session):
    # fertility
    dist, _ = get_stat_data(['fertility'], geo, session)

    percentage_women_age_15_49_currently_pregnant = dist['Pregnant']['numerators']['this']

    percentage_women_age_15_49_currently_pregnant = get_dictionary('Pregnant', 'Not pregnant',
                                                                   percentage_women_age_15_49_currently_pregnant, dist)

    fertility_rate = dist['Rate']['numerators']['this']
    mean_number_of_children_ever_born_to_women_aged_40_49 = dist['Mean']['numerators']['this']

    return {
        'percentage_women_age_15_49_currently_pregnant': percentage_women_age_15_49_currently_pregnant,
        'fertility_rate': {
            'name': 'Fertility',
            'numerators': {'this': fertility_rate},
            'values': {'this': fertility_rate}
        },
        'mean_number_of_children_ever_born_to_women_aged_40_49': {
            'name': 'Mean number of children ever born to women aged 40-49',
            'numerators': {'this': mean_number_of_children_ever_born_to_women_aged_40_49},
            'values': {'this': mean_number_of_children_ever_born_to_women_aged_40_49}
        },
    }
Exemple #30
0
def get_health_ratios_profile(geo, session):
    ratios_dist, _ = get_stat_data("healthratios", geo, session)
    dr = ratios_dist['Doctor ratio']['numerators']['this']
    nr = ratios_dist['Nurse ratio']['numerators']['this']
    return {
        'doctorratio': {
            'name': 'Doctor to population ratio',
            'numerators': {
                'this': dr
            },
            'values': {
                'this': dr
            },
        },
        'nurseratio': {
            'name': 'Nurse to population ratio',
            'numerators': {
                'this': nr
            },
            'values': {
                'this': nr
            },
        },
        'metdata': ratios_dist['metadata']
    }
def get_pupil_teacher_ratios_profile(geo_code, geo_level, session):
    # pupil teacher ratios
    ratio_data, _ = get_stat_data(
        'pupil teacher ratios', geo_level, geo_code, session)

    pupil_teacher_ratio = ratio_data['Pupil teacher ratio']['numerators']['this']
    pupils_per_textbook = ratio_data['Pupils per textbook']['numerators']['this']

    pupil_attendance_rate_dist = \
        ratio_data['Government school attendance rate']['numerators']['this']
    pupil_attendance_rate_dist = get_dictionary("Attending school", "Absent", pupil_attendance_rate_dist)

    teachers_absent_dist = ratio_data['Teachers absent']['numerators']['this']
    teachers_absent_dist = get_dictionary("Teachers absent", "Teachers present", teachers_absent_dist)

    return  {
        'pupil_attendance_rate_dist': pupil_attendance_rate_dist,
        'teachers_absent_dist': teachers_absent_dist,
        'pupil_teacher_ratio': {
            'name': 'For every one teacher there are ' +  str(pupil_teacher_ratio) + " pupils",
            'numerators': {'this': pupil_teacher_ratio},
            'values': {'this': pupil_teacher_ratio}
        },
        'pupils_per_textbook': {
            'name': 'Pupils per textbook',
            'numerators': {'this': pupils_per_textbook},
            'values': {'this': pupils_per_textbook}
        }
    }
def get_fertility_profile(geo_code, geo_level, session):
    # fertility
    dist, _ = get_stat_data(['fertility'], geo_level, geo_code, session)

    percentage_women_age_15_49_currently_pregnant = dist['Pregnant']['numerators']['this']

    percentage_women_age_15_49_currently_pregnant = get_dictionary('Pregnant', 'Not pregnant',\
                                                                   percentage_women_age_15_49_currently_pregnant, dist)

    fertility_rate = dist['Rate']['numerators']['this']
    mean_number_of_children_ever_born_to_women_aged_40_49 =  dist['Mean']['numerators']['this']

    return {
        'percentage_women_age_15_49_currently_pregnant': percentage_women_age_15_49_currently_pregnant,
        'fertility_rate': {
            'name': 'Fertility',
            'numerators': {'this': fertility_rate},
            'values': {'this': fertility_rate},
            'metadata': dist['metadata']
        },
        'mean_number_of_children_ever_born_to_women_aged_40_49': {
            'name': 'Mean number of children ever born to women aged 40-49',
            'numerators': {'this': mean_number_of_children_ever_born_to_women_aged_40_49},
            'values': {'this': mean_number_of_children_ever_born_to_women_aged_40_49},
            'metadata': dist['metadata']
        },

    }
Exemple #33
0
    def stat_data(self):
        """
        Calculate the statistical data
        """
        try:
            self.distribution, self.total = get_stat_data(
                [self.profile.field_name],
                self.geo,
                self.session,
                table_name=self.profile.table_name.name,
                exclude_zero=self.profile.exclude_zero,
                percent=self.profile.percent,
                recode=self.profile.recode,
                key_order=self.profile.key_order,
                exclude=self.profile.exclude,
                order_by=self.profile.order_by,
            )
            self.compare_geos()
            if self.profile.group_remainder:
                group_remainder(self.distribution, self.profile.group_remainder)

            self.distribution = enhance_api_data(self.distribution)
            return {"stat_values": self.distribution}
        except KeyError as error:
            log.warn(
                "Unable to calculate statistics for profile: %s", self.profile.title
            )
            log.warn("error: %s", error)
            return {}
        except DataNotFound as error:
            log.warn(
                "Unable to calculate statistics for profile: %s", self.profile.title
            )
            log.warn("Unable to find data for this indicator: %s", error)
            return {}
Exemple #34
0
def get_tetanus_vaccine_profile(geo, session):
    if geo.geo_level != 'region' and geo.geo_level != 'country': return {}

    tetanus_vaccine_data, _ = get_stat_data('tetanus vaccine',
                                            geo=geo,
                                            session=session,
                                            order_by='-total')
    number_vaccinated = tetanus_vaccine_data['Vaccinated']['numerators'][
        'this']
    coverage = tetanus_vaccine_data['Coverage']['numerators']['this']
    return {
        'number_vaccinated': {
            'name':
            'Number of pregnant women received two or more Tetanus Toxoid vaccine (TT2+) (2014)',
            'numerators': {
                'this': number_vaccinated
            },
            'values': {
                'this': number_vaccinated
            }
        },
        'coverage': {
            'name':
            'Coverage of pregnant women who received two or more Tetanus Toxoid vaccine (TT2+) (2014)',
            'numerators': {
                'this': coverage
            },
            'values': {
                'this': coverage
            }
        },
        'source_link':
        'http://www.opendata.go.tz/dataset/number-and-percentage-of-pregnant-women-received-two-or-more-tetanus-toxoid-vaccine-tt2-by-region',
        'source_name': 'opendata.go.tz',
    }
Exemple #35
0
def get_v6marketshare_profile(geo, session):

    view_ft_marketshare_v6users = OrderedDict()
    ispAmount = 0

    try:
        view_ft_marketshare_v6users, _ = get_stat_data(
            'asname',
            geo,
            session,
            order_by='-total',
            table_fields='total',
            table_name='ft_marketshare_v6users',
            exclude_zero=True)
        ispAmount = len(view_ft_marketshare_v6users) - 1
    except Exception as e:
        ispAmount = 0
        view_ft_marketshare_users = None

    return {
        'isp_count': {
            "name": "IPv6 ISP's",
            "values": {
                'this': ispAmount
            }
        },
        'view_ft_marketshare_v6users': view_ft_marketshare_v6users
    }
Exemple #36
0
    def dataset_context_stat_data(self):
        """
        Calulate statistical data with a particular context
        """
        with dataset_context(year=str(self.profile.dataset_context)):
            try:
                self.distribution, self.total = get_stat_data(
                    [self.profile.field_name],
                    self.geo,
                    self.session,
                    table_name=self.profile.table_name.name,
                    exclude_zero=self.profile.exclude_zero,
                    percent=self.profile.percent,
                    recode=self.profile.recode,
                    key_order=self.profile.key_order,
                    exclude=self.profile.exclude,
                    order_by=self.profile.order_by,
                )
                self.compare_geos()

                if self.profile.group_remainder:
                    group_remainder(self.distribution, self.profile.group_remainder)

                self.distribution = enhance_api_data(self.distribution)
                return {"stat_values": self.distribution}
            except DataNotFound:
                return {}
Exemple #37
0
def get_primary_school_teachers_profile(geo, session):

    if geo.geo_level == 'ward':
        return {}
    try:

        ps_teachers, n_teachers = get_stat_data('primary school teachers',\
            geo=geo, session=session, order_by='-total')

    except Exception as e:
        ps_teachers = None
        n_teachers = None

    return {
        'number_of_teachers': {
            'name': 'Number of primary school teachers (2016)',
            'numerators': {
                'this': n_teachers
            },
            'values': {
                'this': n_teachers
            }
        },
        'source_name': 'opendata.go.tz',
        'source_link':
        'http://www.opendata.go.tz/dataset/number-of-primary-school-teachers',
        'primary_school_teachers': ps_teachers
    }
Exemple #38
0
def get_election_data(geo, election, session):
    party_data, total_valid_votes = get_stat_data(
        ['party'],
        geo,
        session,
        table_dataset=election['dataset'],
        recode=lambda f, v: make_party_acronym(v),
        order_by='-total')

    results = {
        'name': election['name'],
        'party_distribution': party_data,
        'geo_version': election['geo_version']
    }

    # voter registration and turnout
    table = get_datatable('voter_turnout_%s' % election['table_code'])
    results.update(
        table.get_stat_data(
            geo,
            'registered_voters',
            percent=False,
            recode={'registered_voters': 'Number of registered voters'})[0])
    results.update(
        table.get_stat_data(
            geo,
            'total_votes',
            percent=True,
            total='registered_voters',
            recode={'total_votes': 'Of registered voters cast their vote'})[0])

    return results
Exemple #39
0
def get_gdpyearly_profile(geo,session,request):
    
    yearSetsIni = []
    ExcYearSet = []
    for i in range(2001,2018):
        yearSetsIni.append(i)
    
    cyear = 2011
    for y in yearSetsIni:
        if y != cyear:
            ExcYearSet.append(y)
    ExcYearSet = map(str, ExcYearSet)

    if request.GET.get('release') is  not None:
        ExcYearSet = []
        ryear    = int(request.GET.get('release'))
        ExcYearSet = [e for e in yearSetsIni if e not in {ryear}]
        #ExcYearSet = list(set(yearSetsIni)-set(ryear))
        ExcYearSet = map(str, ExcYearSet)
    
    gdp_single_year,t_lit = get_stat_data(
        ['gdpyear'],geo,session,
        table_fields =['gdpyear'],
        exclude = ExcYearSet,
    )

    final_data = {
        'gdp_ratio': gdp_single_year,
        'total_gdp':{
            "name": "Total GDP in crore",
            "values": {"this":t_lit}
        }
    }

    return final_data
Exemple #40
0
def get_elections2016_profile(geocode, geo_level, session):
    try:
        candidate, total_votes = get_stat_data('presidential candidate', geo_level, geocode, session,
                                               table_fields=['presidential candidate'])
    except LocationNotFound:
        candidate, total_votes = LOCATIONNOTFOUND, 0

    total_besigye = 0
    for data, value in candidate.get('Kizza besigye', {}).iteritems():
        if data == 'numerators':
            total_besigye += value['this']

    final_data = {
        'candidate_distribution': candidate,
        'besigye_votes': {
            'name': 'Besigye Votes',
            'numerators': {'this': total_besigye},

        },

        'total_votes': {
            "name": "Votes",
            "values": {"this": total_votes}
        }
    }
    try:
        final_data['besigye_votes']['values'] = {
            'this': round(total_besigye / total_votes * 100, 2)}
    except ZeroDivisionError:
        final_data['besigye_votes']['values'] = {'this': 0}
    return final_data
Exemple #41
0
def get_drinkingsource_profile(geo,session,request):

    table = 'drinkingsource_2011'
    if request.GET.get('release') is  not None:
        tablereq = 'drinkingsource_' + request.GET.get('release')
        if tablereq  in ('drinkingsource_2011'):
            table = tablereq
        else:
            table = 'drinkingsource_default'

    drinking_source_dis_data,t_lit= get_stat_data(
        'drinkingsource',geo,session,
        table_fields=['drinkingsource'],
        table_name=table
    )

    final_data = {
        'drinkingsource_ratio':drinking_source_dis_data,
        'total_population':{
            "name": "Total Household",
            "values": {"this":t_lit}
        }
    }

    return final_data
Exemple #42
0
def get_employment_profile(geo, session):
    # employment status
    employment_activity_dist, total_workers = get_stat_data(
        ['employment activity status', 'sex'],
        geo,
        session,
        recode={'employment activity status': dict(EMPLOYMENT_RECODES)},
        key_order={
            'employment activity status': EMPLOYMENT_RECODES.values(),
            'sex': ['Female', 'Male']
        })

    total_employed = 0.0
    for data in employment_activity_dist['Employed'].itervalues():
        if 'numerators' in data:
            total_employed += data['numerators']['this']

    return {
        'activity_status_distribution': employment_activity_dist,
        'employed': {
            'name': 'Employment',
            'numerators': {
                'this': total_employed
            },
            'values': {
                'this': round(total_employed / total_workers * 100, 2)
            },
        },
    }
Exemple #43
0
def get_ruralpopcovered_profile(geo,session,request):

    table = 'ruralpopcovered_2017'
    if request.GET.get('release') is  not None:
        tablereq = 'ruralpopcovered_' + request.GET.get('release')
        if tablereq  in ('ruralpopcovered_2017'):
            table = tablereq
        else:
            table = 'ruralpopcovered_default'

    if request.GET.get('table') is  not None:
        if request.GET.get('table') in ('ruralpopcovered_2017'):
            table = request.GET.get('table')

    ruralpopcovered_dis_data,t_lit = get_stat_data(
        ['ruralpopcovered'],geo,session,
        table_fields=['ruralpopcovered','year'],
        table_name=table
    )

    final_data = {
        'ruralpopcovered_dis_data_distribution':  ruralpopcovered_dis_data,
        'total_population': {
            "name": "Total rural population covered",
            "values": {"this": t_lit}
        }
    }
    return final_data
Exemple #44
0
def get_economics_profile(geo_code, geo_level, session):
    # income
    income_dist_data, total_workers = get_stat_data(
            ['employed individual monthly income'], geo_level, geo_code, session,
            exclude=['Not applicable'],
            recode=COLLAPSED_INCOME_CATEGORIES,
            key_order=COLLAPSED_INCOME_CATEGORIES.values())

    # median income
    median = calculate_median_stat(income_dist_data)
    median_income = ESTIMATED_INCOME_CATEGORIES[median]

    # employment status
    employ_status, total_workers = get_stat_data(
            ['official employment status'], geo_level, geo_code, session,
            exclude=['Age less than 15 years', 'Not applicable'],
            order_by='official employment status',
            table_name='officialemploymentstatus')

    # sector
    sector_dist_data, _ = get_stat_data(
            ['type of sector'], geo_level, geo_code, session,
            exclude=['Not applicable'],
            order_by='type of sector')

    # access to internet
    internet_access_dist, total_with_access = get_stat_data(
            ['access to internet'], geo_level, geo_code, session, exclude=['No access to internet'],
            order_by='access to internet')
    _, total_without_access = get_stat_data(
            ['access to internet'], geo_level, geo_code, session, only=['No access to internet'])
    total_households = total_with_access + total_without_access

    return {'individual_income_distribution': income_dist_data,
            'median_individual_income': {
                'name': 'Average monthly income',
                'values': {'this': median_income},
                },
            'employment_status': employ_status,
            'sector_type_distribution': sector_dist_data,
            'internet_access_distribution': internet_access_dist,
            'internet_access': {
                'name': 'Households with internet access',
                'values': {'this': percent(total_with_access, total_households)},
                'numerators': {'this': total_with_access},
                }
            }
def get_vaccinations_profile(geo_code, geo_level, session):
    # vaccinations
    dist, _ = get_stat_data(['vaccinations'], geo_level, geo_code, session,
                            key_order=['BCG','Pentavalent 1','Pentavalent 2','Pentavalent 3','Polio 0','Polio 1', \
                                       'Polio 2','Polio 3','Measles','Pneumococcal 1', \
                                       'Pneumococcal 2','Pneumococcal 3',],
                            only=['BCG','Pentavalent 1','Pentavalent 2','Pentavalent 3','Polio 0','Polio 1', \
                                  'Polio 2','Polio 3','Measles','Pneumococcal 1', \
                                  'Pneumococcal 2','Pneumococcal 3',],
                            )

    # need to use numerators instead of values
    for key in dist:
        if key == 'metadata':
            continue
        dist[key]['values']['this'] = dist[key]['numerators']['this']

    vacc_dist, _ = get_stat_data(['vaccinations'], geo_level, geo_code, session,
                                 # only=['All basic vaccinations', 'Percentage with vaccination card',\
                                 # 'Fully vaccinated', 'Not vaccinated'],
                                 )

    fully_vaccinated = vacc_dist['Fully vaccinated']['numerators']['this']
    fully_vaccinated = get_dictionary('Fully vaccinated', 'Not fully vaccinated', fully_vaccinated, dist)

    all_basic_vaccinations = vacc_dist['All basic vaccinations']['numerators']['this']
    all_basic_vaccinations = get_dictionary('All basic vaccinations', 'Basic vaccinations not administered', \
                                            all_basic_vaccinations, dist)

    percentage_with_vaccination_cards = vacc_dist['Percentage with vaccination card']['numerators']['this']
    percentage_with_vaccination_cards = get_dictionary('Have vaccination cards', 'No vaccination cards',\
                                                       percentage_with_vaccination_cards, dist)
    not_vaccinated = vacc_dist['Not vaccinated']['numerators']['this']

    return {
        'distribution': dist,
        'fully_vaccinated': fully_vaccinated,
        'all_basic_vaccinations': all_basic_vaccinations,
        'percentage_with_vaccination_cards': percentage_with_vaccination_cards,
        'not_vaccinated': {
            'name': 'Not vaccinated',
            'numerators': {'this': not_vaccinated},
            'values': {'this': not_vaccinated},
            'metadata': dist['metadata']
        },
    }
def get_voterregistration_profile(geo_code, geo_level, session):
    stats_dist, _ = get_stat_data("voterregistration", geo_level, geo_code, session)
    ids_issued = stats_dist['IDs issued']['numerators']['this']
    dead_with_ids = stats_dist['Dead with IDs']['numerators']['this']
    reg_centers = stats_dist['Registration centers']['numerators']['this']
    reg = stats_dist['Registered voters']['numerators']['this']
    aft = stats_dist['Additional voters registered']['numerators']['this']
    total = stats_dist['Total registered']['numerators']['this']
    not_registered = stats_dist['Potential voting population not registered']['numerators']['this']
    return {
        'ids_issued': {
            'name': 'Number of IDs issued as at Dec 2015',
            'numerators': {'this': ids_issued},
            'values': {'this': ids_issued},
        },
        'dead_with_ids': {
            'name': 'Projected dead with IDs 10.57%',
            'numerators': {'this': dead_with_ids},
            'values': {'this': dead_with_ids},
        },
        'reg_centers': {
            'name': 'Number of registration centers',
            'numerators': {'this': reg_centers},
            'values': {'this': reg_centers},
        },
        'total': {
            'name': 'Total population registered to vote',
            'numerators': {'this': total},
            'values': {'this': total},
        },
        'registration': {
            'march': {
                'name': 'As at Mar 2013',
                'numerators': {'this': reg},
                'values': {'this': round((reg / total) * 100) },
            },
            'oct': {
                'name': 'As at Oct 2015',
                'numerators': {'this': aft},
                'values': {'this':round((aft / total) * 100)},
            },
            'metadata': stats_dist['metadata']
        },
        'registration_ratio': {
            'march': {
                'name': 'Registered',
                'numerators': {'this': total},
                'values': {'this': round((total / (total + not_registered)) * 100) },
            },
            'oct': {
                'name': 'Not registered',
                'numerators': {'this': not_registered},
                'values': {'this':round((not_registered / (total + not_registered)) * 100)},
            },
            'metadata': stats_dist['metadata']
        },
    }
Exemple #47
0
    def test_get_stat_data_nulls(self):
        self.field_table(['gender'], """
lev,code,Male,10
lev,code,Female,
""")
        data, total = get_stat_data(['gender'], self.geo, self.s)
        self.assertEqual(total, 10)
        self.assertEqual(data['Male']['numerators']['this'], 10)
        self.assertEqual(data['Male']['values']['this'], 100)
        self.assertIsNone(data['Female']['numerators']['this'])
        self.assertIsNone(data['Female']['values']['this'])

        data, total = get_stat_data(['gender'], self.geo, self.s, percent=False)
        self.assertEqual(total, 10)
        self.assertIsNone(data['Male']['numerators']['this'])
        self.assertEqual(data['Male']['values']['this'], 10)
        self.assertIsNone(data['Female']['numerators']['this'])
        self.assertIsNone(data['Female']['values']['this'])
Exemple #48
0
def get_schools_profile(geo, session):
    # population group
    _, total_pop = get_stat_data(
        ['population group'], geo, session, table_dataset='Census 2011')

    # Schools
    table = get_datatable('schools_2015')
    keys = ['primary_schools', 'combined_schools', 'intermediate_schools', 'secondary_schools']
    school_breakdown, total_schools = table.get_stat_data(
        geo, keys, percent=False)

    primary_school_ages = ['6', '7', '8', '9', '10', '11', '12', '13']
    secondary_school_ages = ['14', '15', '16', '17', '18']

    _, total_primary_children = get_stat_data(
        ['age in completed years'], geo, session,
        table_name='ageincompletedyears',
        only=primary_school_ages)

    _, total_secondary_children = get_stat_data(
        ['age in completed years'], geo, session,
        table_name='ageincompletedyears',
        only=secondary_school_ages)

    children_per_primary_school = ratio(total_primary_children, school_breakdown['primary_schools']['values']['this'])
    children_per_secondary_school = ratio(total_secondary_children, school_breakdown['secondary_schools']['values']['this'])

    final_data = {
        'total_schools': {
            "name": "Schools",
            "values": {"this": total_schools}
        },
        "school_breakdown": school_breakdown,
        "children_per_primary_school": {
            "name": "Children (6-13 years) in the area for each primary school",
            "values": {"this": children_per_primary_school}
        },
        "children_per_secondary_school": {
            "name": "Children (14-18 years) for each secondary school",
            "values": {"this": children_per_secondary_school}
        }
    }

    return final_data
def get_maternal_care_indicators_profile(geo_code, geo_level, session):
    # maternal care indicators stats
    maternal_care_indicators_data, _ = get_stat_data(
        'maternal care indicators', geo_level, geo_code, session)

    delivery_in_health_facility = \
        maternal_care_indicators_data['Percentage delivered in a health facility']['numerators']['this']

    antenatal_care_by_skilled_provider = \
        maternal_care_indicators_data['Percentage with antenatal care from a skilled provider']['numerators']['this']
    antenatal_dist = get_dictionary('From a skilled provider', 'From a non-skilled provider', antenatal_care_by_skilled_provider,maternal_care_indicators_data )

    anc_visits = maternal_care_indicators_data['Percentage with 4+ ANC visits']['numerators']['this']
    anc_visits_dist = get_dictionary('4+', 'Less than 4', anc_visits, maternal_care_indicators_data )

    delivery_by_skilled_provider = \
        maternal_care_indicators_data['Percentage delivered by a skilled provider']['numerators']['this']
    delivery_by_skilled_provider_dist = get_dictionary('Skilled provider', 'Non-skilled provider', delivery_by_skilled_provider, maternal_care_indicators_data)

    #Use of IPT
    use_of_ipt_dist, _ = get_stat_data('use of ipt', geo_level, geo_code, session)

    one_or_more_dist = use_of_ipt_dist['1 or more']['numerators']['this']
    one_or_more_dist = get_dictionary('1 or more', 'Less', one_or_more_dist,maternal_care_indicators_data)
    two_or_more_dist = use_of_ipt_dist['2 or more']['numerators']['this']
    two_or_more_dist = get_dictionary('2 or more', 'Less', two_or_more_dist, maternal_care_indicators_data)
    three_or_more_dist = use_of_ipt_dist['3 or more']['numerators']['this']
    three_or_more_dist = get_dictionary('3 or more', 'Less', three_or_more_dist, maternal_care_indicators_data)

    return  {
        'maternal_care_indicators': maternal_care_indicators_data,
        'antenatal_dist': antenatal_dist,
        'anc_visits_dist': anc_visits_dist,
        'delivery_by_skilled_provider_dist': delivery_by_skilled_provider_dist,
        'delivery_in_health_facility': {
            'name': 'babies delivered in a health facility',
            'numerators': {'this': delivery_in_health_facility},
            'values': {'this': round(delivery_in_health_facility, 2)}
        },
        'one_or_more_dist': one_or_more_dist,
        'two_or_more_dist': two_or_more_dist,
        'three_or_more_dist': three_or_more_dist,
    }
Exemple #50
0
def get_education_profile(geo_code, geo_level, session):
    youth_completed_grade9, _ = get_stat_data(['completed grade9'], geo_level, geo_code, session, table_name='youth_age_16_to_17_gender_completed_grade9')

    youth_gender_completed_grade9, _ = get_stat_data(['gender', 'completed grade9'], geo_level, geo_code, session, table_name='youth_age_16_to_17_gender_completed_grade9')
    db_model_gender_completed_grade9 = get_model_from_fields(['gender'], geo_level, table_name='youth_age_16_to_17_gender_completed_grade9')
    gender_completed_grade9_data = OrderedDict((  # census data refers to sex as gender
            ('Female', {
                "name": "Female",
                "values": {"this": youth_gender_completed_grade9['Female']['Yes']['values']['this']},
                "numerators": {"this": youth_gender_completed_grade9['Female']['Yes']['numerators']['this']},
            }),
            ('Male', {
                "name": "Male",
                "values": {"this": youth_gender_completed_grade9['Male']['Yes']['values']['this']},
                "numerators": {"this": youth_gender_completed_grade9['Male']['Yes']['numerators']['this']},
            }),
        ))
    add_metadata(gender_completed_grade9_data, db_model_gender_completed_grade9)

    youth_education_level, youth_pop_20_to_24 = get_stat_data(['education level'], geo_level, geo_code, session, table_name='youth_age_20_to_24_gender_education_level')

    matric_or_equiv = (
        youth_education_level['Matric']['numerators']['this'] +
        youth_education_level['Tertiary']['numerators']['this'] +
        youth_education_level['Some secondary']['numerators']['this'])


    final_data  = {
        'youth_completed_grade9': youth_completed_grade9,
        'youth_perc_completed_grade9': {
            "name": "Of youth aged 16-17 have completed grade 9",
            "values": {"this": youth_completed_grade9['Yes']['values']['this']},
        },
        'youth_gender_completed_grade9': gender_completed_grade9_data,
        'youth_perc_matric': {
            "name": "Of youth aged 20-24 have completed matric or matric equivalent",
            "values": {"this": percent(matric_or_equiv, youth_pop_20_to_24)},
        },
        'youth_education_level': youth_education_level
    }

    return final_data
def get_protests_profile(geo_code, geo_level, session):
    number_of_protests_dist, _ = get_stat_data("protests", geo_level, geo_code, session)
    number_of_protests = number_of_protests_dist['Number of protests']['numerators']['this']
    return {
        'number_of_protests': {
            'name': 'Number of protests',
            'numerators': {'this': number_of_protests},
            'values': {'this': number_of_protests},
            'metadata': number_of_protests_dist['metadata']
        },
    }
def get_crimereport_profile(geo_code, geo_level, session):
    stats_dist, s_ = get_stat_data("crimereport", geo_level, geo_code, session)
    crimes_dist,c_ = get_stat_data("typesofcrime", geo_level, geo_code, session)
    crimes = stats_dist['Crimes']['numerators']['this']
    crimeindex = stats_dist['Crimesindex']['numerators']['this']
    return {
        'crimes': {
            'name': 'Number of crimes',
            'numerators': {'this': crimes},
            'values': {'this': crimes},
            'metadata': crimes_dist['metadata']
        },
        'crimesindex': {
            'name': 'Crime index per 100,000 people',
            'numerators': {'this': crimeindex},
            'values': {'this': crimeindex},
            'metadata': crimes_dist['metadata']
        },
        'crimes_dist': crimes_dist,
    }
def get_crop_production_profile(geo_code, geo_level, session):
    dist, _ = get_stat_data("crop_production", geo_level, geo_code, session, percent = False)
    area_dist = OrderedDict()
    area_dist['maize'] = dist['Maize']
    area_dist['beans'] = dist['Beans']
    area_dist['wheat'] = dist['Wheat']
    area_dist['barley'] = dist['Barley']
    area_dist['rice'] = dist['Rice']
    area_dist['sorghum'] = dist['Sorghum']
    area_dist['millet'] = dist['Millet']
    area_dist['cowpeas'] = dist['Cowpeas']
    area_dist['greengrams'] = dist['Greengrams']
    area_dist['sweetpotatoes'] = dist['Sweetpotatoes']
    area_dist['cassava'] = dist['Cassava']
    area_dist['cocoyam'] = dist['Cocoyam']
    area_dist['irishpotatoes'] = dist['Irishpotatoes']
    area_dist['metadata'] = dist['metadata']
    prod_dist_k = OrderedDict()
    prod_dist_k['maize'] = replace_name(dist['Maize (90kg bags)'], 'Maize')
    prod_dist_k['beans'] = replace_name(dist['Beans (90kg bags)'], 'Beans')
    prod_dist_k['wheat'] = replace_name(dist['Wheat (90kg bags)'], 'Wheat')
    prod_dist_k['sorghum'] = replace_name(dist['Sorghum (90kg bags)'], 'Sorghum')
    prod_dist_k['millet'] = replace_name(dist['Millet (90kg bags)'], 'Millet')
    prod_dist_k['cowpeas'] = replace_name(dist['Cowpeas (90kg bags)'], 'Cowpeas')
    prod_dist_k['greengrams'] = replace_name(dist['Greengrams (90kg bags)'], 'Green grams')
    prod_dist_t = OrderedDict()
    prod_dist_t['barley'] = replace_name(dist['Barley (Ton)'], 'Barley')
    prod_dist_t['rice'] = replace_name(dist['Rice (Ton)'], 'Rice')
    prod_dist_t['sweetpotatoes'] = replace_name(dist['Sweetpotatoes (Ton)'], 'Sweet Potatoes')
    prod_dist_t['cassava'] = replace_name( dist['Cassava (Ton)'], 'Cassava')
    prod_dist_t['cocoyam'] = replace_name(dist['Cocoyam (Ton)'], 'Cocoyam')
    prod_dist_t['irishpotatoes'] = replace_name(dist['Irishpotatoes (Ton)'], 'Irish potatoes')
    prod_dist_t['metadata'] = dist['metadata']
    yield_dist = OrderedDict()
    yield_dist['maize'] = replace_name(dist['Maize yield'], 'Maize')
    yield_dist['beans'] = replace_name(dist['Beans yield'], 'Beans')
    yield_dist['wheat'] = replace_name(dist['Wheat yield'], 'Wheat')
    yield_dist['barley'] = replace_name(dist['Barley yield'], 'Barley')
    yield_dist['rice'] = replace_name(dist['Rice yield'], 'Rice')
    yield_dist['sorghum'] = replace_name(dist['Sorghum yield'], 'Sorghum')
    yield_dist['millet'] = replace_name(dist['Millet yield'], 'Millet')
    yield_dist['cowpeas'] = replace_name(dist['Cowpeas yield'], 'Cowpeas')
    yield_dist['greengrams'] = replace_name(dist['Greengrams yield'], 'Green grams')
    yield_dist['sweetpotatoes'] = replace_name(dist['Sweetpotatoes yield'], 'Sweet potatoes')
    yield_dist['cassava'] = replace_name(dist['Cassava yield'], 'Cassava')
    yield_dist['cocoyam'] = replace_name(dist['Cocoyam yield'], 'Cocoyam')
    yield_dist['irishpotatoes'] = replace_name(dist['Irishpotatoes yield'], 'Irish potatoes')
    yield_dist['metadata'] = dist['metadata']
    return {
        'area_dist': area_dist,
        'prod_dist_t': prod_dist_t,
        'prod_dist_k': prod_dist_k,
        'yield_dist': yield_dist,
    }
def get_schoolfires_profile(geo_code, geo_level, session):
    school_fires_dist, number_of_school_fires = get_stat_data("schoolfires", geo_level, geo_code, session)
    schools = school_fires_dist[school_fires_dist.keys()[0]]['name'].replace(',', '<br>').replace('"','')
    return {
        'schoolfires': {
            'name': 'Number of school fires',
            'numerators': {'this': number_of_school_fires},
            'values': {'this': number_of_school_fires},
            'metadata': school_fires_dist['metadata'],
        },
        'schools': schools
    }
Exemple #55
0
def get_disabilities_profile(geo, session, year):
    with dataset_context(year=year):
        try:
            disabled_or_not, total_ = get_stat_data('disabled or not', geo, session,
                                                    table_fields=[
                                                        'disabled or not'])
            disability, _ = get_stat_data('disability', geo, session,
                                          table_fields=['disability'])
        except Exception:
            disabled_or_not, total_ = LOCATIONNOTFOUND, 0
            disability = LOCATIONNOTFOUND

        total_disabled = 0
        for data, value in disabled_or_not.get('With disability', {}).items():
            if data == 'numerators':
                total_disabled += value['this']

        is_missing = disability.get('is_missing') and disabled_or_not.get('is_missing')

        final_data = {
            'is_missing': is_missing,
            'disabled_or_not_distribution': disabled_or_not,
            'disability': disability,
            'total_disabled': {
                'name': 'Disabled',
                'numerators': {'this': total_disabled},

            },

            'total_': {
                "name": "Population",
                "values": {"this": total_}
            }
        }
        try:
            final_data['total_disabled']['values'] = {
                'this': round(total_disabled / total_ * 100, 2)}
        except ZeroDivisionError:
            final_data['total_disabled']['values'] = {'this': 0}
    return final_data
Exemple #56
0
    def test_get_stat_data_nulls_with_denominator_key(self):
        table = self.field_table(['household goods'], None, universe='Households', denominator_key='total households')
        self.load_data(table, """
lev,code,fridge,10
lev,code,computer,5
lev,code,total households,
""")
        data, total = get_stat_data(['household goods'], self.geo, self.s)
        self.assertEqual(total, None)
        self.assertEqual(data['Fridge']['numerators']['this'], 10)
        self.assertIsNone(data['Fridge']['values']['this'])
        self.assertEqual(data['Computer']['numerators']['this'], 5)
        self.assertIsNone(data['Computer']['values']['this'])