Esempio n. 1
0
    def local_bivariate_stat(self, subquery, attr1, attr2,
                             permutations, geom_col, id_col,
                             w_type, num_ngbrs):
        """
            Moran's I (local) Bivariate (untested)
        """

        params = OrderedDict([("id_col", id_col),
                              ("attr1", attr1),
                              ("attr2", attr2),
                              ("geom_col", geom_col),
                              ("subquery", subquery),
                              ("num_ngbrs", num_ngbrs)])

        result = self.data_provider.get_moran(w_type, params)

        # collect attributes
        attr1_vals = pu.get_attributes(result, 1)
        attr2_vals = pu.get_attributes(result, 2)

        # create weights
        weight = pu.get_weight(result, w_type, num_ngbrs)

        # calculate LISA values
        lisa = ps.esda.moran.Moran_Local_BV(attr1_vals, attr2_vals, weight,
                                            permutations=permutations)

        # find clustering of significance
        lisa_sig = quad_position(lisa.q)

        return zip(lisa.Is, lisa_sig, lisa.p_sim, weight.id_order)
Esempio n. 2
0
    def local_rate_stat(self, subquery, numerator, denominator,
                        w_type, num_ngbrs, permutations, geom_col, id_col):
        """
            Moran's I Local Rate
            Andy Eschbacher
        """
        # geometries with values that are null are ignored
        # resulting in a collection of not as near neighbors

        params = OrderedDict([("id_col", id_col),
                              ("numerator", numerator),
                              ("denominator", denominator),
                              ("geom_col", geom_col),
                              ("subquery", subquery),
                              ("num_ngbrs", num_ngbrs)])

        result = self.data_provider.get_moran(w_type, params)

        # collect attributes
        numer = pu.get_attributes(result, 1)
        denom = pu.get_attributes(result, 2)

        weight = pu.get_weight(result, w_type, num_ngbrs)

        # calculate LISA values
        lisa = ps.esda.moran.Moran_Local_Rate(numer, denom, weight,
                                              permutations=permutations)

        # find quadrants for each geometry
        quads = quad_position(lisa.q)

        return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
Esempio n. 3
0
    def local_stat(self, subquery, attr,
                   w_type, num_ngbrs, permutations, geom_col, id_col):
        """
        Moran's I implementation for PL/Python
        Andy Eschbacher
        """

        # geometries with attributes that are null are ignored
        # resulting in a collection of not as near neighbors

        params = OrderedDict([("id_col", id_col),
                              ("attr1", attr),
                              ("geom_col", geom_col),
                              ("subquery", subquery),
                              ("num_ngbrs", num_ngbrs)])

        result = self.data_provider.get_moran(w_type, params)

        attr_vals = pu.get_attributes(result)
        weight = pu.get_weight(result, w_type, num_ngbrs)

        # calculate LISA values
        lisa = ps.esda.moran.Moran_Local(attr_vals, weight,
                                         permutations=permutations)

        # find quadrants for each geometry
        quads = quad_position(lisa.q)

        return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
Esempio n. 4
0
    def global_stat(self, subquery, attr_name,
                    w_type, num_ngbrs, permutations, geom_col, id_col):
        """
        Moran's I (global)
        Implementation building neighbors with a PostGIS database and Moran's I
         core clusters with PySAL.
        Andy Eschbacher
        """
        params = OrderedDict([("id_col", id_col),
                              ("attr1", attr_name),
                              ("geom_col", geom_col),
                              ("subquery", subquery),
                              ("num_ngbrs", num_ngbrs)])

        result = self.data_provider.get_moran(w_type, params)

        # collect attributes
        attr_vals = pu.get_attributes(result)

        # calculate weights
        weight = pu.get_weight(result, w_type, num_ngbrs)

        # calculate moran global
        moran_global = ps.esda.moran.Moran(attr_vals, weight,
                                           permutations=permutations)

        return zip([moran_global.I], [moran_global.EI])
Esempio n. 5
0
    def global_rate_stat(self, subquery, numerator, denominator,
                         w_type, num_ngbrs, permutations, geom_col, id_col):
        """
        Moran's I Rate (global)
        Andy Eschbacher
        """
        params = OrderedDict([("id_col", id_col),
                              ("attr1", numerator),
                              ("attr2", denominator)
                              ("geom_col", geom_col),
                              ("subquery", subquery),
                              ("num_ngbrs", num_ngbrs)])

        result = self.data_provider.get_moran(w_type, params)

        # collect attributes
        numer = pu.get_attributes(result, 1)
        denom = pu.get_attributes(result, 2)

        weight = pu.get_weight(result, w_type, num_ngbrs)

        # calculate moran global rate
        lisa_rate = ps.esda.moran.Moran_Rate(numer, denom, weight,
                                             permutations=permutations)

        return zip([lisa_rate.I], [lisa_rate.EI])
Esempio n. 6
0
    def getis_ord(self, subquery, attr, w_type, num_ngbrs, permutations,
                  geom_col, id_col):
        """
        Getis-Ord's G*
        Implementation building neighbors with a PostGIS database and PySAL's
          Getis-Ord's G* hotspot/coldspot module.
        Andy Eschbacher
        """

        # geometries with attributes that are null are ignored
        # resulting in a collection of not as near neighbors if kNN is chosen

        qvals = OrderedDict([("id_col", id_col), ("attr1", attr),
                             ("geom_col", geom_col), ("subquery", subquery),
                             ("num_ngbrs", num_ngbrs)])

        result = self.data_provider.get_getis(w_type, qvals)
        attr_vals = pu.get_attributes(result)

        # build PySAL weight object
        weight = pu.get_weight(result, w_type, num_ngbrs)

        # calculate Getis-Ord's G* z- and p-values
        getis = ps.esda.getisord.G_Local(attr_vals,
                                         weight,
                                         star=True,
                                         permutations=permutations)

        return zip(getis.z_sim, getis.p_sim, getis.p_z_sim, weight.id_order)
Esempio n. 7
0
def moran_local_bv(subquery, attr1, attr2, permutations, geom_col, id_col,
                   w_type, num_ngbrs):
    """
        Moran's I (local) Bivariate (untested)
    """
    plpy.notice('** Constructing query')

    qvals = {
        "num_ngbrs": num_ngbrs,
        "attr1": attr1,
        "attr2": attr2,
        "subquery": subquery,
        "geom_col": geom_col,
        "id_col": id_col
    }

    query = pu.construct_neighbor_query(w_type, qvals)

    try:
        result = plpy.execute(query)
        # if there are no neighbors, exit
        if len(result) == 0:
            return pu.empty_zipped_array(4)
    except plpy.SPIError:
        plpy.error("Error: areas of interest query failed, " \
                   "check input parameters")
        plpy.notice('** Query failed: "%s"' % query)
        return pu.empty_zipped_array(4)

    ## collect attributes
    attr1_vals = pu.get_attributes(result, 1)
    attr2_vals = pu.get_attributes(result, 2)

    # create weights
    weight = pu.get_weight(result, w_type, num_ngbrs)

    # calculate LISA values
    lisa = ps.esda.moran.Moran_Local_BV(attr1_vals,
                                        attr2_vals,
                                        weight,
                                        permutations=permutations)

    plpy.notice("len of Is: %d" % len(lisa.Is))

    # find clustering of significance
    lisa_sig = quad_position(lisa.q)

    plpy.notice('** Finished calculations')

    return zip(lisa.Is, lisa_sig, lisa.p_sim, weight.id_order)
Esempio n. 8
0
def moran_local_rate(subquery, numerator, denominator, w_type, num_ngbrs,
                     permutations, geom_col, id_col):
    """
        Moran's I Local Rate
        Andy Eschbacher
    """
    # geometries with values that are null are ignored
    # resulting in a collection of not as near neighbors

    query = pu.construct_neighbor_query(
        w_type, {
            "id_col": id_col,
            "numerator": numerator,
            "denominator": denominator,
            "geom_col": geom_col,
            "subquery": subquery,
            "num_ngbrs": num_ngbrs
        })

    try:
        result = plpy.execute(query)
        # if there are no neighbors, exit
        if len(result) == 0:
            return pu.empty_zipped_array(5)
    except plpy.SPIError:
        plpy.error(
            'Error: areas of interest query failed, check input parameters')
        plpy.notice('** Query failed: "%s"' % query)
        plpy.notice('** Error: %s' % plpy.SPIError)
        return pu.empty_zipped_array(5)

    ## collect attributes
    numer = pu.get_attributes(result, 1)
    denom = pu.get_attributes(result, 2)

    weight = pu.get_weight(result, w_type, num_ngbrs)

    # calculate LISA values
    lisa = ps.esda.moran.Moran_Local_Rate(numer,
                                          denom,
                                          weight,
                                          permutations=permutations)

    # find units of significance
    quads = quad_position(lisa.q)

    return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
Esempio n. 9
0
def moran_local_bv(subquery, attr1, attr2,
                   permutations, geom_col, id_col, w_type, num_ngbrs):
    """
        Moran's I (local) Bivariate (untested)
    """
    plpy.notice('** Constructing query')

    qvals = OrderedDict([("id_col", id_col),
                         ("attr1", attr1),
                         ("attr2", attr2),
                         ("geom_col", geom_col),
                         ("subquery", subquery),
                         ("num_ngbrs", num_ngbrs)])

    query = pu.construct_neighbor_query(w_type, qvals)

    try:
        result = plpy.execute(query)
        # if there are no neighbors, exit
        if len(result) == 0:
            return pu.empty_zipped_array(4)
    except plpy.SPIError:
        plpy.error("Error: areas of interest query failed, " \
                   "check input parameters")
        plpy.notice('** Query failed: "%s"' % query)
        return pu.empty_zipped_array(4)

    ## collect attributes
    attr1_vals = pu.get_attributes(result, 1)
    attr2_vals = pu.get_attributes(result, 2)

    # create weights
    weight = pu.get_weight(result, w_type, num_ngbrs)

    # calculate LISA values
    lisa = ps.esda.moran.Moran_Local_BV(attr1_vals, attr2_vals, weight,
                                        permutations=permutations)

    plpy.notice("len of Is: %d" % len(lisa.Is))

    # find clustering of significance
    lisa_sig = quad_position(lisa.q)

    plpy.notice('** Finished calculations')

    return zip(lisa.Is, lisa_sig, lisa.p_sim, weight.id_order)
Esempio n. 10
0
    def global_stat(self, subquery, attr_name, w_type, num_ngbrs, permutations,
                    geom_col, id_col):
        """
        Moran's I (global)
        Implementation building neighbors with a PostGIS database and Moran's I
         core clusters with PySAL.

        Args:

          subquery (str): Query to give access to the data needed. This query
            must give access to ``attr_name``, ``geom_col``, and ``id_col``.
          attr_name (str): Column name of data to analyze
          w_type (str): Type of spatial weight. Must be one of `knn`
            or `queen`. See `PySAL documentation
            <http://pysal.readthedocs.io/en/latest/users/tutorials/weights.html>`__
            for more information.
          num_ngbrs (int): If using `knn` for ``w_type``, this
            specifies the number of neighbors to be used to define the spatial
            neighborhoods.
          permutations (int): Number of permutations for performing
            conditional randomization to find the p-value. Higher numbers
            takes a longer time for getting results.
          geom_col (str): Name of the geometry column in the dataset for
            finding the spatial neighborhoods.
          id_col (str): Row index for each value. Usually the database index.

        """
        params = OrderedDict([("id_col", id_col), ("attr1", attr_name),
                              ("geom_col", geom_col), ("subquery", subquery),
                              ("num_ngbrs", num_ngbrs)])

        result = self.data_provider.get_moran(w_type, params)

        # collect attributes
        attr_vals = pu.get_attributes(result)

        # calculate weights
        weight = pu.get_weight(result, w_type, num_ngbrs)

        # calculate moran global
        moran_global = ps.esda.moran.Moran(attr_vals,
                                           weight,
                                           permutations=permutations)

        return zip([moran_global.I], [moran_global.EI])
Esempio n. 11
0
def moran(subquery, attr_name, w_type, num_ngbrs, permutations, geom_col,
          id_col):
    """
    Moran's I (global)
    Implementation building neighbors with a PostGIS database and Moran's I
     core clusters with PySAL.
    Andy Eschbacher
    """
    qvals = {
        "id_col": id_col,
        "attr1": attr_name,
        "geom_col": geom_col,
        "subquery": subquery,
        "num_ngbrs": num_ngbrs
    }

    query = pu.construct_neighbor_query(w_type, qvals)

    plpy.notice('** Query: %s' % query)

    try:
        result = plpy.execute(query)
        # if there are no neighbors, exit
        if len(result) == 0:
            return pu.empty_zipped_array(2)
        plpy.notice('** Query returned with %d rows' % len(result))
    except plpy.SPIError:
        plpy.error(
            'Error: areas of interest query failed, check input parameters')
        plpy.notice('** Query failed: "%s"' % query)
        plpy.notice('** Error: %s' % plpy.SPIError)
        return pu.empty_zipped_array(2)

    ## collect attributes
    attr_vals = pu.get_attributes(result)

    ## calculate weights
    weight = pu.get_weight(result, w_type, num_ngbrs)

    ## calculate moran global
    moran_global = ps.esda.moran.Moran(attr_vals,
                                       weight,
                                       permutations=permutations)

    return zip([moran_global.I], [moran_global.EI])
Esempio n. 12
0
def moran_rate(subquery, numerator, denominator, w_type, num_ngbrs,
               permutations, geom_col, id_col):
    """
    Moran's I Rate (global)
    Andy Eschbacher
    """
    qvals = {
        "id_col": id_col,
        "attr1": numerator,
        "attr2": denominator,
        "geom_col": geom_col,
        "subquery": subquery,
        "num_ngbrs": num_ngbrs
    }

    query = pu.construct_neighbor_query(w_type, qvals)

    plpy.notice('** Query: %s' % query)

    try:
        result = plpy.execute(query)
        # if there are no neighbors, exit
        if len(result) == 0:
            return pu.empty_zipped_array(2)
        plpy.notice('** Query returned with %d rows' % len(result))
    except plpy.SPIError:
        plpy.error(
            'Error: areas of interest query failed, check input parameters')
        plpy.notice('** Query failed: "%s"' % query)
        plpy.notice('** Error: %s' % plpy.SPIError)
        return pu.empty_zipped_array(2)

    ## collect attributes
    numer = pu.get_attributes(result, 1)
    denom = pu.get_attributes(result, 2)

    weight = pu.get_weight(result, w_type, num_ngbrs)

    ## calculate moran global rate
    lisa_rate = ps.esda.moran.Moran_Rate(numer,
                                         denom,
                                         weight,
                                         permutations=permutations)

    return zip([lisa_rate.I], [lisa_rate.EI])
Esempio n. 13
0
    def global_rate_stat(self, subquery, numerator, denominator, w_type,
                         num_ngbrs, permutations, geom_col, id_col):
        """
        Moran's I Rate (global)

        Args:

          subquery (str): Query to give access to the data needed. This query
            must give access to ``attr_name``, ``geom_col``, and ``id_col``.
          numerator (str): Column name of numerator to analyze
          denominator (str): Column name of the denominator
          w_type (str): Type of spatial weight. Must be one of `knn`
            or `queen`. See `PySAL documentation
            <http://pysal.readthedocs.io/en/latest/users/tutorials/weights.html>`__
            for more information.
          num_ngbrs (int): If using `knn` for ``w_type``, this
            specifies the number of neighbors to be used to define the spatial
            neighborhoods.
          permutations (int): Number of permutations for performing
            conditional randomization to find the p-value. Higher numbers
            takes a longer time for getting results.
          geom_col (str): Name of the geometry column in the dataset for
            finding the spatial neighborhoods.
          id_col (str): Row index for each value. Usually the database index.
        """
        params = OrderedDict([("id_col", id_col), ("attr1", numerator),
                              ("attr2", denominator), ("geom_col", geom_col),
                              ("subquery", subquery),
                              ("num_ngbrs", num_ngbrs)])

        result = self.data_provider.get_moran(w_type, params)

        # collect attributes
        numer = pu.get_attributes(result, 1)
        denom = pu.get_attributes(result, 2)

        weight = pu.get_weight(result, w_type, num_ngbrs)

        # calculate moran global rate
        lisa_rate = ps.esda.moran.Moran_Rate(numer,
                                             denom,
                                             weight,
                                             permutations=permutations)

        return list(zip([lisa_rate.I], [lisa_rate.EI]))
Esempio n. 14
0
def moran_local(subquery, attr, w_type, num_ngbrs, permutations, geom_col,
                id_col):
    """
    Moran's I implementation for PL/Python
    Andy Eschbacher
    """

    # geometries with attributes that are null are ignored
    # resulting in a collection of not as near neighbors

    qvals = {
        "id_col": id_col,
        "attr1": attr,
        "geom_col": geom_col,
        "subquery": subquery,
        "num_ngbrs": num_ngbrs
    }

    query = pu.construct_neighbor_query(w_type, qvals)

    try:
        result = plpy.execute(query)
        # if there are no neighbors, exit
        if len(result) == 0:
            return pu.empty_zipped_array(5)
    except plpy.SPIError:
        plpy.error(
            'Error: areas of interest query failed, check input parameters')
        plpy.notice('** Query failed: "%s"' % query)
        return pu.empty_zipped_array(5)

    attr_vals = pu.get_attributes(result)
    weight = pu.get_weight(result, w_type, num_ngbrs)

    # calculate LISA values
    lisa = ps.esda.moran.Moran_Local(attr_vals,
                                     weight,
                                     permutations=permutations)

    # find quadrants for each geometry
    quads = quad_position(lisa.q)

    return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
Esempio n. 15
0
def moran_local_rate(subquery, numerator, denominator,
                     w_type, num_ngbrs, permutations, geom_col, id_col):
    """
        Moran's I Local Rate
        Andy Eschbacher
    """
    # geometries with values that are null are ignored
    # resulting in a collection of not as near neighbors

    qvals = OrderedDict([("id_col", id_col),
                         ("numerator", numerator),
                         ("denominator", denominator),
                         ("geom_col", geom_col),
                         ("subquery", subquery),
                         ("num_ngbrs", num_ngbrs)])

    query = pu.construct_neighbor_query(w_type, qvals)

    try:
        result = plpy.execute(query)
        # if there are no neighbors, exit
        if len(result) == 0:
            return pu.empty_zipped_array(5)
    except plpy.SPIError:
        plpy.error('Error: areas of interest query failed, check input parameters')
        plpy.notice('** Query failed: "%s"' % query)
        plpy.notice('** Error: %s' % plpy.SPIError)
        return pu.empty_zipped_array(5)

    ## collect attributes
    numer = pu.get_attributes(result, 1)
    denom = pu.get_attributes(result, 2)

    weight = pu.get_weight(result, w_type, num_ngbrs)

    # calculate LISA values
    lisa = ps.esda.moran.Moran_Local_Rate(numer, denom, weight,
                                          permutations=permutations)

    # find quadrants for each geometry
    quads = quad_position(lisa.q)

    return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
Esempio n. 16
0
def moran(subquery, attr_name,
          w_type, num_ngbrs, permutations, geom_col, id_col):
    """
    Moran's I (global)
    Implementation building neighbors with a PostGIS database and Moran's I
     core clusters with PySAL.
    Andy Eschbacher
    """
    qvals = OrderedDict([("id_col", id_col),
                         ("attr1", attr_name),
                         ("geom_col", geom_col),
                         ("subquery", subquery),
                         ("num_ngbrs", num_ngbrs)])

    query = pu.construct_neighbor_query(w_type, qvals)

    plpy.notice('** Query: %s' % query)

    try:
        result = plpy.execute(query)
        # if there are no neighbors, exit
        if len(result) == 0:
            return pu.empty_zipped_array(2)
        plpy.notice('** Query returned with %d rows' % len(result))
    except plpy.SPIError:
        plpy.error('Error: areas of interest query failed, check input parameters')
        plpy.notice('** Query failed: "%s"' % query)
        plpy.notice('** Error: %s' % plpy.SPIError)
        return pu.empty_zipped_array(2)

    ## collect attributes
    attr_vals = pu.get_attributes(result)

    ## calculate weights
    weight = pu.get_weight(result, w_type, num_ngbrs)

    ## calculate moran global
    moran_global = ps.esda.moran.Moran(attr_vals, weight,
                                       permutations=permutations)

    return zip([moran_global.I], [moran_global.EI])
Esempio n. 17
0
def moran_rate(subquery, numerator, denominator,
               w_type, num_ngbrs, permutations, geom_col, id_col):
    """
    Moran's I Rate (global)
    Andy Eschbacher
    """
    qvals = OrderedDict([("id_col", id_col),
                         ("attr1", numerator),
                         ("attr2", denominator)
                         ("geom_col", geom_col),
                         ("subquery", subquery),
                         ("num_ngbrs", num_ngbrs)])

    query = pu.construct_neighbor_query(w_type, qvals)

    plpy.notice('** Query: %s' % query)

    try:
        result = plpy.execute(query)
        # if there are no neighbors, exit
        if len(result) == 0:
            return pu.empty_zipped_array(2)
        plpy.notice('** Query returned with %d rows' % len(result))
    except plpy.SPIError:
        plpy.error('Error: areas of interest query failed, check input parameters')
        plpy.notice('** Query failed: "%s"' % query)
        plpy.notice('** Error: %s' % plpy.SPIError)
        return pu.empty_zipped_array(2)

    ## collect attributes
    numer = pu.get_attributes(result, 1)
    denom = pu.get_attributes(result, 2)

    weight = pu.get_weight(result, w_type, num_ngbrs)

    ## calculate moran global rate
    lisa_rate = ps.esda.moran.Moran_Rate(numer, denom, weight,
                                         permutations=permutations)

    return zip([lisa_rate.I], [lisa_rate.EI])
Esempio n. 18
0
def moran_local_bv(subquery, attr1, attr2,
                   permutations, geom_col, id_col, w_type, num_ngbrs):
    """
        Moran's I (local) Bivariate (untested)
    """

    qvals = OrderedDict([("id_col", id_col),
                         ("attr1", attr1),
                         ("attr2", attr2),
                         ("geom_col", geom_col),
                         ("subquery", subquery),
                         ("num_ngbrs", num_ngbrs)])

    query = pu.construct_neighbor_query(w_type, qvals)

    try:
        result = plpy.execute(query)
        # if there are no neighbors, exit
        if len(result) == 0:
            return pu.empty_zipped_array(4)
    except plpy.SPIError:
        plpy.error("Error: areas of interest query failed, "
                   "check input parameters")
        return pu.empty_zipped_array(4)

    # collect attributes
    attr1_vals = pu.get_attributes(result, 1)
    attr2_vals = pu.get_attributes(result, 2)

    # create weights
    weight = pu.get_weight(result, w_type, num_ngbrs)

    # calculate LISA values
    lisa = ps.esda.moran.Moran_Local_BV(attr1_vals, attr2_vals, weight,
                                        permutations=permutations)

    # find clustering of significance
    lisa_sig = quad_position(lisa.q)

    return zip(lisa.Is, lisa_sig, lisa.p_sim, weight.id_order)
Esempio n. 19
0
             "subquery": subquery,
             "num_ngbrs": num_ngbrs}

    try:
        query_result = plpy.execute(
            pu.construct_neighbor_query(w_type, qvals)
        )
        if len(query_result) == 0:
            return zip([None], [None], [None], [None], [None])
    except plpy.SPIError, err:
        plpy.debug('Query failed with exception %s: %s' % (err, pu.construct_neighbor_query(w_type, qvals)))
        plpy.error('Query failed, check the input parameters')
        return zip([None], [None], [None], [None], [None])

    ## build weight
    weights = pu.get_weight(query_result, w_type)
    weights.transform = 'r'

    ## prep time data
    t_data = get_time_data(query_result, time_cols)

    plpy.debug('shape of t_data %d, %d' % t_data.shape)
    plpy.debug('number of weight objects: %d, %d' % (weights.sparse).shape)
    plpy.debug('first num elements: %f' % t_data[0, 0])

    sp_markov_result = ps.Spatial_Markov(t_data,
                                         weights,
                                         k=num_classes,
                                         fixed=False,
                                         permutations=permutations)
Esempio n. 20
0
    query = pu.construct_neighbor_query(w_type, qvals)

    try:
        result = plpy.execute(query)
        # if there are no neighbors, exit
        if len(result) == 0:
            return pu.empty_zipped_array(2)
    except plpy.SPIError, e:
        plpy.error('Analysis failed: %s' % e)
        return pu.empty_zipped_array(2)

    ## collect attributes
    attr_vals = pu.get_attributes(result)

    ## calculate weights
    weight = pu.get_weight(result, w_type, num_ngbrs)

    ## calculate moran global
    moran_global = ps.esda.moran.Moran(attr_vals,
                                       weight,
                                       permutations=permutations)

    return zip([moran_global.I], [moran_global.EI])


def moran_local(subquery, attr, w_type, num_ngbrs, permutations, geom_col,
                id_col):
    """
    Moran's I implementation for PL/Python
    Andy Eschbacher
    """
Esempio n. 21
0
    query = pu.construct_neighbor_query(w_type, qvals)

    try:
        result = plpy.execute(query)
        # if there are no neighbors, exit
        if len(result) == 0:
            return pu.empty_zipped_array(2)
    except plpy.SPIError, e:
        plpy.error('Analysis failed: %s' % e)
        return pu.empty_zipped_array(2)

    ## collect attributes
    attr_vals = pu.get_attributes(result)

    ## calculate weights
    weight = pu.get_weight(result, w_type, num_ngbrs)

    ## calculate moran global
    moran_global = ps.esda.moran.Moran(attr_vals, weight,
                                       permutations=permutations)

    return zip([moran_global.I], [moran_global.EI])

def moran_local(subquery, attr,
                w_type, num_ngbrs, permutations, geom_col, id_col):
    """
    Moran's I implementation for PL/Python
    Andy Eschbacher
    """

    # geometries with attributes that are null are ignored
Esempio n. 22
0
    def spatial_trend(self,
                      subquery,
                      time_cols,
                      num_classes=7,
                      w_type='knn',
                      num_ngbrs=5,
                      permutations=0,
                      geom_col='the_geom',
                      id_col='cartodb_id'):
        """
            Predict the trends of a unit based on:
            1. history of its transitions to different classes (e.g., 1st
               quantile -> 2nd quantile)
            2. average class of its neighbors

            Inputs:
            @param subquery string: e.g., SELECT the_geom, cartodb_id,
              interesting_time_column FROM table_name
            @param time_cols list of strings: list of strings of column names
            @param num_classes (optional): number of classes to break
              distribution of values into. Currently uses quantile bins.
            @param w_type string (optional): weight type ('knn' or 'queen')
            @param num_ngbrs int (optional): number of neighbors (if knn type)
            @param permutations int (optional): number of permutations for test
              stats
            @param geom_col string (optional): name of column which contains
              the geometries
            @param id_col string (optional): name of column which has the ids
              of the table

            Outputs:
            @param trend_up float: probablity that a geom will move to a higher
              class
            @param trend_down float: probablity that a geom will move to a
              lower class
            @param trend float: (trend_up - trend_down) / trend_static
            @param volatility float: a measure of the volatility based on
              probability stddev(prob array)
        """

        if len(time_cols) < 2:
            plpy.error('More than one time column needs to be passed')

        params = {
            "id_col": id_col,
            "time_cols": time_cols,
            "geom_col": geom_col,
            "subquery": subquery,
            "num_ngbrs": num_ngbrs
        }

        result = self.data_provider.get_markov(w_type, params)

        # build weight
        weights = pu.get_weight(result, w_type)
        weights.transform = 'r'

        # prep time data
        t_data = get_time_data(result, time_cols)

        sp_markov_result = ps.Spatial_Markov(t_data,
                                             weights,
                                             k=num_classes,
                                             fixed=False,
                                             permutations=permutations)

        # get lag classes
        lag_classes = ps.Quantiles(ps.lag_spatial(weights, t_data[:, -1]),
                                   k=num_classes).yb

        # look up probablity distribution for each unit according to class and
        #  lag class
        prob_dist = get_prob_dist(sp_markov_result.P, lag_classes,
                                  sp_markov_result.classes[:, -1])

        # find the ups and down and overall distribution of each cell
        trend_up, trend_down, trend, volatility = get_prob_stats(
            prob_dist, sp_markov_result.classes[:, -1])

        # output the results
        return zip(trend, trend_up, trend_down, volatility, weights.id_order)
Esempio n. 23
0
        "subquery": subquery,
        "num_ngbrs": num_ngbrs
    }

    try:
        query_result = plpy.execute(pu.construct_neighbor_query(w_type, qvals))
        if len(query_result) == 0:
            return zip([None], [None], [None], [None], [None])
    except plpy.SPIError, e:
        plpy.debug('Query failed with exception %s: %s' %
                   (err, pu.construct_neighbor_query(w_type, qvals)))
        plpy.error('Analysis failed: %s' % e)
        return zip([None], [None], [None], [None], [None])

    ## build weight
    weights = pu.get_weight(query_result, w_type)
    weights.transform = 'r'

    ## prep time data
    t_data = get_time_data(query_result, time_cols)

    plpy.debug('shape of t_data %d, %d' % t_data.shape)
    plpy.debug('number of weight objects: %d, %d' % (weights.sparse).shape)
    plpy.debug('first num elements: %f' % t_data[0, 0])

    sp_markov_result = ps.Spatial_Markov(t_data,
                                         weights,
                                         k=num_classes,
                                         fixed=False,
                                         permutations=permutations)
Esempio n. 24
0
    def local_stat(self, subquery, attr, w_type, num_ngbrs, permutations,
                   geom_col, id_col):
        """
        Moran's I (local)

        Args:

          subquery (str): Query to give access to the data needed. This query
            must give access to ``attr_name``, ``geom_col``, and ``id_col``.
          attr (str): Column name of data to analyze
          w_type (str): Type of spatial weight. Must be one of `knn`
            or `queen`. See `PySAL documentation
            <http://pysal.readthedocs.io/en/latest/users/tutorials/weights.html>`__
            for more information.
          num_ngbrs (int): If using `knn` for ``w_type``, this
            specifies the number of neighbors to be used to define the spatial
            neighborhoods.
          permutations (int): Number of permutations for performing
            conditional randomization to find the p-value. Higher numbers
            takes a longer time for getting results.
          geom_col (str): Name of the geometry column in the dataset for
            finding the spatial neighborhoods.
          id_col (str): Row index for each value. Usually the database index.

        Returns:
          list of tuples: Where each tuple consists of the following values:
            - quadrants classification (one of `HH`, `HL`, `LL`, or `LH`)
            - p-value
            - spatial lag
            - standardized spatial lag (centered on the mean, normalized by the
              standard deviation)
            - original value
            - standardized value
            - Moran's I statistic
            - original row index
        """

        # geometries with attributes that are null are ignored
        # resulting in a collection of not as near neighbors

        params = OrderedDict([("id_col", id_col), ("attr1", attr),
                              ("geom_col", geom_col), ("subquery", subquery),
                              ("num_ngbrs", num_ngbrs)])

        result = self.data_provider.get_moran(w_type, params)

        attr_vals = pu.get_attributes(result)
        weight = pu.get_weight(result, w_type, num_ngbrs)

        # calculate LISA values
        lisa = ps.esda.moran.Moran_Local(attr_vals,
                                         weight,
                                         permutations=permutations)

        # find quadrants for each geometry
        quads = quad_position(lisa.q)

        # calculate spatial lag
        lag = ps.weights.spatial_lag.lag_spatial(weight, lisa.y)
        lag_std = ps.weights.spatial_lag.lag_spatial(weight, lisa.z)

        return zip(quads, lisa.p_sim, lag, lag_std, lisa.y, lisa.z, lisa.Is,
                   weight.id_order)