def ecdsa_sign(curve_obj, hash_int, hash_num_bits, private_key, message, k=None):
    """Sign message using the private key.

    Returns the signature (r, s).

    @param hash_int: a hash function mapping to an integer, for example
      lambda m: util.be2int(hashlib.sha256(m).digest())
    @param hash_num_bits: the number of bits in the digest above, for
    example 256.
    """

    n = curve_obj.order

    if k is None:
        k = util.randint(1, n - 1)

    e = hash_int(message)
    L_n = util.count_bits(n)
    z = e >> max(hash_num_bits - L_n, 0)

    while True:
        (x1, y1) = curve.mul(k, curve_obj.base_point, curve_obj.curve)
        r = x1 % curve_obj.order
        if r == 0:
            continue

        k_neg = numbertheory.inverse_of(k, n)

        s = (k_neg * (z + r * private_key)) % n
        if s == 0:
            continue

        break

    return (r, s)
Esempio n. 2
0
    def _test_with_vector(self, PUB, REPR, PRIV, VALID):
        Repr = ref_ed.decodeint(''.join(map(chr, REPR)))
        X = ref_ed.decodeint(''.join(map(chr, PUB)))
        Priv = ref_ed.decodeint(''.join(map(chr, PRIV)))
        Pub = curvemod.mul(Priv, self.curve25519.base_point,
                           self.curve25519.curve)

        # Check valid
        valid = True
        try:
            P1, P2 = self.curve25519.curve.get_y(X)
        except:
            valid = False
        self.assertEquals(valid, VALID)

        # Check mappings back and forth
        if valid:
            """
            print
            print 'P1', P1
            print 'P2', P2
            print 'XXX', self.ell2.map_random_to_point(Repr)
            print
            self.assertEquals(Repr, self.ell2.map_point_to_random(P1))
            self.assertEquals(Repr, self.ell2.map_point_to_random(P2))
            """

            self.assertEquals(Repr, self.ell2.map_point_to_random(Pub))

            self.assertEquals(X, self.ell2.map_random_to_point(Repr)[0])
    def _test_with_vector(self, PUB, REPR, PRIV, VALID):
        Repr = ref_ed.decodeint("".join(map(chr, REPR)))
        X = ref_ed.decodeint("".join(map(chr, PUB)))
        Priv = ref_ed.decodeint("".join(map(chr, PRIV)))
        Pub = curvemod.mul(Priv, self.curve25519.base_point, self.curve25519.curve)

        # Check valid
        valid = True
        try:
            P1, P2 = self.curve25519.curve.get_y(X)
        except:
            valid = False
        self.assertEquals(valid, VALID)

        # Check mappings back and forth
        if valid:

            """
            print
            print 'P1', P1
            print 'P2', P2
            print 'XXX', self.ell2.map_random_to_point(Repr)
            print
            self.assertEquals(Repr, self.ell2.map_point_to_random(P1))
            self.assertEquals(Repr, self.ell2.map_point_to_random(P2))
            """

            self.assertEquals(Repr, self.ell2.map_point_to_random(Pub))

            self.assertEquals(X, self.ell2.map_random_to_point(Repr)[0])
def ecdsa_verify(curve_obj, hash_int, hash_num_bits, public_key, message,
                 signature):
    """Verify that signature is over the message using the public key.

    Returns True if so, False otherwise.

    Otherwise similar to ecdsa_sign() in usage.
    """

    n = curve_obj.order

    # Verify
    if public_key == curve_obj.base_point or \
            curve_obj.curve.invert_point(public_key) == curve_obj.base_point: # XXX: Check inverted too?
        return False

    if not curve_obj.curve.point_on_curve(public_key):
        return False

    if not curve.mul(curve_obj.order, public_key,
                     curve_obj.curve) == curve_obj.curve.neutral_point():
        return False

    (r, s) = signature

    if not 1 <= r <= n - 1:
        return False

    if not 1 <= s <= n - 1:
        return False

    e = hash_int(message)
    L_n = util.count_bits(n)
    z = e >> max(hash_num_bits - L_n, 0)

    # Verify
    w = numbertheory.inverse_of(s, curve_obj.order) % n
    u_1 = (z * w) % n
    u_2 = (r * w) % n

    (x1, y1) = curve_obj.curve.add_points(
        curve.mul(u_1, curve_obj.base_point, curve_obj.curve),
        curve.mul(u_2, public_key, curve_obj.curve))

    return (r % n) == (x1 % n)
def ecdsa_verify(curve_obj, hash_int, hash_num_bits, public_key, message, signature):
    """Verify that signature is over the message using the public key.

    Returns True if so, False otherwise.

    Otherwise similar to ecdsa_sign() in usage.
    """

    n = curve_obj.order

    # Verify
    if public_key == curve_obj.base_point or \
            curve_obj.curve.invert_point(public_key) == curve_obj.base_point: # XXX: Check inverted too?
        return False

    if not curve_obj.curve.point_on_curve(public_key):
        return False

    if not curve.mul(curve_obj.order, public_key, curve_obj.curve) == curve_obj.curve.neutral_point():
        return False

    (r, s) = signature

    if not 1 <= r <= n - 1:
        return False

    if not 1 <= s <= n - 1:
        return False

    e = hash_int(message)
    L_n = util.count_bits(n)
    z = e >> max(hash_num_bits - L_n, 0)

    # Verify
    w = numbertheory.inverse_of(s, curve_obj.order) % n
    u_1 = (z * w) % n
    u_2 = (r * w) % n

    (x1, y1) = curve_obj.curve.add_points(
        curve.mul(u_1, curve_obj.base_point, curve_obj.curve),
        curve.mul(u_2, public_key, curve_obj.curve)
        )

    return (r % n) == (x1 % n)
    def _test_with_vector(self, PUB, REPR, PRIV, VALID):
        Repr = ref_ed.decodeint(''.join(map(chr, REPR)))
        X = ref_ed.decodeint(''.join(map(chr, PUB)))
        Priv = ref_ed.decodeint(''.join(map(chr, PRIV)))
        Pub = curvemod.mul(Priv, self.curve25519.base_point, self.curve25519.curve)

        self.assertEquals(arr2str(PRIV), self.curve25519.canonical_binary_form_private(Priv))
        self.assertEquals(arr2str(PUB), self.curve25519.canonical_binary_form_public(Pub))

        self.assertEquals(Priv, self.curve25519.binary_to_private(arr2str(PRIV)))
    def _test_with_vector(self, PUB, REPR, PRIV, VALID):
        Repr = ref_ed.decodeint(''.join(map(chr, REPR)))
        X = ref_ed.decodeint(''.join(map(chr, PUB)))
        Priv = ref_ed.decodeint(''.join(map(chr, PRIV)))
        Pub = curvemod.mul(Priv, self.curve25519.base_point,
                           self.curve25519.curve)

        self.assertEquals(arr2str(PRIV),
                          self.curve25519.canonical_binary_form_private(Priv))
        self.assertEquals(arr2str(PUB),
                          self.curve25519.canonical_binary_form_public(Pub))

        self.assertEquals(Priv,
                          self.curve25519.binary_to_private(arr2str(PRIV)))
def ecdsa_sign(curve_obj,
               hash_int,
               hash_num_bits,
               private_key,
               message,
               k=None):
    """Sign message using the private key.

    Returns the signature (r, s).

    @param hash_int: a hash function mapping to an integer, for example
      lambda m: util.be2int(hashlib.sha256(m).digest())
    @param hash_num_bits: the number of bits in the digest above, for
    example 256.
    """

    n = curve_obj.order

    if k is None:
        k = util.randint(1, n - 1)

    e = hash_int(message)
    L_n = util.count_bits(n)
    z = e >> max(hash_num_bits - L_n, 0)

    while True:
        (x1, y1) = curve.mul(k, curve_obj.base_point, curve_obj.curve)
        r = x1 % curve_obj.order
        if r == 0:
            continue

        k_neg = numbertheory.inverse_of(k, n)

        s = (k_neg * (z + r * private_key)) % n
        if s == 0:
            continue

        break

    return (r, s)
Esempio n. 9
0
 def test_multiplication_by_0(self):
     self.assertEquals(self.curve.neutral_point(),
                       mul(0, self.A, self.curve))
    def generate_key_pair(self, seed):
        private = self.generate_private_key(seed)
        public = curve.mul(private, self.base_point, self.curve)

        return (public, private)
 def test_generator(self):
     self.assertEquals(self.curve.neutral_point(), mul(self.bp_order, self.bp, self.curve))
 def test_multiplication(self):
     self.assertEquals(self.MUL_P_1, mul(self.MUL_K_1, self.bp, self.curve))
     self.assertEquals(self.MUL_P_2, mul(self.MUL_K_2, self.bp, self.curve))
 def test_multiplication_by_1(self):
     self.assertEquals(self.A, mul(1, self.A, self.curve))
 def test_multiplication_by_2_equals_doubling(self):
     self.assertEquals(self.curve.double_point(self.A), mul(2, self.A, self.curve))
 def test_multiplication_by_0(self):
     self.assertEquals(self.curve.neutral_point(), mul(0, self.A, self.curve))
Esempio n. 16
0
 def test_generator(self):
     self.assertEquals(self.curve.neutral_point(),
                       mul(self.bp_order, self.bp, self.curve))
Esempio n. 17
0
 def test_multiplication(self):
     self.assertEquals(self.MUL_P_1, mul(self.MUL_K_1, self.bp, self.curve))
     self.assertEquals(self.MUL_P_2, mul(self.MUL_K_2, self.bp, self.curve))
Esempio n. 18
0
 def test_multiplication_by_1(self):
     self.assertEquals(self.A, mul(1, self.A, self.curve))
Esempio n. 19
0
 def test_multiplication_by_2_equals_doubling(self):
     self.assertEquals(self.curve.double_point(self.A),
                       mul(2, self.A, self.curve))
 def derive_public_key(self, private):
     return curve.mul(private, self.base_point, self.curve)
Esempio n. 21
0
def ecdh(curve_obj, my_private, other_public):
    """Derive the shared secret in ECDH."""

    # here curve_obj is from asymmetric.ECCBase
    return curve.mul(my_private, other_public, curve_obj.curve)
    def generate_key_pair(self, seed):
        private = self.generate_private_key(seed)
        public = curve.mul(private, self.base_point, self.curve)

        return (public, private)
 def derive_public_key(self, private):
     return curve.mul(private, self.base_point, self.curve)