Esempio n. 1
0
def conical_deflection_Mach_sigma(Mach, sigma, gamma=1.4, tol=1.0e-6):
    def rkf45(F, x, y, h):
        # Runge-Kutta-Fehlberg formulas
        C = [37./378, 0., 250./621, 125./594, 0., 512./1771]
        D = [2825./27648, 0., 18575./48384, 13525./55296, 277./14336, 1./4]
        n = len(y)
        K = numpy.zeros((6,n))
        K[0] = h*F(x,y)
        K[1] = h*F(x + 1./5*h, y + 1./5*K[0])
        K[2] = h*F(x + 3./10*h, y + 3./40*K[0] + 9./40*K[1])
        K[3] = h*F(x + 3./5*h, y + 3./10*K[0]- 9./10*K[1] + 6./5*K[2])
        K[4] = h*F(x + h, y - 11./54*K[0] + 5./2*K[1] - 70./27*K[2] + 35./27*K[3])
        K[5] = h*F(x + 7./8*h, y + 1631./55296*K[0] + 175./512*K[1] + 575./13824*K[2] + 44275./110592*K[3] + 253./4096*K[4])
        # Initialize arrays {dy} and {E}
        E  = numpy.zeros((n))
        dy = numpy.zeros((n))
        # Compute solution increment {dy} and per-step error {E}
        for i in range(6):
            dy = dy + C[i]*K[i]
            E  = E + (C[i] - D[i])*K[i]
        # Compute RMS error e
        e = math.sqrt(sum(E**2)/n)
        return dy, e

    def rhs(phi, data):
        th = data[0]
        ma = data[1]
        k  = 1.-(ma*degree.sin(phi-th))**2
        rhs=numpy.zeros(2)
        rhs[0] = -degree.sin(th)*degree.cos(phi-th)/degree.sin(phi)/k
        rhs[1] =  math.pi/180.*degree.sin(th)*degree.sin(phi-th)/degree.sin(phi)/k*ma*(1.+.5*(gamma-1)*ma*ma)
        return rhs

    th   = deflection_Mach_sigma(Mach, sigma, gamma)
    ma   = downstream_Mn(Mach*degree.sin(sigma), gamma)/degree.sin(sigma-th)
    phi  = sigma
    thma = numpy.array([th, ma])
    h    = -phi/10.
    conv = phi
    while (abs(conv) >= tol):
        dthma, err = rkf45(rhs, phi, thma, h)
        # Accept integration step if error e is within tolerance
        if err <= tol:
            conv = thma[0] - phi
            if conv/(h-dthma[0]) < 1:
                h = h*conv/(h-dthma[0])
            else:
                thma = thma + dthma
                phi  = phi  + h
                print phi, thma
        else:
            h = 0.9*h*(tol/err)**0.2
            print "new h ",h

    deflection = .5*(thma[0] + phi)
    return deflection
Esempio n. 2
0
 def rhs(phi, data):
     th = data[0]
     ma = data[1]
     k  = 1.-(ma*degree.sin(phi-th))**2
     rhs=numpy.zeros(2)
     rhs[0] = -degree.sin(th)*degree.cos(phi-th)/degree.sin(phi)/k
     rhs[1] =  math.pi/180.*degree.sin(th)*degree.sin(phi-th)/degree.sin(phi)/k*ma*(1.+.5*(gamma-1)*ma*ma)
     return rhs