Esempio n. 1
0
    def __mul__(self, other):
        """Handles logic of multiplying signs.

        Cases:
            ZERO * ANYTHING = ZERO
            UNKNOWN * NON-ZERO = UNKNOWN
            POSITIVE * NEGATIVE = NEGATIVE
            POSITIVE * POSITIVE = POSITIVE
            NEGATIVE * NEGATIVE = POSITIVE

        Args:
            self: The Sign of the left-hand multiplier.
            other: The Sign of the right-hand multiplier.

        Returns:
            The Sign of the product.
        """
        neg_mat = bu.dot(self.neg_mat, other.pos_mat) | \
                  bu.dot(self.pos_mat, other.neg_mat)
        pos_mat = bu.dot(self.neg_mat, other.neg_mat) | \
                  bu.dot(self.pos_mat, other.pos_mat)
        # Reduce 1x1 matrices to scalars.
        neg_mat = bu.to_scalar(neg_mat)
        pos_mat = bu.to_scalar(pos_mat)
        return Sign(neg_mat, pos_mat)
Esempio n. 2
0
    def sign_mul(sign, curv):
        """Handles logic of sign by curvature multiplication.

        Cases:
            ZERO * ANYTHING = CONSTANT
            NON-ZERO * AFFINE/CONSTANT = AFFINE/CONSTANT
            UNKNOWN * NON-AFFINE = UNKNOWN
            POSITIVE * ANYTHING = ANYTHING
            NEGATIVE * CONVEX = CONCAVE
            NEGATIVE * CONCAVE = CONVEX

        Args:
            sign: The Sign of the left-hand multiplier.
            curv: The Curvature of the right-hand multiplier.

        Returns:
            The Curvature of the product.
        """
        cvx_mat = bu.dot(sign.pos_mat, curv.cvx_mat) | \
                  bu.dot(sign.neg_mat, curv.conc_mat)
        conc_mat = bu.dot(sign.pos_mat, curv.conc_mat) | \
                   bu.dot(sign.neg_mat, curv.cvx_mat)
        nonconst_mat = bu.dot(sign.pos_mat, curv.nonconst_mat) | \
                       bu.dot(sign.neg_mat, curv.nonconst_mat)
        # Simplify 1x1 matrices to scalars.
        cvx_mat = bu.to_scalar(cvx_mat)
        conc_mat = bu.to_scalar(conc_mat)
        nonconst_mat = bu.to_scalar(nonconst_mat)
        return Curvature(cvx_mat, conc_mat, nonconst_mat)
Esempio n. 3
0
    def __mul__(self, other):
        """Handles logic of multiplying signs.

        Cases:
            ZERO * ANYTHING = ZERO
            UNKNOWN * NON-ZERO = UNKNOWN
            POSITIVE * NEGATIVE = NEGATIVE
            POSITIVE * POSITIVE = POSITIVE
            NEGATIVE * NEGATIVE = POSITIVE

        Args:
            self: The Sign of the left-hand multiplier.
            other: The Sign of the right-hand multiplier.

        Returns:
            The Sign of the product.
        """
        neg_mat = bu.dot(self.neg_mat, other.pos_mat) | \
                  bu.dot(self.pos_mat, other.neg_mat)
        pos_mat = bu.dot(self.neg_mat, other.neg_mat) | \
                  bu.dot(self.pos_mat, other.pos_mat)
        # Reduce 1x1 matrices to scalars.
        neg_mat = bu.to_scalar(neg_mat)
        pos_mat = bu.to_scalar(pos_mat)
        return Sign(neg_mat, pos_mat)
Esempio n. 4
0
    def sign_mul(sign, curv):
        """Handles logic of sign by curvature multiplication.

        Cases:
            ZERO * ANYTHING = CONSTANT
            NON-ZERO * AFFINE/CONSTANT = AFFINE/CONSTANT
            UNKNOWN * NON-AFFINE = UNKNOWN
            POSITIVE * ANYTHING = ANYTHING
            NEGATIVE * CONVEX = CONCAVE
            NEGATIVE * CONCAVE = CONVEX

        Args:
            sign: The Sign of the left-hand multiplier.
            curv: The Curvature of the right-hand multiplier.

        Returns:
            The Curvature of the product.
        """
        cvx_mat = bu.dot(sign.pos_mat, curv.cvx_mat) | \
                  bu.dot(sign.neg_mat, curv.conc_mat)
        conc_mat = bu.dot(sign.pos_mat, curv.conc_mat) | \
                   bu.dot(sign.neg_mat, curv.cvx_mat)
        nonconst_mat = bu.dot(sign.pos_mat, curv.nonconst_mat) | \
                       bu.dot(sign.neg_mat, curv.nonconst_mat)
        # Simplify 1x1 matrices to scalars.
        cvx_mat = bu.to_scalar(cvx_mat)
        conc_mat = bu.to_scalar(conc_mat)
        nonconst_mat = bu.to_scalar(nonconst_mat)
        return Curvature(cvx_mat, conc_mat, nonconst_mat)
Esempio n. 5
0
    def __getitem__(self, key):
        """Determines the DCP attributes of an index/slice.

        Args:
            key: A (slice, slice) tuple.

        Returns:
            The DCPAttr of the index/slice into the matrix expression.
        """
        shape = Shape(*ku.size(key, self.shape))

        # Reduce 1x1 matrices to scalars.
        neg_mat = bu.to_scalar(bu.index(self.sign.neg_mat, key))
        pos_mat = bu.to_scalar(bu.index(self.sign.pos_mat, key))
        cvx_mat = bu.to_scalar(bu.index(self.curvature.cvx_mat, key))
        conc_mat = bu.to_scalar(bu.index(self.curvature.conc_mat, key))
        nonconst_mat = bu.to_scalar(bu.index(self.curvature.nonconst_mat, key))

        return DCPAttr(Sign(neg_mat, pos_mat), Curvature(cvx_mat, conc_mat, nonconst_mat), shape)
Esempio n. 6
0
    def __getitem__(self, key):
        """Determines the DCP attributes of an index/slice.

        Args:
            key: A (slice, slice) tuple.

        Returns:
            The DCPAttr of the index/slice into the matrix expression.
        """
        shape = Shape(*ku.size(key, self.shape))

        # Reduce 1x1 matrices to scalars.
        neg_mat = bu.to_scalar(bu.index(self.sign.neg_mat, key))
        pos_mat = bu.to_scalar(bu.index(self.sign.pos_mat, key))
        cvx_mat = bu.to_scalar(bu.index(self.curvature.cvx_mat, key))
        conc_mat = bu.to_scalar(bu.index(self.curvature.conc_mat, key))
        nonconst_mat = bu.to_scalar(bu.index(self.curvature.nonconst_mat, key))

        return DCPAttr(Sign(neg_mat, pos_mat),
                       Curvature(cvx_mat, conc_mat, nonconst_mat), shape)