Esempio n. 1
0
def load_model(device, model_path, use_half):
    model = DeepSpeech.load_model(hydra.utils.to_absolute_path(model_path))
    model.eval()
    model = model.to(device)
    if use_half:
        model = model.half()
    return model
Esempio n. 2
0
def train(cfg: DeepSpeechConfig):
    seed_everything(cfg.seed)

    with open(to_absolute_path(cfg.data.labels_path)) as label_file:
        labels = json.load(label_file)

    if cfg.trainer.checkpoint_callback:
        if OmegaConf.get_type(cfg.checkpoint) is GCSCheckpointConfig:
            checkpoint_callback = GCSCheckpointHandler(cfg=cfg.checkpoint)
        else:
            checkpoint_callback = FileCheckpointHandler(cfg=cfg.checkpoint)
        if cfg.load_auto_checkpoint:
            resume_from_checkpoint = checkpoint_callback.find_latest_checkpoint(
            )
            if resume_from_checkpoint:
                cfg.trainer.resume_from_checkpoint = resume_from_checkpoint
    print(cfg.trainer.gpus)
    data_loader = DeepSpeechDataModule(labels=labels,
                                       data_cfg=cfg.data,
                                       normalize=True,
                                       is_distributed=cfg.trainer.gpus > 1)

    model = DeepSpeech(labels=labels,
                       model_cfg=cfg.model,
                       optim_cfg=cfg.optim,
                       precision=cfg.trainer.precision,
                       spect_cfg=cfg.data.spect)

    trainer = hydra.utils.instantiate(
        config=cfg.trainer,
        replace_sampler_ddp=False,
        callbacks=[checkpoint_callback]
        if cfg.trainer.checkpoint_callback else None,
    )
    trainer.fit(model, data_loader)
Esempio n. 3
0
def load_model(device, model_path, use_half):
    model = DeepSpeech.load_model(model_path)
    model.eval()
    model = model.to(device)
    if use_half:
        model = model.half()
    return model
Esempio n. 4
0
    def load_state(cls, state_path):
        print("Loading state from model %s" % state_path)
        state = torch.load(state_path,
                           map_location=lambda storage, loc: storage)
        model = DeepSpeech.load_model_package(state)
        optim_state = state['optim_dict']
        amp_state = state['amp']
        epoch = int(state.get('epoch', 1)) - 1  # Index start at 0 for training
        training_step = state.get('iteration', None)
        if training_step is None:
            epoch += 1  # We saved model after epoch finished, start at the next epoch.
            training_step = 0
        else:
            training_step += 1
        avg_loss = int(state.get('avg_loss', 0))
        loss_results = state['loss_results']
        cer_results = state['cer_results']
        wer_results = state['wer_results']
        best_wer = state.get('best_wer')

        result_state = ResultState(loss_results=loss_results,
                                   cer_results=cer_results,
                                   wer_results=wer_results)
        return cls(optim_state=optim_state,
                   amp_state=amp_state,
                   model=model,
                   result_state=result_state,
                   best_wer=best_wer,
                   avg_loss=avg_loss,
                   epoch=epoch,
                   training_step=training_step)
Esempio n. 5
0
def load_model(
    device,
    model_path: str,
):
    with open('labels.json') as label_file:
        labels = json.load(label_file)

    hparams = {
        "model": {
            "hidden_size": 1024,
            "hidden_layers": 5,
        },
        "audio_conf": {
            "sample_rate": 16000,
            "window_size": .02,
            "window_stride": .01,
            "window": "hamming",
        },
        "num_classes": len(labels)
    }

    model = DeepSpeech.load_from_checkpoint(
        checkpoint_path=to_absolute_path(model_path),
        hparams=hparams,
        decoder=None,
    )
    model.to(device)
    model.eval()
    return model
Esempio n. 6
0
def train(cfg: DeepSpeechConfig):
    seed_everything(cfg.seed)

    with open(to_absolute_path(cfg.data.labels_path)) as label_file:
        print('Label File', cfg.data.labels_path,
              to_absolute_path(cfg.data.labels_path))
        labels = json.load(label_file)
        print('Loaded Labels', labels)

    print('CFG CHEKPOINT', cfg.checkpoint)

    if cfg.trainer.checkpoint_callback:
        if OmegaConf.get_type(cfg.checkpoint) is GCSCheckpointConfig:
            checkpoint_callback = GCSCheckpointHandler(cfg=cfg.checkpoint)
        else:
            checkpoint_callback = FileCheckpointHandler(cfg=cfg.checkpoint)
        if cfg.load_auto_checkpoint:
            resume_from_checkpoint = checkpoint_callback.find_latest_checkpoint(
            )
            if resume_from_checkpoint:
                cfg.trainer.resume_from_checkpoint = resume_from_checkpoint

    data_loader = DeepSpeechDataModule(
        labels=labels,
        data_cfg=cfg.data,
        normalize=True,
        # is_distributed=cfg.trainer.gpus > 1
        is_distributed=False)
    logger = TensorBoardLogger('tb_logs', name='training_visualization')

    model = DeepSpeech(labels=labels,
                       model_cfg=cfg.model,
                       optim_cfg=cfg.optim,
                       precision=cfg.trainer.precision,
                       spect_cfg=cfg.data.spect)
    print('\n TRAINER CALLBACK: ', cfg.trainer.checkpoint_callback)
    trainer = hydra.utils.instantiate(
        config=cfg.trainer,
        replace_sampler_ddp=False,
        logger=True,
        callbacks=[checkpoint_callback]
        if cfg.trainer.checkpoint_callback else None,
    )
    trainer.fit(model, data_loader)
Esempio n. 7
0
def train(cfg):
    config = dict(
        epochs=cfg.training.epochs,
        batch_size=cfg.data.batch_size,
        learning_rate=cfg.optim.learning_rate,
        rnn_type=cfg.model.rnn_type,
        hidden_size=cfg.model.hidden_size,
        hidden_layers=cfg.model.hidden_layers,
        optimizer=cfg.optim,
        #   update_hessian=cfg.optim.update_each
    )
    wandb.init(project="adahessian-deepspeech", config=config)

    # Set seeds for determinism
    torch.manual_seed(cfg.training.seed)
    torch.cuda.manual_seed_all(cfg.training.seed)
    np.random.seed(cfg.training.seed)
    random.seed(cfg.training.seed)
    torch.backends.cudnn.flags(enabled=False)

    main_proc = True
    device = torch.device("cpu" if cfg.training.no_cuda else "cuda")

    is_distributed = os.environ.get(
        "LOCAL_RANK")  # If local rank exists, distributed env

    if is_distributed:
        # when using NCCL, on failures, surviving nodes will deadlock on NCCL ops
        # because NCCL uses a spin-lock on the device. Set this env var and
        # to enable a watchdog thread that will destroy stale NCCL communicators
        os.environ["NCCL_BLOCKING_WAIT"] = "1"

        device_id = int(os.environ["LOCAL_RANK"])
        torch.cuda.set_device(device_id)
        print(f"Setting CUDA Device to {device_id}")

        dist.init_process_group(backend=cfg.training.dist_backend.value)
        main_proc = device_id == 0  # Main process handles saving of models and reporting

    if OmegaConf.get_type(cfg.checkpointing) == FileCheckpointConfig:
        checkpoint_handler = FileCheckpointHandler(cfg=cfg.checkpointing)
    elif OmegaConf.get_type(cfg.checkpointing) == GCSCheckpointConfig:
        checkpoint_handler = GCSCheckpointHandler(cfg=cfg.checkpointing)
    else:
        raise ValueError("Checkpoint Config has not been specified correctly.")

    if main_proc and cfg.visualization.visdom:
        visdom_logger = VisdomLogger(id=cfg.visualization.id,
                                     num_epochs=cfg.training.epochs)
    if main_proc and cfg.visualization.tensorboard:
        tensorboard_logger = TensorBoardLogger(
            id=cfg.visualization.id,
            log_dir=to_absolute_path(cfg.visualization.log_dir),
            log_params=cfg.visualization.log_params)

    if cfg.checkpointing.load_auto_checkpoint:
        latest_checkpoint = checkpoint_handler.find_latest_checkpoint()
        if latest_checkpoint:
            cfg.checkpointing.continue_from = latest_checkpoint

    if cfg.checkpointing.continue_from:  # Starting from previous model
        state = TrainingState.load_state(
            state_path=to_absolute_path(cfg.checkpointing.continue_from))
        model = state.model
        if cfg.training.finetune:
            state.init_finetune_states(cfg.training.epochs)

        if main_proc and cfg.visualization.visdom:  # Add previous scores to visdom graph
            visdom_logger.load_previous_values(state.epoch, state.results)
        if main_proc and cfg.visualization.tensorboard:  # Previous scores to tensorboard logs
            tensorboard_logger.load_previous_values(state.epoch, state.results)
    else:
        # Initialise new model training
        with open(to_absolute_path(cfg.data.labels_path)) as label_file:
            labels = json.load(label_file)

        if OmegaConf.get_type(cfg.model) is BiDirectionalConfig:
            model = DeepSpeech(
                rnn_hidden_size=cfg.model.hidden_size,
                nb_layers=cfg.model.hidden_layers,
                labels=labels,
                rnn_type=supported_rnns[cfg.model.rnn_type.value],
                audio_conf=cfg.data.spect,
                bidirectional=True)
        elif OmegaConf.get_type(cfg.model) is UniDirectionalConfig:
            model = DeepSpeech(
                rnn_hidden_size=cfg.model.hidden_size,
                nb_layers=cfg.model.hidden_layers,
                labels=labels,
                rnn_type=supported_rnns[cfg.model.rnn_type.value],
                audio_conf=cfg.data.spect,
                bidirectional=False,
                context=cfg.model.lookahead_context)
        else:
            raise ValueError("Model Config has not been specified correctly.")

        state = TrainingState(model=model)
        state.init_results_tracking(epochs=cfg.training.epochs)

    # Data setup
    evaluation_decoder = GreedyDecoder(
        model.labels)  # Decoder used for validation
    train_dataset = SpectrogramDataset(audio_conf=model.audio_conf,
                                       manifest_filepath=to_absolute_path(
                                           cfg.data.train_manifest),
                                       labels=model.labels,
                                       normalize=True,
                                       augmentation_conf=cfg.data.augmentation)
    test_dataset = SpectrogramDataset(audio_conf=model.audio_conf,
                                      manifest_filepath=to_absolute_path(
                                          cfg.data.val_manifest),
                                      labels=model.labels,
                                      normalize=True)
    if not is_distributed:
        train_sampler = DSRandomSampler(dataset=train_dataset,
                                        batch_size=cfg.data.batch_size,
                                        start_index=state.training_step)
    else:
        train_sampler = DSElasticDistributedSampler(
            dataset=train_dataset,
            batch_size=cfg.data.batch_size,
            start_index=state.training_step)
    train_loader = AudioDataLoader(dataset=train_dataset,
                                   num_workers=cfg.data.num_workers,
                                   batch_sampler=train_sampler)
    test_loader = AudioDataLoader(dataset=test_dataset,
                                  num_workers=cfg.data.num_workers,
                                  batch_size=cfg.data.batch_size)

    model = model.to(device)
    parameters = model.parameters()
    if OmegaConf.get_type(cfg.optim) is SGDConfig:
        optimizer = torch.optim.SGD(parameters,
                                    lr=cfg.optim.learning_rate,
                                    momentum=cfg.optim.momentum,
                                    nesterov=True,
                                    weight_decay=cfg.optim.weight_decay)
    elif OmegaConf.get_type(cfg.optim) is AdamConfig:
        optimizer = torch.optim.AdamW(parameters,
                                      lr=cfg.optim.learning_rate,
                                      betas=cfg.optim.betas,
                                      eps=cfg.optim.eps,
                                      weight_decay=cfg.optim.weight_decay)
    elif OmegaConf.get_type(cfg.optim) is AdaHessianConfig:
        optimizer = AdaHessian(
            parameters,
            lr=cfg.optim.learning_rate,
            betas=cfg.optim.betas,
            eps=cfg.optim.eps,
            weight_decay=cfg.optim.weight_decay,
            update_each=cfg.optim.update_each,
            #    average_conv_kernel=cfg.optim.average_conv_kernel,
            # hessian_power=cfg.optim.hessian_power
        )
        torch.backends.cudnn.enabled = False

    else:
        raise ValueError("Optimizer has not been specified correctly.")
    if OmegaConf.get_type(cfg.optim) is not AdaHessianConfig:
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          enabled=not cfg.training.no_cuda,
                                          opt_level=cfg.apex.opt_level,
                                          loss_scale=cfg.apex.loss_scale)
    if state.optim_state is not None:
        optimizer.load_state_dict(state.optim_state)
    if state.amp_state is not None:
        amp.load_state_dict(state.amp_state)

    # Track states for optimizer/amp
    state.track_optim_state(optimizer)
    if not cfg.training.no_cuda and OmegaConf.get_type(
            cfg.optim) is not AdaHessianConfig:
        state.track_amp_state(amp)

    if is_distributed:
        model = DistributedDataParallel(model, device_ids=[device_id])
    print(model)
    print("Number of parameters: %d" % DeepSpeech.get_param_size(model))

    criterion = CTCLoss()
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()

    for epoch in range(state.epoch, cfg.training.epochs):
        model.train()
        end = time.time()
        start_epoch_time = time.time()
        state.set_epoch(epoch=epoch)
        train_sampler.set_epoch(epoch=epoch)
        train_sampler.reset_training_step(training_step=state.training_step)
        for i, (data) in enumerate(train_loader, start=state.training_step):
            state.set_training_step(training_step=i)
            inputs, targets, input_percentages, target_sizes = data
            input_sizes = input_percentages.mul_(int(inputs.size(3))).int()
            # measure data loading time
            data_time.update(time.time() - end)
            inputs = inputs.to(device)

            out, output_sizes = model(inputs, input_sizes)
            out = out.transpose(0, 1)  # TxNxH

            float_out = out.float()  # ensure float32 for loss
            loss = criterion(float_out, targets, output_sizes,
                             target_sizes).to(device)
            loss = loss / inputs.size(0)  # average the loss by minibatch
            loss_value = loss.item()

            # Check to ensure valid loss was calculated
            valid_loss, error = check_loss(loss, loss_value)
            if valid_loss:
                optimizer.zero_grad()

                # compute gradient
                if OmegaConf.get_type(cfg.optim) is AdaHessianConfig:
                    loss.backward(create_graph=True)
                else:
                    with amp.scale_loss(loss, optimizer) as scaled_loss:
                        scaled_loss.backward()
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer),
                                               cfg.optim.max_norm)
                optimizer.step()
            else:
                print(error)
                print('Skipping grad update')
                loss_value = 0

            state.avg_loss += loss_value
            losses.update(loss_value, inputs.size(0))

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()
            print('Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
                      (epoch + 1), (i + 1),
                      len(train_loader),
                      batch_time=batch_time,
                      data_time=data_time,
                      loss=losses))

            if main_proc and cfg.checkpointing.checkpoint_per_iteration:
                checkpoint_handler.save_iter_checkpoint_model(epoch=epoch,
                                                              i=i,
                                                              state=state)
            del loss, out, float_out

        state.avg_loss /= len(train_dataset)

        epoch_time = time.time() - start_epoch_time
        print('Training Summary Epoch: [{0}]\t'
              'Time taken (s): {epoch_time:.0f}\t'
              'Average Loss {loss:.3f}\t'.format(epoch + 1,
                                                 epoch_time=epoch_time,
                                                 loss=state.avg_loss))

        with torch.no_grad():
            wer, cer, output_data = run_evaluation(
                test_loader=test_loader,
                device=device,
                model=model,
                decoder=evaluation_decoder,
                target_decoder=evaluation_decoder)

        state.add_results(epoch=epoch,
                          loss_result=state.avg_loss,
                          wer_result=wer,
                          cer_result=cer)

        print('Validation Summary Epoch: [{0}]\t'
              'Average WER {wer:.3f}\t'
              'Average CER {cer:.3f}\t'.format(epoch + 1, wer=wer, cer=cer))

        if main_proc and cfg.visualization.visdom:
            visdom_logger.update(epoch, state.result_state)
        if main_proc and cfg.visualization.tensorboard:
            tensorboard_logger.update(epoch, state.result_state,
                                      model.named_parameters())
        if main_proc and cfg.visualization.wandb:
            wandb.log({
                'epoch': epoch,
                'Average Loss': state.avg_loss,
                'Average WER': wer,
                'Average CER': cer
            })

        if main_proc and cfg.checkpointing.checkpoint:  # Save epoch checkpoint
            checkpoint_handler.save_checkpoint_model(epoch=epoch, state=state)
        # anneal lr
        for g in optimizer.param_groups:
            g['lr'] = g['lr'] / cfg.optim.learning_anneal
        print('Learning rate annealed to: {lr:.6f}'.format(lr=g['lr']))
        wandb.log({"lr": g['lr']})

        if main_proc and (state.best_wer is None or state.best_wer > wer):
            checkpoint_handler.save_best_model(epoch=epoch, state=state)
            state.set_best_wer(wer)
            state.reset_avg_loss()
        state.reset_training_step()  # Reset training step for next epoch
Esempio n. 8
0
def train(cfg):
    # Set seeds for determinism
    torch.manual_seed(cfg.training.seed)
    torch.cuda.manual_seed_all(cfg.training.seed)
    np.random.seed(cfg.training.seed)
    random.seed(cfg.training.seed)

    main_proc = True
    device = torch.device("cpu" if cfg.training.no_cuda else "cuda")

    is_distributed = os.environ.get(
        "LOCAL_RANK")  # If local rank exists, distributed env

    if is_distributed:
        # when using NCCL, on failures, surviving nodes will deadlock on NCCL ops
        # because NCCL uses a spin-lock on the device. Set this env var and
        # to enable a watchdog thread that will destroy stale NCCL communicators
        os.environ["NCCL_BLOCKING_WAIT"] = "1"

        device_id = int(os.environ["LOCAL_RANK"])
        torch.cuda.set_device(device_id)
        print(f"Setting CUDA Device to {device_id}")

        dist.init_process_group(backend=cfg.training.dist_backend.value)
        main_proc = device_id == 0  # Main process handles saving of models and reporting

    if OmegaConf.get_type(cfg.checkpointing) == FileCheckpointConfig:
        checkpoint_handler = FileCheckpointHandler(cfg=cfg.checkpointing)
    elif OmegaConf.get_type(cfg.checkpointing) == GCSCheckpointConfig:
        checkpoint_handler = GCSCheckpointHandler(cfg=cfg.checkpointing)
    else:
        raise ValueError("Checkpoint Config has not been specified correctly.")

    if main_proc and cfg.visualization.visdom:
        visdom_logger = VisdomLogger(id=cfg.visualization.id,
                                     num_epochs=cfg.training.epochs)
    if main_proc and cfg.visualization.tensorboard:
        tensorboard_logger = TensorBoardLogger(
            id=cfg.visualization.id,
            log_dir=to_absolute_path(cfg.visualization.log_dir),
            log_params=cfg.visualization.log_params)

    if cfg.checkpointing.load_auto_checkpoint:
        latest_checkpoint = checkpoint_handler.find_latest_checkpoint()
        if latest_checkpoint:
            cfg.checkpointing.continue_from = latest_checkpoint

    if cfg.checkpointing.continue_from:  # Starting from previous model
        state = TrainingState.load_state(
            state_path=to_absolute_path(cfg.checkpointing.continue_from))
        model = state.model
        if cfg.training.finetune:
            state.init_finetune_states(cfg.training.epochs)

        if main_proc and cfg.visualization.visdom:  # Add previous scores to visdom graph
            visdom_logger.load_previous_values(state.epoch, state.results)
        if main_proc and cfg.visualization.tensorboard:  # Previous scores to tensorboard logs
            tensorboard_logger.load_previous_values(state.epoch, state.results)
    else:
        # Initialise new model training
        with open(to_absolute_path(cfg.data.labels_path)) as label_file:
            labels = json.load(label_file)

# #cấu hình của model trong file train_config.py dòng 51
# @dataclass
# class BiDirectionalConfig:
#     rnn_type: RNNType = RNNType.lstm  # Type of RNN to use in model
#     hidden_size: int = 1024  # Hidden size of RNN Layer
#     hidden_layers: int = 7  # Number of RNN layers
        if OmegaConf.get_type(cfg.model) is BiDirectionalConfig:
            model = DeepSpeech(
                rnn_hidden_size=cfg.model.hidden_size,
                nb_layers=cfg.model.hidden_layers,
                labels=labels,
                rnn_type=supported_rnns[cfg.model.rnn_type.value],
                audio_conf=cfg.data.spect,
                bidirectional=True)
        elif OmegaConf.get_type(cfg.model) is UniDirectionalConfig:
            model = DeepSpeech(
                rnn_hidden_size=cfg.model.hidden_size,
                nb_layers=cfg.model.hidden_layers,
                labels=labels,
                rnn_type=supported_rnns[cfg.model.rnn_type.value],
                audio_conf=cfg.data.spect,
                bidirectional=False,
                context=cfg.model.lookahead_context)
        else:
            raise ValueError("Model Config has not been specified correctly.")

        state = TrainingState(model=model)
        state.init_results_tracking(epochs=cfg.training.epochs)

    # Data setup
    evaluation_decoder = GreedyDecoder(
        model.labels)  # Decoder used for validation
    train_dataset = SpectrogramDataset(
        audio_conf=model.audio_conf,
        manifest_filepath=to_absolute_path(cfg.data.train_manifest),
        labels=model.labels,
        normalize=True,
        augmentation_conf=cfg.data.augmentation
    )  #cấu hình spect, ids=[[dòng 1],[dognf 2]..], lables_=dict
    test_dataset = SpectrogramDataset(audio_conf=model.audio_conf,
                                      manifest_filepath=to_absolute_path(
                                          cfg.data.val_manifest),
                                      labels=model.labels,
                                      normalize=True)
    if not is_distributed:
        train_sampler = DSRandomSampler(
            dataset=train_dataset,
            batch_size=cfg.data.batch_size,
            start_index=state.training_step
        )  #DSRandomSampler để  chọn 1 bộ minibatch bất kì và xáo trộn nội dung trong minibatch
    else:
        train_sampler = DSElasticDistributedSampler(
            dataset=train_dataset,
            batch_size=cfg.data.batch_size,
            start_index=state.training_step)
    train_loader = AudioDataLoader(
        dataset=train_dataset,
        num_workers=cfg.data.num_workers,
        batch_sampler=train_sampler
    )  #AudioLoader có hàm collate_fn để xử lí 1 minibatch được chọn, trả ra cuối cùng là mảng có 835 phần tử(đối với FPT, VIVOS), mỗi phần tử của audio loader là 1 mảng gồm batch_size mẫu
    test_loader = AudioDataLoader(dataset=test_dataset,
                                  num_workers=cfg.data.num_workers,
                                  batch_size=cfg.data.batch_size)

    model = model.to(device)
    parameters = model.parameters()
    if OmegaConf.get_type(
            cfg.optim) is SGDConfig:  #mặc định ở dòng 8 trong train_config
        optimizer = torch.optim.SGD(parameters,
                                    lr=cfg.optim.learning_rate,
                                    momentum=cfg.optim.momentum,
                                    nesterov=True,
                                    weight_decay=cfg.optim.weight_decay)
    elif OmegaConf.get_type(cfg.optim) is AdamConfig:
        optimizer = torch.optim.AdamW(parameters,
                                      lr=cfg.optim.learning_rate,
                                      betas=cfg.optim.betas,
                                      eps=cfg.optim.eps,
                                      weight_decay=cfg.optim.weight_decay)
    else:
        raise ValueError("Optimizer has not been specified correctly.")

    model, optimizer = amp.initialize(model,
                                      optimizer,
                                      enabled=not cfg.training.no_cuda,
                                      opt_level=cfg.apex.opt_level,
                                      loss_scale=cfg.apex.loss_scale)
    if state.optim_state is not None:
        optimizer.load_state_dict(state.optim_state)
    if state.amp_state is not None:
        amp.load_state_dict(state.amp_state)

    # Track states for optimizer/amp
    state.track_optim_state(optimizer)
    if not cfg.training.no_cuda:
        state.track_amp_state(amp)

    if is_distributed:
        model = DistributedDataParallel(model, device_ids=[device_id])
    #print(model)
    print("Number of parameters: %d" % DeepSpeech.get_param_size(model))

    criterion = CTCLoss()
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()

    for epoch in range(
            state.epoch,
            cfg.training.epochs):  #1 epoch là duyệt hết cả csv của train
        model.train()
        end = time.time()
        start_epoch_time = time.time()
        state.set_epoch(epoch=epoch)
        train_sampler.set_epoch(epoch=epoch)
        train_sampler.reset_training_step(training_step=state.training_step)
        for i, (data) in enumerate(train_loader, start=state.training_step
                                   ):  #duyệt qua từng minibatch (gồm 32 mẫu)
            state.set_training_step(training_step=i)
            inputs, targets, input_percentages, target_sizes = data  #inputs[x][0] chứ spect thứ x trong batchsixe, input_percenttages: tỉ lệ độ dài câu từng câu nói trong minibatch/độ dài max, target: array [[...mã ascii]]
            input_sizes = input_percentages.mul_(int(inputs.size(3))).int(
            )  #tensor([699, 682, 656, 560, 553, 517, 514, 502, 464, 458, 423, 412, 406, 349, ...] laayss tỉ lệ X độ dài max để ra độ dài thực sự từng câu nói
            # measure data loading time
            data_time.update(time.time() - end)
            inputs = inputs.to(device)
            #đưa inputs gồm 32 mẫu qua mô hình học sâu, và kích thước thực sự từng câu nói (độ dài bước thời gian phổ)
            out, output_sizes = model(
                inputs, input_sizes
            )  #như out: 3 chiều, outputsize: 1 chiều : chứa kích thước mô hình dự đoán cho văn bản kq
            out = out.transpose(
                0, 1
            )  # TxNxH sau khi tranpose : out 3 chiều (bị đổi chiều 0 và 1)=> out (190x3x93)

            float_out = out.float()  # ensure float32 for loss
            loss = criterion(float_out, targets, output_sizes,
                             target_sizes).to(device)
            loss = loss / inputs.size(
                0
            )  # average the loss by minibatch, tổng loss chia cho số spect trong batch đó
            loss_value = loss.item()

            # Check to ensure valid loss was calculated
            valid_loss, error = check_loss(loss, loss_value)
            if valid_loss:
                optimizer.zero_grad()

                # compute gradient, SGD chuẩn hóa SGD cập nhật trọng số
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer),
                                               cfg.optim.max_norm)
                optimizer.step()
            else:
                print(error)
                print('Skipping grad update')
                loss_value = 0

            state.avg_loss += loss_value
            losses.update(loss_value, inputs.size(0))

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()
            print('Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
                      (epoch + 1), (i + 1),
                      len(train_loader),
                      batch_time=batch_time,
                      data_time=data_time,
                      loss=losses))
            if main_proc and cfg.checkpointing.checkpoint_per_iteration:
                checkpoint_handler.save_iter_checkpoint_model(epoch=epoch,
                                                              i=i,
                                                              state=state)
            del loss, out, float_out

        state.avg_loss /= len(train_dataset)

        epoch_time = time.time() - start_epoch_time
        print('Training Summary Epoch: [{0}]\t'
              'Time taken (s): {epoch_time:.0f}\t'
              'Average Loss {loss:.3f}\t'.format(epoch + 1,
                                                 epoch_time=epoch_time,
                                                 loss=state.avg_loss))
        mylogg2er.info('Training Summary Epoch: [{0}]\t'
                       'Time taken (s): {epoch_time:.0f}\t'
                       'Average Loss {loss:.3f}\n'.format(
                           epoch + 1,
                           epoch_time=epoch_time,
                           loss=state.avg_loss))
        file_object = open('/root/epoch.log', 'a')
        file_object.write('Training Summary Epoch: [{0}]\t'
                          'Time taken (s): {epoch_time:.0f}\t'
                          'Average Loss {loss:.3f}\n'.format(
                              epoch + 1,
                              epoch_time=epoch_time,
                              loss=state.avg_loss))
        file_object.close()
        with torch.no_grad():
            wer, cer, output_data, wer2, cer2 = run_evaluation(
                test_loader=test_loader,
                device=device,
                model=model,
                decoder=evaluation_decoder,
                target_decoder=evaluation_decoder)

        state.add_results(epoch=epoch,
                          loss_result=state.avg_loss,
                          wer_result=wer,
                          cer_result=cer)

        print('Validation Summary Epoch: [{0}]\t'
              'Average WER {wer:.3f}\t'
              'Average CER {cer:.3f}\t'.format(epoch + 1, wer=wer, cer=cer))
        # mylogg2er.info('Validation Summary Epoch: [{0}]\t'
        #       'Average WER {wer:.3f}\t'
        #       'Average CER {cer:.3f}\t'.format(epoch + 1, wer=wer, cer=cer))
        file_object = open('/root/epoch.log', 'a')
        file_object.write('Validation Summary Epoch: [{0}]\t'
                          'Average WER {wer:.3f}\t'
                          'Average CER {cer:.3f}\t'.format(epoch + 1,
                                                           wer=wer,
                                                           cer=cer))
        file_object.write('Validation Summary Epoch: [{0}]\t'
                          'Average WER2 {wer:.3f}\t'
                          'Average CER2 {cer:.3f}\n'.format(epoch + 1,
                                                            wer=wer2,
                                                            cer=cer2))
        file_object.close()
        if main_proc and cfg.visualization.visdom:
            visdom_logger.update(epoch, state.result_state)
        if main_proc and cfg.visualization.tensorboard:
            tensorboard_logger.update(epoch, state.result_state,
                                      model.named_parameters())

        if main_proc and cfg.checkpointing.checkpoint:  # Save epoch checkpoint
            checkpoint_handler.save_checkpoint_model(epoch=epoch, state=state)
        # anneal lr
        for g in optimizer.param_groups:
            g['lr'] = g['lr'] / cfg.optim.learning_anneal
        print('Learning rate annealed to: {lr:.6f}'.format(lr=g['lr']))
        file_object = open('/root/epoch.log', 'a')
        file_object.write(
            'Learning rate annealed to: {lr:.6f}\n'.format(lr=g['lr']))
        file_object.close()
        try:
            #  print('Training Summary Epoch: [{0}]\t'
            #   'Time taken (s): {epoch_time:.0f}\t'
            #   'Average Loss {loss:.3f}\t'.format(epoch + 1, epoch_time=epoch_time, loss=state.avg_loss))/////////
            note = "Đổi tham số train_config: type: rnn.gru epochs: int = 50, batch_size: int = 30, hidden_size: int = 1600, hidden_layers: int = 7, file train_manifest: vinfptunk_train.csv, vinfptunk_dev.csv",
            sendReport(epoch + 1, '{:.3f}'.format(epoch_time),
                       '{:.3f}'.format(state.avg_loss), '{:.3f}'.format(wer),
                       '{:.3f}'.format(cer), "{:.6f}".format(g['lr']), note)
        except Exception as esss:
            print('Error :', esss)
        if main_proc and (state.best_wer is None or state.best_wer > wer):
            checkpoint_handler.save_best_model(epoch=epoch, state=state)
            state.set_best_wer(wer)
            state.reset_avg_loss()
        state.reset_training_step()  # Reset training step for next epoch
Esempio n. 9
0
def train(cfg):

    # 결과를 저장하기 위한 txt파일 초기화
    with open(
            "/home/jhjeong/jiho_deep/deepspeech.pytorch/jiho_result/result.txt",
            "w") as ff:
        ff.write("학습 시작! \n")

    # Set seeds for determinism
    torch.manual_seed(cfg.training.seed)
    torch.cuda.manual_seed_all(cfg.training.seed)
    np.random.seed(cfg.training.seed)
    random.seed(cfg.training.seed)

    main_proc = True
    device = torch.device("cpu" if cfg.training.no_cuda else "cuda")

    is_distributed = os.environ.get(
        "LOCAL_RANK")  # If local rank exists, distributed env

    if is_distributed:
        # when using NCCL, on failures, surviving nodes will deadlock on NCCL ops
        # because NCCL uses a spin-lock on the device. Set this env var and
        # to enable a watchdog thread that will destroy stale NCCL communicators
        os.environ["NCCL_BLOCKING_WAIT"] = "1"

        device_id = int(os.environ["LOCAL_RANK"])
        torch.cuda.set_device(device_id)
        print(f"Setting CUDA Device to {device_id}")

        dist.init_process_group(backend=cfg.training.dist_backend)
        main_proc = device_id == 0  # Main process handles saving of models and reporting

    checkpoint_handler = CheckpointHandler(
        save_folder=to_absolute_path(cfg.checkpointing.save_folder),
        best_val_model_name=cfg.checkpointing.best_val_model_name,
        checkpoint_per_iteration=cfg.checkpointing.checkpoint_per_iteration,
        save_n_recent_models=cfg.checkpointing.save_n_recent_models)

    #visdom 사용할건지 tensorboard 사용할건지
    if main_proc and cfg.visualization.visdom:
        visdom_logger = VisdomLogger(id=cfg.visualization.id,
                                     num_epochs=cfg.training.epochs)
    if main_proc and cfg.visualization.tensorboard:
        tensorboard_logger = TensorBoardLogger(
            id=cfg.visualization.id,
            log_dir=to_absolute_path(cfg.visualization.log_dir),
            log_params=cfg.visualization.log_params)

    if cfg.checkpointing.load_auto_checkpoint:
        latest_checkpoint = checkpoint_handler.find_latest_checkpoint()
        if latest_checkpoint:
            cfg.checkpointing.continue_from = latest_checkpoint

    # 여기서 부터
    if cfg.checkpointing.continue_from:  # Starting from previous model
        state = TrainingState.load_state(
            state_path=to_absolute_path(cfg.checkpointing.continue_from))
        model = state.model
        if cfg.training.finetune:
            state.init_finetune_states(cfg.training.epochs)

        if main_proc and cfg.visualization.visdom:  # Add previous scores to visdom graph
            visdom_logger.load_previous_values(state.epoch, state.results)
        if main_proc and cfg.visualization.tensorboard:  # Previous scores to tensorboard logs
            tensorboard_logger.load_previous_values(state.epoch, state.results)
    else:
        # Initialise new model training
        with open(to_absolute_path(cfg.data.labels_path)) as label_file:
            labels = json.load(label_file)  # label(a,b,c ...)

        audio_conf = dict(sample_rate=cfg.data.sample_rate,
                          window_size=cfg.data.window_size,
                          window_stride=cfg.data.window_stride,
                          window=cfg.data.window)
        if cfg.augmentation.noise_dir:
            audio_conf += dict(noise_dir=to_absolute_path(
                cfg.augmentation.noise_dir),
                               noise_prob=cfg.augmentation.noise_prob,
                               noise_levels=(cfg.augmentation.noise_min,
                                             cfg.augmentation.noise_max))

        rnn_type = cfg.model.rnn_type.lower()
        assert rnn_type in supported_rnns, "rnn_type should be either lstm, rnn or gru"

        # DeepSpeech 모델을 생성
        model = DeepSpeech(rnn_hidden_size=cfg.model.hidden_size,
                           nb_layers=cfg.model.hidden_layers,
                           labels=labels,
                           rnn_type=supported_rnns[rnn_type],
                           audio_conf=audio_conf,
                           bidirectional=cfg.model.bidirectional)

        state = TrainingState(model=model)
        state.init_results_tracking(epochs=cfg.training.epochs)

    # Data setup
    evaluation_decoder = GreedyDecoder(
        model.labels)  # Decoder used for validation

    # Data path 정리
    train_dataset = SpectrogramDataset(
        audio_conf=model.audio_conf,
        manifest_filepath=to_absolute_path(cfg.data.train_manifest),
        labels=model.labels,
        normalize=True,
        speed_volume_perturb=cfg.augmentation.speed_volume_perturb,
        spec_augment=cfg.augmentation.spec_augment)

    test_dataset = SpectrogramDataset(audio_conf=model.audio_conf,
                                      manifest_filepath=to_absolute_path(
                                          cfg.data.val_manifest),
                                      labels=model.labels,
                                      normalize=True,
                                      speed_volume_perturb=False,
                                      spec_augment=False)

    if not is_distributed:
        train_sampler = DSRandomSampler(dataset=train_dataset,
                                        batch_size=cfg.data.batch_size,
                                        start_index=state.training_step)
    else:
        train_sampler = DSElasticDistributedSampler(
            dataset=train_dataset,
            batch_size=cfg.data.batch_size,
            start_index=state.training_step)

    # data load 하는 부분
    train_loader = AudioDataLoader(dataset=train_dataset,
                                   num_workers=cfg.data.num_workers,
                                   batch_sampler=train_sampler)
    test_loader = AudioDataLoader(dataset=test_dataset,
                                  num_workers=cfg.data.num_workers,
                                  batch_size=cfg.data.batch_size)

    model = model.to(device)
    parameters = model.parameters()

    if cfg.optimizer.adam:
        optimizer = torch.optim.AdamW(parameters,
                                      lr=cfg.optimizer.learning_rate,
                                      betas=cfg.optimizer.betas,
                                      eps=cfg.optimizer.eps,
                                      weight_decay=cfg.optimizer.weight_decay)
    else:
        optimizer = torch.optim.SGD(parameters,
                                    lr=cfg.optimizer.learning_rate,
                                    momentum=cfg.optimizer.momentum,
                                    nesterov=True,
                                    weight_decay=cfg.optimizer.weight_decay)

    model, optimizer = amp.initialize(model,
                                      optimizer,
                                      opt_level=cfg.apex.opt_level,
                                      loss_scale=cfg.apex.loss_scale)

    if state.optim_state is not None:
        optimizer.load_state_dict(state.optim_state)
        amp.load_state_dict(state.amp_state)

    # Track states for optimizer/amp
    state.track_optim_state(optimizer)
    state.track_amp_state(amp)

    if is_distributed:
        model = DistributedDataParallel(model, device_ids=[device_id])

    print(model)
    print("Number of parameters: %d" % DeepSpeech.get_param_size(model))

    criterion = CTCLoss()
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()

    for epoch in range(state.epoch, cfg.training.epochs):
        model.train()
        end = time.time()
        start_epoch_time = time.time()
        state.set_epoch(epoch=epoch)
        train_sampler.set_epoch(epoch=epoch)
        train_sampler.reset_training_step(training_step=state.training_step)

        #train data있는거 가져다 사용하겠다.
        for i, (data) in enumerate(train_loader, start=state.training_step):
            state.set_training_step(training_step=i)
            inputs, targets, input_percentages, target_sizes = data
            input_sizes = input_percentages.mul_(int(inputs.size(3))).int()

            # measure data loading time
            data_time.update(time.time() - end)
            inputs = inputs.to(device)

            out, output_sizes = model(inputs, input_sizes)
            out = out.transpose(0, 1)  # TxNxH

            float_out = out.float()  # ensure float32 for loss
            loss = criterion(float_out, targets, output_sizes,
                             target_sizes).to(device)
            loss = loss / inputs.size(0)  # average the loss by minibatch
            loss_value = loss.item()

            # Check to ensure valid loss was calculated
            valid_loss, error = check_loss(loss, loss_value)
            if valid_loss:
                optimizer.zero_grad()

                # compute gradient
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer),
                                               cfg.optimizer.max_norm)
                optimizer.step()
            else:
                print(error)
                print('Skipping grad update')
                loss_value = 0

            state.avg_loss += loss_value
            losses.update(loss_value, inputs.size(0))

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()
            print('Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
                      (epoch + 1), (i + 1),
                      len(train_loader),
                      batch_time=batch_time,
                      data_time=data_time,
                      loss=losses))

            if main_proc and cfg.checkpointing.checkpoint_per_iteration:
                checkpoint_handler.save_iter_checkpoint_model(epoch=epoch,
                                                              i=i,
                                                              state=state)
            del loss, out, float_out

        state.avg_loss /= len(train_dataset)

        epoch_time = time.time() - start_epoch_time
        print('Training Summary Epoch: [{0}]\t'
              'Time taken (s): {epoch_time:.0f}\t'
              'Average Loss {loss:.3f}\t'.format(epoch + 1,
                                                 epoch_time=epoch_time,
                                                 loss=state.avg_loss))

        with open(
                "/home/jhjeong/jiho_deep/deepspeech.pytorch/jiho_result/result.txt",
                "a") as ff:
            ff.write("\n")
            ff.write("train -> ")
            ff.write("epoch : ")
            ff.write(str(epoch + 1))
            ff.write(" loss : ")
            ff.write(str(state.avg_loss))
            ff.write("\n")

        with torch.no_grad():
            wer, cer, output_data = evaluate(test_loader=test_loader,
                                             device=device,
                                             model=model,
                                             decoder=evaluation_decoder,
                                             target_decoder=evaluation_decoder)

        state.add_results(epoch=epoch,
                          loss_result=state.avg_loss,
                          wer_result=wer,
                          cer_result=cer)

        print('Validation Summary Epoch: [{0}]\t'
              'Average CER {cer:.3f}\t'.format(epoch + 1, cer=cer))

        with open(
                "/home/jhjeong/jiho_deep/deepspeech.pytorch/jiho_result/result.txt",
                "a") as ff:
            ff.write("\n")
            ff.write("val -> ")
            ff.write("epoch : ")
            ff.write(str(epoch + 1))
            ff.write(" cer : ")
            ff.write(str(cer))
            ff.write("\n")

        # 텐서보드에 업데이트함
        if main_proc and cfg.visualization.visdom:
            visdom_logger.update(epoch, state.result_state)
        if main_proc and cfg.visualization.tensorboard:
            tensorboard_logger.update(epoch, state.result_state,
                                      model.named_parameters())

        if main_proc and cfg.checkpointing.checkpoint:  # Save epoch checkpoint
            checkpoint_handler.save_checkpoint_model(epoch=epoch, state=state)
        # anneal lr
        for g in optimizer.param_groups:
            g['lr'] = g['lr'] / cfg.optimizer.learning_anneal
        print('Learning rate annealed to: {lr:.6f}'.format(lr=g['lr']))

        if main_proc and (state.best_wer is None or state.best_wer > wer):
            checkpoint_handler.save_best_model(epoch=epoch, state=state)
            state.set_best_wer(wer)
            state.reset_avg_loss()
        state.reset_training_step()  # Reset training step for next epoch
Esempio n. 10
0
def load_model(device, model_path):
    model = DeepSpeech.load_from_checkpoint(
        hydra.utils.to_absolute_path(model_path))
    model.eval()
    model = model.to(device)
    return model
Esempio n. 11
0
else:
    input_data = torch.randn(args.num_samples, 1, 161, args.seconds * 100)
input_data = input_data.to(device)
input_data = torch.chunk(input_data, int(len(input_data) / args.batch_size))

rnn_type = args.rnn_type.lower()
assert rnn_type in supported_rnns, "rnn_type should be either lstm, rnn or gru"

with open(args.labels_path) as label_file:
    labels = str(''.join(json.load(label_file)))

audio_conf = dict(sample_rate=args.sample_rate, window_size=args.window_size)

model = DeepSpeech(rnn_hidden_size=args.hidden_size,
                   nb_layers=args.hidden_layers,
                   audio_conf=audio_conf,
                   labels=labels,
                   rnn_type=supported_rnns[rnn_type],
                   bidirectional=args.bidirectional)

model = model.to(device)
parameters = model.parameters()
optimizer = torch.optim.SGD(parameters,
                            lr=3e-4,
                            momentum=0.9,
                            nesterov=True,
                            weight_decay=1e-5)

model, optimizer = amp.initialize(model,
                                  optimizer,
                                  opt_level=args.opt_level,
                                  keep_batchnorm_fp32=args.keep_batchnorm_fp32,