Esempio n. 1
0
    def _build_k_prototypes(self, nprot, data):
        # K-Means / K-Medoids algorithm
        # should return a N-length array with he indices of the chosen data
        grouper = K_Means()
        grouper._centroid_mode = "index"
        grouper.fit(data,
                    nprot,
                    iters=300,
                    mode="cuda",
                    cuda_mem='manual',
                    tol=1e-4,
                    max_iters=300)
        centroids = grouper.centroids

        nclusters = centroids.shape[0]

        # TODO - very inefficient
        k_labels = np.zeros(nclusters, dtype=np.int32)

        for k in xrange(nclusters):
            dist = data - centroids[k]
            dist = dist**2
            dist = dist.sum(axis=1)

            k_labels[k] = dist.argmin()
        return k_labels
Esempio n. 2
0
from sklearn.cluster import KMeans
from numbapro import cuda

import sys

n_samples = 1e4
n_features = 2
centers = 6
n_samples = np.int(n_samples)
data, gt = make_blobs(n_samples = n_samples, n_features = n_features, centers = centers)
data = data.astype(np.float32)
n_samples_sqrt = np.int(np.sqrt(n_samples))
n_clusters = [n_samples_sqrt / 2, n_samples_sqrt]
n_clusters = map(int,n_clusters)

generator = K_Means(cuda_mem="manual")

generator.n_clusters = 176
generator.max_iter = 1

generator.N = n_samples
generator.D = n_features

generator.centroids = generator._init_centroids(data)
generator.labels = cuda.pinned_array(shape=generator.N, dtype = np.int32)
generator._dists = cuda.pinned_array(shape=generator.N, dtype = np.float32)

generator._compute_cuda_dims(data)
gridDim = generator._gridDim
blockDim = generator._blockDim
n_samples = 1e5
n_features = 100
n_samples = np.int(n_samples)
data, gt = make_blobs(n_samples = n_samples, n_features = n_features, centers = centers)
data = data.astype(np.float32)
n_samples_sqrt = np.int(np.sqrt(n_samples))
n_clusters = [n_samples_sqrt / 2, n_samples_sqrt]
n_clusters = map(int,n_clusters)

# generator = K_Means(cuda_mem="manual")
# generator.n_clusters = n_clusters[-1]
# generator.max_iter = 3
# generator.fit(data)

generator = K_Means(cuda_mem="manual")	
generator.N = n_samples
generator.D = n_features
generator.n_clusters = n_clusters[-1]

generator.centroids = generator._init_centroids(data)
generator.labels = np.empty(shape=generator.N, dtype = np.int32)
generator._dists = np.empty(shape=generator.N, dtype = np.float32)

generator._compute_cuda_dims(data)
gridDim = generator._gridDim
blockDim = generator._blockDim

dData = cuda.to_device(data)
dCentroids = cuda.to_device(generator.centroids)
Esempio n. 4
0
n_features = 100
n_samples = np.int(n_samples)
data, gt = make_blobs(n_samples=n_samples,
                      n_features=n_features,
                      centers=centers)
data = data.astype(np.float32)
n_samples_sqrt = np.int(np.sqrt(n_samples))
n_clusters = [n_samples_sqrt / 2, n_samples_sqrt]
n_clusters = map(int, n_clusters)

# generator = K_Means(cuda_mem="manual")
# generator.n_clusters = n_clusters[-1]
# generator.max_iter = 3
# generator.fit(data)

generator = K_Means(cuda_mem="manual")
generator.N = n_samples
generator.D = n_features
generator.n_clusters = n_clusters[-1]

generator.centroids = generator._init_centroids(data)
generator.labels = np.empty(shape=generator.N, dtype=np.int32)
generator._dists = np.empty(shape=generator.N, dtype=np.float32)

generator._compute_cuda_dims(data)
gridDim = generator._gridDim
blockDim = generator._blockDim

dData = cuda.to_device(data)
dCentroids = cuda.to_device(generator.centroids)