Esempio n. 1
0
    def init_histogram(self, **kwargs):
        # needs to be done separately because we might need additional information
        # after init (at least I cannot think of a better way...)
        smin = kwargs.pop("smin", self.min_coordinates(padding=self.padding))
        smax = kwargs.pop("smax", self.max_coordinates(padding=self.padding))

        BINS = fixedwidth_bins(self.delta, smin, smax)    
        self.arange = zip(BINS['min'],BINS['max'])
        self.bins = BINS['Nbins']

        # create empty grid with the right dimensions (and get the edges)
        grid,edges = numpy.histogramdd(numpy.zeros((1,3)), bins=self.bins,
                                       range=self.arange, normed=False)
        grid *= 0.0
        h = grid.copy()

        self.grid = grid
        self.edges = edges
        self._h = h         # temporary for accumulation
Esempio n. 2
0
    def init_histogram(self, **kwargs):
        # needs to be done separately because we might need additional information
        # after init (at least I cannot think of a better way...)
        smin = kwargs.pop("smin", self.min_coordinates(padding=self.padding))
        smax = kwargs.pop("smax", self.max_coordinates(padding=self.padding))

        BINS = fixedwidth_bins(self.delta, smin, smax)
        self.arange = zip(BINS['min'], BINS['max'])
        self.bins = BINS['Nbins']

        # create empty grid with the right dimensions (and get the edges)
        grid, edges = numpy.histogramdd(numpy.zeros((1, 3)),
                                        bins=self.bins,
                                        range=self.arange,
                                        normed=False)
        grid *= 0.0
        h = grid.copy()

        self.grid = grid
        self.edges = edges
        self._h = h  # temporary for accumulation
Esempio n. 3
0
    def __init__(self, pdb, delta=1.0, atomselection='resname HOH and name O',
                 metadata=None, padding=1.0, sigma=None):
        """Construct the density from psf and pdb and the atomselection.

          DC = BfactorDensityCreator(pdb, delta=<delta>, atomselection=<MDAnalysis selection>,
                                  metadata=<dict>, padding=2, sigma=None)

          density = DC.Density()

        :Arguments:

          pdb
            PDB file or :class:`MDAnalysis.Universe`; a PDB is read with the
            simpl PDB reader. If the Bio.PDB reader is required, either set
            the *permissive_pdb_reader* flag to ``False`` in
            :data:`MDAnalysis.core.flags` or supply a Universe
            that was created with the `permissive` = ``False`` keyword.
          atomselection
            selection string (MDAnalysis syntax) for the species to be analyzed
          delta
            bin size for the density grid in Angstroem (same in x,y,z) [1.0]
          metadata
            dictionary of additional data to be saved with the object
          padding
            increase histogram dimensions by padding (on top of initial box size)
          sigma
            width (in Angstrom) of the gaussians that are used to build up the
            density; if None then uses B-factors from pdb

        For assigning X-ray waters to MD densities one might have to use a sigma
        of about 0.5 A to obtain a well-defined and resolved x-ray water density
        that can be easily matched to a broader density distribution.

        """
        from MDAnalysis import asUniverse

        u = asUniverse(pdb)
        group = u.selectAtoms(atomselection)
        coord = group.coordinates()
        logger.info("Selected %d atoms (%s) out of %d total." %
                    (coord.shape[0], atomselection, len(u.atoms)))
        smin = numpy.min(coord, axis=0) - padding
        smax = numpy.max(coord, axis=0) + padding

        BINS = fixedwidth_bins(delta, smin, smax)
        arange = zip(BINS['min'], BINS['max'])
        bins = BINS['Nbins']

        # get edges by doing a fake run
        grid, self.edges = numpy.histogramdd(numpy.zeros((1, 3)),
                                             bins=bins, range=arange, normed=False)
        self.delta = numpy.diag(map(lambda e: (e[-1] - e[0]) / (len(e) - 1), self.edges))
        self.midpoints = map(lambda e: 0.5 * (e[:-1] + e[1:]), self.edges)
        self.origin = map(lambda m: m[0], self.midpoints)
        numframes = 1

        if sigma is None:
            # histogram individually, and smear out at the same time
            # with the appropriate B-factor
            if numpy.any(group.bfactors == 0.0):
                wmsg = "Some B-factors are Zero (will be skipped)."
                logger.warn(wmsg)
                warnings.warn(wmsg, category=MissingDataWarning)
            rmsf = Bfactor2RMSF(group.bfactors)
            grid *= 0.0  # reset grid
            self.g = self._smear_rmsf(coord, grid, self.edges, rmsf)
        else:
            # histogram 'delta functions'
            grid, self.edges = numpy.histogramdd(coord, bins=bins, range=arange, normed=False)
            logger.info("Histogrammed %6d atoms from pdb." % len(group.atoms))
            # just a convolution of the density with a Gaussian
            self.g = self._smear_sigma(grid, sigma)

        try:
            metadata['pdb'] = pdb
        except TypeError:
            metadata = {'pdb': pdb}
        metadata['atomselection'] = atomselection
        metadata['numframes'] = numframes
        metadata['sigma'] = sigma
        self.metadata = metadata

        logger.info("Histogram completed (initial density in Angstrom**-3)")
Esempio n. 4
0
def density_from_Universe(universe, delta=1.0, atomselection='name OH2',
                          metadata=None, padding=2.0, cutoff=0, soluteselection=None,
                          use_kdtree=True, **kwargs):
    """Create a density grid from a MDAnalysis.Universe object.

      density_from_Universe(universe, delta=1.0, atomselection='name OH2', ...) --> density

    :Arguments:
      universe
            :class:`MDAnalysis.Universe` object with a trajectory

    :Keywords:
      atomselection
            selection string (MDAnalysis syntax) for the species to be analyzed
            ["name OH2"]
      delta
            bin size for the density grid in Angstroem (same in x,y,z) [1.0]
      metadata
            dictionary of additional data to be saved with the object
      padding
            increase histogram dimensions by padding (on top of initial box size)
            in Angstroem [2.0]
      soluteselection
            MDAnalysis selection for the solute, e.g. "protein" [``None``]
      cutoff
            With *cutoff*, select '<atomsel> NOT WITHIN <cutoff> OF <soluteselection>'
            (Special routines that are faster than the standard AROUND selection) [0]
      parameters
            dict with some special parameters for :class:`Density` (see doc)
      kwargs
            metadata, parameters are modified and passed on to :class:`Density`

    :Returns: :class:`Density`

    """
    try:
        universe.selectAtoms('all')
        universe.trajectory.ts
    except AttributeError:
        raise TypeError("The universe must be a proper MDAnalysis.Universe instance.")
    u = universe
    if cutoff > 0 and soluteselection is not None:
        # special fast selection for '<atomsel> not within <cutoff> of <solutesel>'
        notwithin_coordinates = notwithin_coordinates_factory(u, atomselection, soluteselection, cutoff,
                                                              use_kdtree=use_kdtree)

        def current_coordinates():
            return notwithin_coordinates()
    else:
        group = u.selectAtoms(atomselection)

        def current_coordinates():
            return group.coordinates()

    coord = current_coordinates()
    logger.info("Selected %d atoms out of %d atoms (%s) from %d total." %
                (coord.shape[0], len(u.selectAtoms(atomselection)), atomselection, len(u.atoms)))

    # mild warning; typically this is run on RMS-fitted trajectories and
    # so the box information is rather meaningless
    box, angles = u.trajectory.ts.dimensions[:3], u.trajectory.ts.dimensions[3:]
    if tuple(angles) != (90., 90., 90.):
        msg = "Non-orthorhombic unit-cell --- make sure that it has been remapped properly!"
        warnings.warn(msg)
        logger.warn(msg)

    # Make the box bigger to avoid as much as possible 'outlier'. This
    # is important if the sites are defined at a high density: in this
    # case the bulk regions don't have to be close to 1 * n0 but can
    # be less. It's much more difficult to deal with outliers.  The
    # ideal solution would use images: implement 'looking across the
    # periodic boundaries' but that gets complicate when the box
    # rotates due to RMS fitting.
    smin = numpy.min(coord, axis=0) - padding
    smax = numpy.max(coord, axis=0) + padding

    BINS = fixedwidth_bins(delta, smin, smax)
    arange = zip(BINS['min'], BINS['max'])
    bins = BINS['Nbins']

    # create empty grid with the right dimensions (and get the edges)
    grid, edges = numpy.histogramdd(numpy.zeros((1, 3)), bins=bins, range=arange, normed=False)
    grid *= 0.0
    h = grid.copy()

    for ts in u.trajectory:
        print "Histograming %6d atoms in frame %5d/%d  [%5.1f%%]\r" % \
              (len(coord), ts.frame, u.trajectory.numframes, 100.0 * ts.frame / u.trajectory.numframes),
        coord = current_coordinates()
        if len(coord) == 0:
            continue
        h[:], edges[:] = numpy.histogramdd(coord, bins=bins, range=arange, normed=False)
        grid += h  # accumulate average histogram
    print
    numframes = u.trajectory.numframes / u.trajectory.skip
    grid /= float(numframes)

    # pick from kwargs
    metadata = kwargs.pop('metadata', {})
    metadata['psf'] = u.filename
    metadata['dcd'] = u.trajectory.filename
    metadata['atomselection'] = atomselection
    metadata['numframes'] = numframes
    metadata['totaltime'] = round(u.trajectory.numframes * u.trajectory.dt, 3)
    metadata['dt'] = u.trajectory.dt
    metadata['time_unit'] = MDAnalysis.core.flags['time_unit']
    metadata['trajectory_skip'] = u.trajectory.skip_timestep  # frames
    metadata['trajectory_delta'] = u.trajectory.delta  # in native units
    if cutoff > 0 and soluteselection is not None:
        metadata['soluteselection'] = soluteselection
        metadata['cutoff'] = cutoff  # in Angstrom

    parameters = kwargs.pop('parameters', {})
    parameters['isDensity'] = False  # must override

    # all other kwargs are discarded

    g = Density(grid=grid, edges=edges, units={'length': MDAnalysis.core.flags['length_unit']},
                parameters=parameters, metadata=metadata)
    g.make_density()
    logger.info("Density completed (initial density in Angstrom**-3)")

    return g