Esempio n. 1
0
    def __init__(self, prog = None, gp = None, lCap = []):

        if gp is not None: 
            self.__stock = gp
        elif lCap == []: 
            self.__stock = None
        else: 
            self.__stock = GeneratePercept(lCap, objetsStatiques)

        if prog is None:
            if lCap == []: 
                self.__chromosome = ProgramGenetic(1, 8, "A G D R".split(), plagiatUnaire)
            else:
                self.__chromosome = ProgramGenetic(1, self.__stock.howMany, "A G D R".split(), plagiatUnaire) 
        elif isinstance(prog, ProgramGenetic):
            if lCap != []:
                assert (len(prog) == self.__stock.howMany), "pas compatible"
            self.__chromosome = prog
        else:
            raise AssertionError("{} expected got {}"
                                 .format(ProgramGenetic, type(prog)))
        lAct = list(self.__chromosome.actions)
        super().__init__(lCap, lAct)
        self.__energy = 100
        self.__cpt = 0
        self.reset()
Esempio n. 2
0
class Aspirateur_PG(Aspirateur):
    """
        prog: un programme genetique, par défaut None
        gp: un GeneratePercept, par défaut None
        lCap: valeur par défaut []
    """
    def __init__(self, prog = None, gp = None, lCap = []):

        if gp is not None: 
            self.__stock = gp
        elif lCap == []: 
            self.__stock = None
        else: 
            self.__stock = GeneratePercept(lCap, objetsStatiques)

        if prog is None:
            if lCap == []: 
                self.__chromosome = ProgramGenetic(1, 8, "A G D R".split(), plagiatUnaire)
            else:
                self.__chromosome = ProgramGenetic(1, self.__stock.howMany, "A G D R".split(), plagiatUnaire) 
        elif isinstance(prog, ProgramGenetic):
            if lCap != []:
                assert (len(prog) == self.__stock.howMany), "pas compatible"
            self.__chromosome = prog
        else:
            raise AssertionError("{} expected got {}"
                                 .format(ProgramGenetic, type(prog)))
        lAct = list(self.__chromosome.actions)
        super().__init__(lCap, lAct)
        self.__energy = 100
        self.__cpt = 0
        self.reset()

    def reset(self):
        """ initialisation de certaines variables pour chaque simulation """

        self.vivant = True
        self.cpt = 0
        self.repos = 0
        self.energie = 100
        self.__cptalive = 0
        
    @property 
    def stock(self): return self.__stock

    @property
    def energie(self): return self.__energy
    @energie.setter
    def energie(self,v):
        assert isinstance(v, int), "int expected found {}".format(type(v))
        self.__energy = max(0, min(100, v)) # force la valeur entre 0 et 100
        if self.__energy == 0:
            self.vivant = False

    @property
    def vivant(self): return self.__vivant
    @vivant.setter
    def vivant(self, v):
        if isinstance(v, bool): self.__vivant = v

    @property
    def cpt(self): return self.__cpt
    @cpt.setter
    def cpt(self, v):
        assert isinstance(v,int)
        self.__cpt = min(max(0,v % len(self.program)),len(self.program)-1)
        
    @property
    def nbTours(self): 
        """ renvoie le nombre d'itérations pendant lesquelles aspi est vivant """
        return self.__cptalive

    @property
    def program(self): return self.__chromosome

    def getEvaluation(self):
        """ renvoie l'évaluation de l'agent """
        
        score = (self.nettoyage / self.dirty) * 10 if self.dirty != 0 else 0
        index = int(self.energie / 25)
        index = min(index, 3)
        link = [1/2 * self.energie / 100, 2/3 * self.energie / 100, 3/4 * self.energie / 100, self.energie / 100]
        if not self.vivant: score -= 100
        else: score += link[index]
        return score

    def getDecision(self, percepts):
        """ deux cas à traiter suivant que percepts = [] ou pas """
        self.__cptalive += 1 
        if percepts == []:
            return self.program.decoder(self.cpt)
        return self.program.decoder(self.__stock.find(percepts))