Esempio n. 1
0
 def with_units(self, attr):
     if attr == "tout":
         return self.tout * get_derived_unit(self.rd.unit_registry, "time")
     if attr == "Cout":
         return self.Cout * get_derived_unit(self.rd.unit_registry, "concentration")
     else:
         raise ValueError("Unknown attr: %s" % attr)
Esempio n. 2
0
 def with_units(self, attr):
     if attr == 'tout':
         return self.tout * get_derived_unit(self.rd.unit_registry, 'time')
     elif attr == 'Cout':
         return self.Cout * get_derived_unit(self.rd.unit_registry,
                                             'concentration')
     elif attr == 'x':
         return self.rd.x * get_derived_unit(self.rd.unit_registry, 'length')
     else:
         raise ValueError("Unknown attr: %s" % attr)
Esempio n. 3
0
def _dedim(arg, key, unit_registry):
    return to_unitless(arg, get_derived_unit(unit_registry, key))
Esempio n. 4
0
def integrate_rd(
        tend=1.9, A0=4.2, B0=3.1, C0=1.4, nt=100, t0=0.0, kf=0.9, kb=0.23,
        atol='1e-7,1e-6,1e-5', rtol='1e-6', integrator='scipy', method='bdf',
        logy=False, logt=False, num_jac=False, plot=False, savefig='None',
        splitplots=False, plotlogy=False, plotsymlogy=False, plotlogt=False,
        scale_err=1.0, scaling=1.0, verbose=False):
    """
    Runs the integration and (optionally) plots:

    - Individual concentrations as function of time
    - Reaction Quotient vs. time (with equilibrium constant as reference)
    - Numerical error commited (with tolerance span plotted)
    - Excess error committed (deviation outside tolerance span)

    Concentrations (A0, B0, C0) are taken to be in "M" (molar),
    kf in "M**-1 s**-1" and kb in "s**-1", t0 and tend in "s"
    """

    rtol = float(rtol)
    atol = list(map(float, atol.split(',')))
    if len(atol) == 1:
        atol = atol[0]
    registry = SI_base_registry.copy()
    registry['amount'] = 1.0/scaling*registry['amount']
    registry['length'] = registry['length']/10  # decimetre

    kf = kf/molar/second
    kb = kb/second

    rd = ReactionDiffusion.nondimensionalisation(
        3, [[0, 1], [2]], [[2], [0, 1]], [kf, kb], logy=logy, logt=logt,
        unit_registry=registry)

    C0 = np.array([A0, B0, C0])*molar
    if plotlogt:
        eps = 1e-16
        tout = np.logspace(np.log10(t0+eps), np.log10(tend+eps), nt)*second
    else:
        tout = np.linspace(t0, tend, nt)*second

    integr = Integration(
        rd, C0, tout, integrator=integrator, atol=atol, rtol=rtol,
        with_jacobian=not num_jac, method=method)
    Cout = integr.with_units('Cout')
    yout, info = integr.yout, integr.info
    try:
        import mpmath
        assert mpmath  # silence pyflakes
    except ImportError:
        use_mpmath = False
    else:
        use_mpmath = True
    time_unit = get_derived_unit(registry, 'time')
    conc_unit = get_derived_unit(registry, 'concentration')
    Cref = _get_Cref(
        to_unitless(tout - tout[0], time_unit),
        to_unitless(C0, conc_unit),
        [to_unitless(kf, 1/time_unit/conc_unit),
         to_unitless(kb, 1/time_unit)],
        use_mpmath
    ).reshape((nt, 1, 3))*conc_unit
    if verbose:
        print(info)

    if plot:
        npltcols = 3 if splitplots else 1
        import matplotlib.pyplot as plt
        plt.figure(figsize=(18 if splitplots else 6, 10))

        def subplot(row=0, idx=0, adapt_yscale=True, adapt_xscale=True,
                    span_all_x=False):
            offset = idx if splitplots else 0
            ax = plt.subplot(4, 1 if span_all_x else npltcols,
                             1 + row*npltcols + offset)
            if adapt_yscale:
                if plotlogy:
                    ax.set_yscale('log')
                elif plotsymlogy:
                    ax.set_yscale('symlog')
            if adapt_xscale and plotlogt:
                ax.set_xscale('log')
            return ax

        tout_unitless = to_unitless(tout, second)
        c = 'rgb'
        for i, l in enumerate('ABC'):
            # Plot solution trajectory for i:th species
            ax_sol = subplot(0, i)
            ax_sol.plot(tout_unitless, to_unitless(Cout[:, 0, i], molar),
                        label=l, color=c[i])

            if splitplots:
                # Plot relative error
                ax_relerr = subplot(1, 1)
                ax_relerr.plot(
                    tout_unitless, Cout[:, 0, i]/Cref[:, 0, i] - 1.0,
                    label=l, color=c[i])
                ax_relerr.set_title("Relative error")
                ax_relerr.legend(loc='best', prop={'size': 11})

                # Plot absolute error
                ax_abserr = subplot(1, 2)
                ax_abserr.plot(tout_unitless, Cout[:, 0, i]-Cref[:, 0, i],
                               label=l, color=c[i])
                ax_abserr.set_title("Absolute error")
                ax_abserr.legend(loc='best', prop={'size': 11})

            # Plot absolute error
            linE = Cout[:, 0, i] - Cref[:, 0, i]
            try:
                atol_i = atol[i]
            except:
                atol_i = atol
            wtol_i = (atol_i + rtol*yout[:, 0, i])*get_derived_unit(
                rd.unit_registry, 'concentration')

            if np.any(np.abs(linE/wtol_i) > 1000):
                # Plot true curve in first plot when deviation is large enough
                # to be seen visually
                ax_sol.plot(tout_unitless, to_unitless(Cref[:, 0, i], molar),
                            label='true '+l, color=c[i], ls='--')

            ax_err = subplot(2, i)
            plot_solver_linear_error(integr, Cref, ax_err, si=i,
                                     scale_err=1/wtol_i, color=c[i], label=l)
            ax_excess = subplot(3, i, adapt_yscale=False)
            plot_solver_linear_excess_error(integr, Cref, ax_excess,
                                            si=i, color=c[i], label=l)

        # Plot Reaction Quotient vs time
        ax_q = subplot(1, span_all_x=False, adapt_yscale=False,
                       adapt_xscale=False)
        Qnum = Cout[:, 0, 2]/(Cout[:, 0, 0]*Cout[:, 0, 1])
        Qref = Cref[:, 0, 2]/(Cref[:, 0, 0]*Cref[:, 0, 1])
        ax_q.plot(tout_unitless, to_unitless(Qnum, molar**-1),
                  label='Q', color=c[i])
        if np.any(np.abs(Qnum/Qref-1) > 0.01):
            # If more than 1% error in Q, plot the reference curve too
            ax_q.plot(tout_unitless, to_unitless(Qref, molar**-1),
                      '--', label='Qref', color=c[i])
        # Plot the
        ax_q.plot((tout_unitless[0], tout_unitless[-1]),
                  [to_unitless(kf/kb, molar**-1)]*2,
                  '--k', label='K')
        ax_q.set_xlabel('t')
        ax_q.set_ylabel('[C]/([A][B]) / M**-1')
        ax_q.set_title("Transient towards equilibrium")
        ax_q.legend(loc='best', prop={'size': 11})

        for i in range(npltcols):
            subplot(0, i, adapt_yscale=False)
            plt.title('Concentration vs. time')
            plt.legend(loc='best', prop={'size': 11})
            plt.xlabel('t')
            plt.ylabel('[X]')

            subplot(2, i, adapt_yscale=False)
            plt.title('Absolute error in [{}](t) / wtol'.format('ABC'[i]))
            plt.legend(loc='best')
            plt.xlabel('t')
            ttl = '|E_i[{0}]|/(atol_i + rtol*(y0_i+yf_i)/2'
            plt.ylabel(ttl.format('ABC'[i]))
            plt.tight_layout()

            subplot(3, i, adapt_yscale=False)
            ttl = 'Excess error in [{}](t) / integrator linear error span'
            plt.title(ttl.format(
                'ABC'[i]))
            plt.legend(loc='best')
            plt.xlabel('t')
            plt.ylabel('|E_excess[{0}]| / e_span'.format('ABC'[i]))

        plt.tight_layout()
        save_and_or_show_plot(savefig=savefig)

    return yout, to_unitless(Cref, conc_unit), rd, info
Esempio n. 5
0
def plot_solver_linear_excess_error(integration, Cref, ax=None, x=None, ti=slice(None), bi=0, si=0, **kwargs):
    """
    Plots the excess error commited by the intergrator, divided by the span
    of the tolerances (atol + rtol*|y_i|).

    Parameters
    ----------
    integration: chemreac.integrate.Integration
        result from integration.
    Cref: array or float
        analytic solution to compare with
    ax: Axes instance or dict
        if ax is a dict it is used as \*\*kwargs passed to
        matplotlib.pyplot.axes (default: None)
    x: array
        (optional) x-values, when None it is deduced to be
        either t or x (when ti or bi are slices repecitvely)
        (default: None)
    ti: slice
        time indices
    bi: slice
        bin indices
    si: integer
        specie index
    plot_kwargs: dict
        keyword arguments passed to matplotlib.pyplot.plot (default: None)
    fill_between_kwargs: dict
        keyword arguments passed to matplotlib.pyplot.fill_between
        (default: None)
    scale_err: float
        value with which errors are scaled. (default: 1.0)
    fill: bool
        whether or not to fill error span
    \*\*kwargs:
        common keyword arguments of plot_kwargs and fill_between_kwargs,
        e.g. 'color', (default: None).

    See Also
    --------
    plot_solver_linear_error
    """
    if x is None:
        if isinstance(ti, slice):
            x = integration.tout[ti]
        elif isinstance(bi, slice):
            x = integration.rd.xcenters[bi]
        else:
            raise NotImplementedError("Failed to deduce x-axis.")
    ax = _init_axes(ax)
    le_l, le_u = solver_linear_error_from_integration(integration, ti, bi, si)
    Eexcess_l = Cref[ti, bi, si] - le_l  # Excessive if negative
    Eexcess_u = Cref[ti, bi, si] - le_u  # Excessive if positive
    u_conc = get_derived_unit(integration.rd.unit_registry, "concentration")
    Eexcess_l[np.argwhere(Eexcess_l >= 0)] = 0 * u_conc
    Eexcess_u[np.argwhere(Eexcess_u <= 0)] = 0 * u_conc
    fused = np.concatenate((Eexcess_l[..., np.newaxis], Eexcess_u[..., np.newaxis]), axis=-1)
    indices = np.argmax(abs(fused), axis=-1)
    Eexcess = fused[np.indices(indices.shape), indices][0, ...]
    le_span = le_u - le_l
    ax.plot(np.asarray(integration.tout), np.asarray(Eexcess / le_span), **kwargs)
    return ax
Esempio n. 6
0
def plot_solver_linear_error(
    integration,
    Cref=0,
    ax=None,
    x=None,
    ti=slice(None),
    bi=0,
    si=0,
    plot_kwargs=None,
    fill_between_kwargs=None,
    scale_err=1.0,
    fill=True,
    **kwargs
):
    """
    Parameters
    ----------
    integration: chemreac.integrate.Integration
        result from integration.
    Cref: array or float
        analytic solution to compare with
    ax: Axes instance or dict
        if ax is a dict it is used as key word arguments passed to
        matplotlib.pyplot.axes (default: None)
    x: array
        (optional) x-values, when None it is deduced to be
        either t or x (when ti or bi are slices repecitvely)
        (default: None)
    ti: slice
        time indices
    bi: slice
        bin indices
    si: integer
        specie index
    plot_kwargs: dict
        keyword arguments passed to matplotlib.pyplot.plot (default: None)
    fill_between_kwargs: dict
        keyword arguments passed to matplotlib.pyplot.fill_between
        (default: None)
    scale_err: float
        value with which errors are scaled. (default: 1.0)
    fill: bool
        whether or not to fill error span
    \*\*kwargs
        common keyword arguments of plot_kwargs and fill_between_kwargs,
        e.g. 'color', (default: None).

    See Also
    --------
    plot_solver_linear_excess_error
    """
    ax = _init_axes(ax)
    Cerr = integration.Cout - to_unitless(Cref, get_derived_unit(integration.rd.unit_registry, "concentration"))
    if x is None:
        if isinstance(ti, slice):
            x = integration.tout[ti]
        elif isinstance(bi, slice):
            x = integration.rd.xcenters[bi]
        else:
            raise NotImplementedError("Failed to deduce x-axis.")

    plot_kwargs = plot_kwargs or {}
    set_dict_defaults_inplace(plot_kwargs, kwargs)
    plt.plot(np.asarray(x), np.asarray(scale_err * Cerr[ti, bi, si]), **plot_kwargs)

    if fill:
        le_l, le_u = solver_linear_error_from_integration(integration, ti=ti, bi=bi, si=si)
        Cerr_u = le_u - Cref[ti, bi, si]
        Cerr_l = le_l - Cref[ti, bi, si]
        fill_between_kwargs = fill_between_kwargs or {}
        set_dict_defaults_inplace(fill_between_kwargs, {"alpha": 0.2}, kwargs)
        plt.fill_between(
            np.asarray(x), np.asarray(scale_err * Cerr_l), np.asarray(scale_err * Cerr_u), **fill_between_kwargs
        )
    return ax