Esempio n. 1
0
    'groundKnots': 20,
    'flyingKnots': 20
}

cameraTF = [2., 2.68, 0.84, 0.2, 0.62, 0.72, 0.22]

# Creating a both solvers
boxfddp = crocoddyl.SolverBoxFDDP(
    gait.createJumpingProblem(x0, jumping_gait['jumpHeight'],
                              jumping_gait['jumpLength'],
                              jumping_gait['timeStep'],
                              jumping_gait['groundKnots'],
                              jumping_gait['flyingKnots']))
boxddp = crocoddyl.SolverBoxDDP(
    gait.createJumpingProblem(x0, jumping_gait['jumpHeight'],
                              jumping_gait['jumpLength'],
                              jumping_gait['timeStep'],
                              jumping_gait['groundKnots'],
                              jumping_gait['flyingKnots']))

# Added the callback functions
if WITHDISPLAY and WITHPLOT:
    display = crocoddyl.GepettoDisplay(
        anymal, 4, 4, cameraTF, frameNames=[lfFoot, rfFoot, lhFoot, rhFoot])
    boxfddp.setCallbacks([
        crocoddyl.CallbackLogger(),
        crocoddyl.CallbackVerbose(),
        crocoddyl.CallbackDisplay(display)
    ])
    boxddp.setCallbacks([
        crocoddyl.CallbackLogger(),
        crocoddyl.CallbackVerbose(),
Esempio n. 2
0
     {'walking': {'stepLength': 0.6, 'stepHeight': 0.1,
                  'timeStep': 0.03, 'stepKnots': 25, 'supportKnots': 1}},
     {'walking': {'stepLength': 0.6, 'stepHeight': 0.1,
                  'timeStep': 0.03, 'stepKnots': 25, 'supportKnots': 1}},
     {'walking': {'stepLength': 0.6, 'stepHeight': 0.1,
                  'timeStep': 0.03, 'stepKnots': 25, 'supportKnots': 1}}]
cameraTF = [3., 3.68, 0.84, 0.2, 0.62, 0.72, 0.22]

ddp = [None] * len(GAITPHASES)
for i, phase in enumerate(GAITPHASES):
    for key, value in phase.items():
        if key == 'walking':
            # Creating a walking problem
            ddp[i] = crocoddyl.SolverBoxDDP(
                gait.createWalkingProblem(x0, value['stepLength'],
                                          value['stepHeight'],
                                          value['timeStep'],
                                          value['stepKnots'],
                                          value['supportKnots']))

    # Added the callback functions
    print('*** SOLVE ' + key + ' ***')
    if WITHDISPLAY and WITHPLOT:
        display = crocoddyl.GepettoDisplay(talos_legs,
                                           4,
                                           4,
                                           cameraTF,
                                           frameNames=[rightFoot, leftFoot])
        ddp[i].setCallbacks([
            crocoddyl.CallbackLogger(),
            crocoddyl.CallbackVerbose(),
            crocoddyl.CallbackDisplay(display)
# Setting up the 3d walking problem
lfFoot, rfFoot, lhFoot, rhFoot = 'LF_FOOT', 'RF_FOOT', 'LH_FOOT', 'RH_FOOT'
gait = SimpleQuadrupedalGaitProblem(robot_model, lfFoot, rfFoot, lhFoot, rhFoot)

# Defining the initial state of the robot
q0 = robot_model.referenceConfigurations['standing'].copy()
v0 = pinocchio.utils.zero(robot_model.nv)
x0 = np.concatenate([q0, v0])

# Defining the walking gait parameters
walking_gait = {'stepLength': 0.25, 'stepHeight': 0.25, 'timeStep': 1e-2, 'stepKnots': 25, 'supportKnots': 2}

# Setting up the control-limited DDP solver
boxddp = crocoddyl.SolverBoxDDP(
    gait.createWalkingProblem(x0, walking_gait['stepLength'], walking_gait['stepHeight'], walking_gait['timeStep'],
                              walking_gait['stepKnots'], walking_gait['supportKnots']))

# Add the callback functions
print('*** SOLVE ***')
cameraTF = [2., 2.68, 0.84, 0.2, 0.62, 0.72, 0.22]
if WITHDISPLAY and WITHPLOT:
    display = crocoddyl.GepettoDisplay(anymal, 4, 4, cameraTF, frameNames=[lfFoot, rfFoot, lhFoot, rhFoot])
    boxddp.setCallbacks([crocoddyl.CallbackLogger(), crocoddyl.CallbackVerbose(), crocoddyl.CallbackDisplay(display)])
elif WITHDISPLAY:
    display = crocoddyl.GepettoDisplay(anymal, 4, 4, cameraTF, frameNames=[lfFoot, rfFoot, lhFoot, rhFoot])
    boxddp.setCallbacks([crocoddyl.CallbackVerbose(), crocoddyl.CallbackDisplay(display)])
elif WITHPLOT:
    boxddp.setCallbacks([
        crocoddyl.CallbackLogger(),
        crocoddyl.CallbackVerbose(),
Esempio n. 4
0
runningCostModel.addCost("uReg", uRegCost, 1e-6)
runningCostModel.addCost("trackPose", goalTrackingCost, 1e-2)
terminalCostModel.addCost("goalPose", goalTrackingCost, 100)

dt = 3e-2
runningModel = crocoddyl.IntegratedActionModelEuler(
    crocoddyl.DifferentialActionModelFreeFwdDynamics(state, actModel, runningCostModel), dt)
terminalModel = crocoddyl.IntegratedActionModelEuler(
    crocoddyl.DifferentialActionModelFreeFwdDynamics(state, actModel, terminalCostModel), dt)
runningModel.u_lb = np.array([l_lim, l_lim, l_lim, l_lim])
runningModel.u_ub = np.array([u_lim, u_lim, u_lim, u_lim])

# Creating the shooting problem and the boxddp solver
T = 33
problem = crocoddyl.ShootingProblem(np.concatenate([hector.q0, np.zeros(state.nv)]), [runningModel] * T, terminalModel)
boxddp = crocoddyl.SolverBoxDDP(problem)
boxddp.setCallbacks([crocoddyl.CallbackLogger(), crocoddyl.CallbackVerbose()])

cameraTF = [-0.03, 4.4, 2.3, -0.02, 0.56, 0.83, -0.03]
if WITHDISPLAY and WITHPLOT:
    display = crocoddyl.GepettoDisplay(hector, 4, 4, cameraTF)
    boxddp.setCallbacks([crocoddyl.CallbackLogger(), crocoddyl.CallbackVerbose(), crocoddyl.CallbackDisplay(display)])
elif WITHDISPLAY:
    display = crocoddyl.GepettoDisplay(hector, 4, 4, cameraTF)
    boxddp.setCallbacks([crocoddyl.CallbackVerbose(), crocoddyl.CallbackDisplay(display)])
elif WITHPLOT:
    boxddp.setCallbacks([crocoddyl.CallbackLogger(), crocoddyl.CallbackVerbose()])
else:
    boxddp.setCallbacks([crocoddyl.CallbackVerbose()])

# Solving the problem with the boxddp solver
Esempio n. 5
0
    def generateTrajectory(self, **kwargs):
        import time
        import crocoddyl
        from crocoddyl.utils.quadruped import SimpleQuadrupedalGaitProblem, plotSolution

        # Load parameters of the trajectory
        self.setParametersFromDict(**kwargs)

        # Loading the solo model
        solo = loadSolo(False)
        robot_model = solo.model

        # Set limits of actuators speeds and efforts
        robot_model.effortLimit[6:] = np.full(12,
                                              self.getParameter('torque_lim'))
        robot_model.velocityLimit[6:] = np.tile(
            np.deg2rad(self.getParameter('speed_lim')), 4)

        # Setting up CoM problem
        lfFoot, rfFoot, lhFoot, rhFoot = 'FL_FOOT', 'FR_FOOT', 'HL_FOOT', 'HR_FOOT'
        gait = SimpleQuadrupedalGaitProblem(robot_model, lfFoot, rfFoot,
                                            lhFoot, rhFoot)

        # Defining the initial state of the robot
        q0 = robot_model.referenceConfigurations['standing'].copy()
        v0 = pin.utils.zero(robot_model.nv)
        x0 = np.concatenate([q0, v0])

        # Defining the CoM gait parameters
        Jumping_gait = {}
        Jumping_gait['jumpHeight'] = self.getParameter('height')
        Jumping_gait['jumpLength'] = [
            self.getParameter('dx'),
            self.getParameter('dy'),
            self.getParameter('dz')
        ]
        Jumping_gait['timeStep'] = self.getParameter('dt')
        Jumping_gait['groundKnots'] = self.getParameter('groundKnots')
        Jumping_gait['flyingKnots'] = self.getParameter('flyingKnots')

        # Setting up the control-limited DDP solver
        boxddp = crocoddyl.SolverBoxDDP(
            gait.createJumpingProblem(x0, Jumping_gait['jumpHeight'],
                                      Jumping_gait['jumpLength'],
                                      Jumping_gait['timeStep'],
                                      Jumping_gait['groundKnots'],
                                      Jumping_gait['flyingKnots']))

        # Print debug info if requiered
        t0 = time.time()
        if self.getParameter('debug'):
            print("Computing Trajectory...")
            self.printInfo()

        # Add the callback functions if requiered
        if self.getParameter('verbose'):
            boxddp.setCallbacks([crocoddyl.CallbackVerbose()])

        # Setup viewer if requiered
        cameraTF = [2., 2.68, 0.84, 0.2, 0.62, 0.72, 0.22]
        if self.getParameter('gepetto_viewer'):
            display = crocoddyl.GepettoDisplay(
                solo,
                4,
                4,
                cameraTF,
                frameNames=[lfFoot, rfFoot, lhFoot, rhFoot])
            boxddp.setCallbacks([
                crocoddyl.CallbackVerbose(),
                crocoddyl.CallbackDisplay(display)
            ])

        xs = [robot_model.defaultState] * (boxddp.problem.T + 1)
        us = boxddp.problem.quasiStatic([solo.model.defaultState] *
                                        boxddp.problem.T)

        # Solve the DDP problem
        boxddp.solve(xs, us, self.getParameter('nb_it'), False, 0.1)

        # Display the entire motion
        if self.getParameter('gepetto_viewer'):
            display = crocoddyl.GepettoDisplay(
                solo, frameNames=[lfFoot, rfFoot, lhFoot, rhFoot])
            while True:
                display.displayFromSolver(boxddp)

        # Get results from solver
        xs, us = boxddp.xs, boxddp.us
        nx, nq, nu = xs[0].shape[0], robot_model.nq, us[0].shape[0]
        X = [0.] * nx
        U = [0.] * nu

        for i in range(nx):
            X[i] = [np.asscalar(x[i]) for x in xs]
        for i in range(nu):
            U[i] = [np.asscalar(u[i]) if u.shape[0] != 0 else 0 for u in us]

        qa = np.array(X[7:nq])[:, :-1]
        qa_dot = np.array(X[nq + 6:2 * nq - 1])[:, :-1]
        torques = np.array(U[:])
        t_traj = np.arange(0, qa.shape[1]) * self.getParameter('dt')

        # Print execution time if requiered
        if self.getParameter('debug'):
            print("Done in", time.time() - t0, "s")

        # Define trajectory for return
        traj = ActuatorsTrajectory()
        traj.addElement('t', t_traj)
        traj.addElement('q', qa)
        traj.addElement('q_dot', qa_dot)
        traj.addElement('torques', torques)

        return traj
Esempio n. 6
0
runningCostModel.addCost("uReg", uRegCost, 1e-6)
runningCostModel.addCost("trackPose", goalTrackingCost, 1e-2)
terminalCostModel.addCost("goalPose", goalTrackingCost, 100.)

dt = 3e-2
runningModel = crocoddyl.IntegratedActionModelEuler(
    crocoddyl.DifferentialActionModelFreeFwdDynamics(state, actuation, runningCostModel), dt)
terminalModel = crocoddyl.IntegratedActionModelEuler(
    crocoddyl.DifferentialActionModelFreeFwdDynamics(state, actuation, terminalCostModel), dt)
runningModel.u_lb = np.array([l_lim, l_lim, l_lim, l_lim])
runningModel.u_ub = np.array([u_lim, u_lim, u_lim, u_lim])

# Creating the shooting problem and the BoxDDP solver
T = 33
problem = crocoddyl.ShootingProblem(np.concatenate([hector.q0, np.zeros(state.nv)]), [runningModel] * T, terminalModel)
solver = crocoddyl.SolverBoxDDP(problem)
solver.setCallbacks([crocoddyl.CallbackLogger(), crocoddyl.CallbackVerbose()])

cameraTF = [-0.03, 4.4, 2.3, -0.02, 0.56, 0.83, -0.03]
if WITHDISPLAY and WITHPLOT:
    display = crocoddyl.GepettoDisplay(hector, 4, 4, cameraTF)
    solver.setCallbacks([crocoddyl.CallbackLogger(), crocoddyl.CallbackVerbose(), crocoddyl.CallbackDisplay(display)])
elif WITHDISPLAY:
    display = crocoddyl.GepettoDisplay(hector, 4, 4, cameraTF)
    solver.setCallbacks([crocoddyl.CallbackVerbose(), crocoddyl.CallbackDisplay(display)])
elif WITHPLOT:
    solver.setCallbacks([crocoddyl.CallbackLogger(), crocoddyl.CallbackVerbose()])
else:
    solver.setCallbacks([crocoddyl.CallbackVerbose()])

# Solving the problem with the BoxDDP solver