def plot_fit_results( histograms, category, channel ):
    global variable, b_tag_bin, output_folder, phase_space
    from dps.utils.plotting import Histogram_properties, make_data_mc_comparison_plot
    fit_variables = histograms.keys()

    variableBins = None
    if phase_space == 'VisiblePS':
        variableBins = variable_bins_visiblePS_ROOT
    elif phase_space == 'FullPS':
        variableBins = variable_bins_ROOT

    for variable_bin in variableBins[variable]:
        path = output_folder + str( measurement_config.centre_of_mass_energy ) + 'TeV/' + variable + '/' + category + '/fit_results/'
        make_folder_if_not_exists( path )
        for fit_variable in fit_variables:
            plotname = channel + '_' + fit_variable + '_bin_' + variable_bin
            # check if template plots exist already
            for output_format in output_formats:
                if os.path.isfile( plotname + '.' + output_format ):
                    continue

            # plot with matplotlib
            h_data = histograms[fit_variable][variable_bin]['data']
            h_signal = histograms[fit_variable][variable_bin]['signal']
            h_background = histograms[fit_variable][variable_bin]['background']

            histogram_properties = Histogram_properties()
            histogram_properties.name = plotname
            histogram_properties.x_axis_title = fit_variables_latex[fit_variable]
            histogram_properties.y_axis_title = 'Events/(%s)' % get_unit_string(fit_variable)
            label, _ = get_cms_labels( channel )
            histogram_properties.title = label
            histogram_properties.x_limits = measurement_config.fit_boundaries[fit_variable]

            make_data_mc_comparison_plot( [h_data, h_background, h_signal],
                                         ['data', 'background', 'signal'],
                                         ['black', 'green', 'red'], histogram_properties,
                                         save_folder = path, save_as = output_formats )
def plotHistograms(
		histogram_files, 
		var_to_plot,
		output_folder):
	'''
	'''
	global measurement_config

	weightBranchSignalRegion  = 'EventWeight * PUWeight * BJetWeight'
	weightBranchControlRegion = 'EventWeight'

	# Names of QCD regions to use
	qcd_data_region             = ''
	qcd_data_region_electron    = 'QCD non iso e+jets'
	qcd_data_region_muon        = 'QCD non iso mu+jets 1p5to3'

	sr_e_tree = 'TTbar_plus_X_analysis/EPlusJets/Ref selection/AnalysisVariables'
	sr_mu_tree = 'TTbar_plus_X_analysis/MuPlusJets/Ref selection/AnalysisVariables'
	cr_e_tree = 'TTbar_plus_X_analysis/EPlusJets/{}/AnalysisVariables'.format(qcd_data_region_electron)
	cr_mu_tree = 'TTbar_plus_X_analysis/MuPlusJets/{}/AnalysisVariables'.format(qcd_data_region_muon)
	
	print "Trees : "
	print "\t {}".format(sr_e_tree)
	print "\t {}".format(sr_mu_tree)
	print "\t {}".format(cr_e_tree)
	print "\t {}".format(cr_mu_tree)

	histogram_files_electron            = dict(histogram_files)
	histogram_files_electron['data']    = measurement_config.data_file_electron
	histogram_files_electron['QCD']     = measurement_config.electron_QCD_MC_trees

	histogram_files_muon                = dict(histogram_files)
	histogram_files_muon['data']        = measurement_config.data_file_muon
	histogram_files_muon['QCD']         = measurement_config.muon_QCD_MC_trees

	signal_region_hists = {}
	control_region_hists = {}

	for var in var_to_plot:
		selectionSignalRegion = '{} >= 0'.format(var)

		# Print all the weights applied to this plot 
		print "Variable : {}".format(var)
		print "Weight applied : {}".format(weightBranchSignalRegion)
		print "Selection applied : {}".format(selectionSignalRegion)

		histograms_electron = get_histograms_from_trees( 
			trees = [sr_e_tree], 
			branch = var, 
			weightBranch = weightBranchSignalRegion + ' * ElectronEfficiencyCorrection', 
			files = histogram_files_electron, 
			nBins = 20, 
			xMin = control_plots_bins[var][0], 
			xMax = control_plots_bins[var][-1], 
			selection = selectionSignalRegion 
		)
		histograms_muon = get_histograms_from_trees( 
			trees = [sr_mu_tree], 
			branch = var, 
			weightBranch = weightBranchSignalRegion + ' * MuonEfficiencyCorrection', 
			files = histogram_files_muon, 
			nBins = 20, 
			xMin = control_plots_bins[var][0], 
			xMax = control_plots_bins[var][-1], 
			selection = selectionSignalRegion 
		)
		histograms_electron_QCDControlRegion = get_histograms_from_trees( 
			trees = [cr_e_tree], 
			branch = var, 
			weightBranch = weightBranchControlRegion, 
			files = histogram_files_electron, 
			nBins = 20, 
			xMin = control_plots_bins[var][0], 
			xMax = control_plots_bins[var][-1], 
			selection = selectionSignalRegion 
		)
		histograms_muon_QCDControlRegion     = get_histograms_from_trees( 
			trees = [cr_mu_tree], 
			branch = var, 
			weightBranch = weightBranchControlRegion, 
			files = histogram_files_muon, 
			nBins = 20, 
			xMin = control_plots_bins[var][0], 
			xMax = control_plots_bins[var][-1], 
			selection = selectionSignalRegion 
		)

		# Combine the electron and muon histograms
		for sample in histograms_electron:
			h_electron = histograms_electron[sample][sr_e_tree]
			h_muon     = histograms_muon[sample][sr_mu_tree]
			h_qcd_electron = histograms_electron_QCDControlRegion[sample][cr_e_tree]
			h_qcd_muon     = histograms_muon_QCDControlRegion[sample][cr_mu_tree]

			signal_region_hists[sample] = h_electron + h_muon
			control_region_hists[sample] = h_qcd_electron + h_qcd_muon

		# NORMALISE TO LUMI
		prepare_histograms( 
			signal_region_hists, 
			scale_factor = measurement_config.luminosity_scale 
		)
		prepare_histograms( 
			control_region_hists, 
			scale_factor = measurement_config.luminosity_scale 
		)

		# BACKGROUND SUBTRACTION FOR QCD
		qcd_from_data = None
		qcd_from_data = clean_control_region( 
			control_region_hists,
			subtract = ['TTJet', 'V+Jets', 'SingleTop'] 
		)

		# DATA DRIVEN QCD
		nBins = signal_region_hists['QCD'].GetNbinsX()
		n, error = signal_region_hists['QCD'].integral(0,nBins+1,error=True)
		n_qcd_predicted_mc_signal = ufloat( n, error)

		n, error = control_region_hists['QCD'].integral(0,nBins+1,error=True)
		n_qcd_predicted_mc_control = ufloat( n, error)

		n, error = qcd_from_data.integral(0,nBins+1,error=True)
		n_qcd_control_region = ufloat( n, error)

		dataDrivenQCDScale = n_qcd_predicted_mc_signal / n_qcd_predicted_mc_control
		qcd_from_data.Scale( dataDrivenQCDScale.nominal_value )
		signal_region_hists['QCD'] = qcd_from_data

		# PLOTTING
		histograms_to_draw = []
		histogram_lables   = []
		histogram_colors   = []

		histograms_to_draw = [
			# signal_region_hists['data'], 
			# qcd_from_data,
			# signal_region_hists['V+Jets'],
			signal_region_hists['SingleTop'],
			signal_region_hists['ST_s'],
			signal_region_hists['ST_t'],
			signal_region_hists['ST_tW'],
			signal_region_hists['STbar_t'],
			signal_region_hists['STbar_tW'],
			# signal_region_hists['TTJet'],
		]
		histogram_lables   = [
			'data',
			# 'QCD', 
			# 'V+Jets', 
			# 'Single-Top', 
			'ST-s', 
			'ST-t', 
			'ST-tW', 
			'STbar-t', 
			'STbar-tW', 
			# samples_latex['TTJet'],
		]
		histogram_colors   = [
			colours['data'], 
			# colours['QCD'], 
			# colours['V+Jets'], 
			# colours['Single-Top'],
			colours['ST_s'],
			colours['ST_t'],
			colours['ST_tW'],
			colours['STbar_t'],
			colours['STbar_tW'], 
			# colours['TTJet'],
		]

		# Find maximum y of samples
		maxData = max( list(signal_region_hists['SingleTop'].y()) )
		y_limits = [0, maxData * 1.5]
		log_y = False
		if log_y:
			y_limits = [0.1, maxData * 100 ]

		# Lumi title of plots
		title_template = '%.1f fb$^{-1}$ (%d TeV)'
		title = title_template % ( measurement_config.new_luminosity/1000., measurement_config.centre_of_mass_energy )
		x_axis_title = '$%s$ [GeV]' % variables_latex[var]
		y_axis_title = 'Events/(%i GeV)' % binWidth(control_plots_bins[var])

		# More histogram settings to look semi decent
		histogram_properties = Histogram_properties()
		histogram_properties.name                   = var + '_with_ratio'
		histogram_properties.title                  = title
		histogram_properties.x_axis_title           = x_axis_title
		histogram_properties.y_axis_title           = y_axis_title
		histogram_properties.x_limits               = control_plots_bins[var]
		histogram_properties.y_limits               = y_limits
		histogram_properties.y_max_scale            = 1.4
		histogram_properties.xerr                   = None
		histogram_properties.emptybins              = True
		histogram_properties.additional_text        = channel_latex['combined']
		histogram_properties.legend_location        = ( 0.9, 0.73 )
		histogram_properties.cms_logo_location      = 'left'
		histogram_properties.preliminary            = True
		histogram_properties.set_log_y              = log_y
		histogram_properties.legend_color           = False
		histogram_properties.ratio_y_limits     	= [0.1,1.9]
		if log_y: histogram_properties.name += '_logy'
		loc = histogram_properties.legend_location
		histogram_properties.legend_location = ( loc[0], loc[1] + 0.05 )

		make_data_mc_comparison_plot( 
			histograms_to_draw, 
			histogram_lables, 
			histogram_colors,
			histogram_properties, 
			save_folder = output_folder,
			show_ratio = True, 
		)

		histogram_properties.name                   = var + '_ST_TTJet_Shape'
		if log_y: histogram_properties.name += '_logy'
		histogram_properties.y_axis_title           = 'Normalised Distribution'
		histogram_properties.y_limits               = [0,0.5]

		make_shape_comparison_plot( 
			shapes = [
				signal_region_hists['TTJet'],
				signal_region_hists['ST_t'],
				signal_region_hists['ST_tW'],
				signal_region_hists['ST_s'],
				signal_region_hists['STbar_t'],
				signal_region_hists['STbar_tW'], 
			],
			names = [
				samples_latex['TTJet'],
				'Single-Top t channel',
				'Single-Top tW channel',
				'Single-Top s channel',
				'Single-AntiTop t channel',
				'Single-AntiTop tW channel',
			],
			colours = [
				colours['TTJet'],
				colours['ST_t'],
				colours['ST_tW'],
				colours['ST_s'],
				colours['STbar_t'],
				colours['STbar_tW'],
			],
			histogram_properties = histogram_properties,
			save_folder = output_folder,
			fill_area = False,
			add_error_bars = False,
			save_as = ['pdf'],
			make_ratio = True, 
			alpha = 1,
		)
		print_output(signal_region_hists, output_folder, var, 'combined')
	return
Esempio n. 3
0
def plotHistograms(histogram_files, var_to_plot, output_folder):
    '''
	'''
    global measurement_config

    weightBranchSignalRegion = 'EventWeight * PUWeight * BJetWeight'
    weightBranchControlRegion = 'EventWeight'

    # Names of QCD regions to use
    qcd_data_region = ''
    qcd_data_region_electron = 'QCD non iso e+jets'
    qcd_data_region_muon = 'QCD non iso mu+jets 1p5to3'

    sr_e_tree = 'TTbar_plus_X_analysis/EPlusJets/Ref selection/AnalysisVariables'
    sr_mu_tree = 'TTbar_plus_X_analysis/MuPlusJets/Ref selection/AnalysisVariables'
    cr_e_tree = 'TTbar_plus_X_analysis/EPlusJets/{}/AnalysisVariables'.format(
        qcd_data_region_electron)
    cr_mu_tree = 'TTbar_plus_X_analysis/MuPlusJets/{}/AnalysisVariables'.format(
        qcd_data_region_muon)

    print "Trees : "
    print "\t {}".format(sr_e_tree)
    print "\t {}".format(sr_mu_tree)
    print "\t {}".format(cr_e_tree)
    print "\t {}".format(cr_mu_tree)

    histogram_files_electron = dict(histogram_files)
    histogram_files_electron['data'] = measurement_config.data_file_electron
    histogram_files_electron['QCD'] = measurement_config.electron_QCD_MC_trees

    histogram_files_muon = dict(histogram_files)
    histogram_files_muon['data'] = measurement_config.data_file_muon
    histogram_files_muon['QCD'] = measurement_config.muon_QCD_MC_trees

    signal_region_hists = {}
    control_region_hists = {}

    for var in var_to_plot:
        selectionSignalRegion = '{} >= 0'.format(var)

        # Print all the weights applied to this plot
        print "Variable : {}".format(var)
        print "Weight applied : {}".format(weightBranchSignalRegion)
        print "Selection applied : {}".format(selectionSignalRegion)

        histograms_electron = get_histograms_from_trees(
            trees=[sr_e_tree],
            branch=var,
            weightBranch=weightBranchSignalRegion +
            ' * ElectronEfficiencyCorrection',
            files=histogram_files_electron,
            nBins=20,
            xMin=control_plots_bins[var][0],
            xMax=control_plots_bins[var][-1],
            selection=selectionSignalRegion)
        histograms_muon = get_histograms_from_trees(
            trees=[sr_mu_tree],
            branch=var,
            weightBranch=weightBranchSignalRegion +
            ' * MuonEfficiencyCorrection',
            files=histogram_files_muon,
            nBins=20,
            xMin=control_plots_bins[var][0],
            xMax=control_plots_bins[var][-1],
            selection=selectionSignalRegion)
        histograms_electron_QCDControlRegion = get_histograms_from_trees(
            trees=[cr_e_tree],
            branch=var,
            weightBranch=weightBranchControlRegion,
            files=histogram_files_electron,
            nBins=20,
            xMin=control_plots_bins[var][0],
            xMax=control_plots_bins[var][-1],
            selection=selectionSignalRegion)
        histograms_muon_QCDControlRegion = get_histograms_from_trees(
            trees=[cr_mu_tree],
            branch=var,
            weightBranch=weightBranchControlRegion,
            files=histogram_files_muon,
            nBins=20,
            xMin=control_plots_bins[var][0],
            xMax=control_plots_bins[var][-1],
            selection=selectionSignalRegion)

        # Combine the electron and muon histograms
        for sample in histograms_electron:
            h_electron = histograms_electron[sample][sr_e_tree]
            h_muon = histograms_muon[sample][sr_mu_tree]
            h_qcd_electron = histograms_electron_QCDControlRegion[sample][
                cr_e_tree]
            h_qcd_muon = histograms_muon_QCDControlRegion[sample][cr_mu_tree]

            signal_region_hists[sample] = h_electron + h_muon
            control_region_hists[sample] = h_qcd_electron + h_qcd_muon

        # NORMALISE TO LUMI
        prepare_histograms(signal_region_hists,
                           scale_factor=measurement_config.luminosity_scale)
        prepare_histograms(control_region_hists,
                           scale_factor=measurement_config.luminosity_scale)

        # BACKGROUND SUBTRACTION FOR QCD
        qcd_from_data = None
        qcd_from_data = clean_control_region(
            control_region_hists, subtract=['TTJet', 'V+Jets', 'SingleTop'])

        # DATA DRIVEN QCD
        nBins = signal_region_hists['QCD'].GetNbinsX()
        n, error = signal_region_hists['QCD'].integral(0,
                                                       nBins + 1,
                                                       error=True)
        n_qcd_predicted_mc_signal = ufloat(n, error)

        n, error = control_region_hists['QCD'].integral(0,
                                                        nBins + 1,
                                                        error=True)
        n_qcd_predicted_mc_control = ufloat(n, error)

        n, error = qcd_from_data.integral(0, nBins + 1, error=True)
        n_qcd_control_region = ufloat(n, error)

        dataDrivenQCDScale = n_qcd_predicted_mc_signal / n_qcd_predicted_mc_control
        qcd_from_data.Scale(dataDrivenQCDScale.nominal_value)
        signal_region_hists['QCD'] = qcd_from_data

        # PLOTTING
        histograms_to_draw = []
        histogram_lables = []
        histogram_colors = []

        histograms_to_draw = [
            # signal_region_hists['data'],
            # qcd_from_data,
            # signal_region_hists['V+Jets'],
            signal_region_hists['SingleTop'],
            signal_region_hists['ST_s'],
            signal_region_hists['ST_t'],
            signal_region_hists['ST_tW'],
            signal_region_hists['STbar_t'],
            signal_region_hists['STbar_tW'],
            # signal_region_hists['TTJet'],
        ]
        histogram_lables = [
            'data',
            # 'QCD',
            # 'V+Jets',
            # 'Single-Top',
            'ST-s',
            'ST-t',
            'ST-tW',
            'STbar-t',
            'STbar-tW',
            # samples_latex['TTJet'],
        ]
        histogram_colors = [
            colours['data'],
            # colours['QCD'],
            # colours['V+Jets'],
            # colours['Single-Top'],
            colours['ST_s'],
            colours['ST_t'],
            colours['ST_tW'],
            colours['STbar_t'],
            colours['STbar_tW'],
            # colours['TTJet'],
        ]

        # Find maximum y of samples
        maxData = max(list(signal_region_hists['SingleTop'].y()))
        y_limits = [0, maxData * 1.5]
        log_y = False
        if log_y:
            y_limits = [0.1, maxData * 100]

        # Lumi title of plots
        title_template = '%.1f fb$^{-1}$ (%d TeV)'
        title = title_template % (measurement_config.new_luminosity / 1000.,
                                  measurement_config.centre_of_mass_energy)
        x_axis_title = '$%s$ [GeV]' % variables_latex[var]
        y_axis_title = 'Events/(%i GeV)' % binWidth(control_plots_bins[var])

        # More histogram settings to look semi decent
        histogram_properties = Histogram_properties()
        histogram_properties.name = var + '_with_ratio'
        histogram_properties.title = title
        histogram_properties.x_axis_title = x_axis_title
        histogram_properties.y_axis_title = y_axis_title
        histogram_properties.x_limits = control_plots_bins[var]
        histogram_properties.y_limits = y_limits
        histogram_properties.y_max_scale = 1.4
        histogram_properties.xerr = None
        histogram_properties.emptybins = True
        histogram_properties.additional_text = channel_latex['combined']
        histogram_properties.legend_location = (0.9, 0.73)
        histogram_properties.cms_logo_location = 'left'
        histogram_properties.preliminary = True
        histogram_properties.set_log_y = log_y
        histogram_properties.legend_color = False
        histogram_properties.ratio_y_limits = [0.1, 1.9]
        if log_y: histogram_properties.name += '_logy'
        loc = histogram_properties.legend_location
        histogram_properties.legend_location = (loc[0], loc[1] + 0.05)

        make_data_mc_comparison_plot(
            histograms_to_draw,
            histogram_lables,
            histogram_colors,
            histogram_properties,
            save_folder=output_folder,
            show_ratio=True,
        )

        histogram_properties.name = var + '_ST_TTJet_Shape'
        if log_y: histogram_properties.name += '_logy'
        histogram_properties.y_axis_title = 'Normalised Distribution'
        histogram_properties.y_limits = [0, 0.5]

        make_shape_comparison_plot(
            shapes=[
                signal_region_hists['TTJet'],
                signal_region_hists['ST_t'],
                signal_region_hists['ST_tW'],
                signal_region_hists['ST_s'],
                signal_region_hists['STbar_t'],
                signal_region_hists['STbar_tW'],
            ],
            names=[
                samples_latex['TTJet'],
                'Single-Top t channel',
                'Single-Top tW channel',
                'Single-Top s channel',
                'Single-AntiTop t channel',
                'Single-AntiTop tW channel',
            ],
            colours=[
                colours['TTJet'],
                colours['ST_t'],
                colours['ST_tW'],
                colours['ST_s'],
                colours['STbar_t'],
                colours['STbar_tW'],
            ],
            histogram_properties=histogram_properties,
            save_folder=output_folder,
            fill_area=False,
            add_error_bars=False,
            save_as=['pdf'],
            make_ratio=True,
            alpha=1,
        )
        print_output(signal_region_hists, output_folder, var, 'combined')
    return
    b_tag_bin = '0btag'
    control_region = 'topReconstruction/backgroundShape/mttbar_3jets_conversions_withMETAndAsymJets_' + b_tag_bin
    histograms = get_histograms_from_files([control_region], histogram_files)
    prepare_histograms(histograms, rebin=50)

    histograms_to_draw = [
        histograms['data'][control_region], histograms['QCD'][control_region],
        histograms['ZJets'][control_region],
        histograms['WJets'][control_region],
        histograms['SingleTop'][control_region],
        histograms['TTJet'][control_region]
    ]
    histogram_lables = [
        'data', 'QCD', samples_latex['ZJets'], samples_latex['WJets'],
        'Single-Top', samples_latex['TTJet']
    ]
    histogram_colors = ['black', 'yellow', 'blue', 'green', 'magenta', 'red']

    histogram_properties = Histogram_properties()
    histogram_properties.name = 'Mttbar'
    histogram_properties.title = 'CMS Preliminary, $\mathcal{L}$ = 5.1 fb$^{-1}$ at $\sqrt{s}$ = 7 TeV \n e+jets, $\geq$4 jets, ' + b_tag_bins_latex[
        b_tag_bin]
    histogram_properties.x_axis_title = '$m_{\mathrm{t}\\bar{\mathrm{t}}}$ [GeV]'
    histogram_properties.y_axis_title = 'Events/(50 GeV)'
    histogram_properties.x_limits = [300, 1800]
    histogram_properties.mc_error = 0.15
    histogram_properties.mc_errors_label = '$\mathrm{t}\\bar{\mathrm{t}}$ uncertainty'

    make_data_mc_comparison_plot(histograms_to_draw, histogram_lables,
                                 histogram_colors, histogram_properties)
def make_ttbarReco_plot(
    channel,
    x_axis_title,
    y_axis_title,
    signal_region_tree,
    control_region_tree,
    branchName,
    name_prefix,
    x_limits,
    nBins,
    use_qcd_data_region=False,
    y_limits=[],
    y_max_scale=1.2,
    rebin=1,
    legend_location=(0.98, 0.78),
    cms_logo_location='right',
    log_y=False,
    legend_color=False,
    ratio_y_limits=[0.3, 1.7],
    normalise=False,
):
    global output_folder, measurement_config, category, normalise_to_fit
    global preliminary, norm_variable, sum_bins, b_tag_bin, histogram_files

    # Input files, normalisations, tree/region names
    qcd_data_region = ''
    title = title_template % (measurement_config.new_luminosity / 1000.,
                              measurement_config.centre_of_mass_energy)
    normalisation = None
    if channel == 'electron':
        histogram_files['data'] = measurement_config.data_file_electron_trees
        histogram_files[
            'QCD'] = measurement_config.electron_QCD_MC_category_templates_trees[
                category]
        if normalise_to_fit:
            normalisation = normalisations_electron[norm_variable]
        if use_qcd_data_region:
            qcd_data_region = 'QCDConversions'
    if channel == 'muon':
        histogram_files['data'] = measurement_config.data_file_muon_trees
        histogram_files[
            'QCD'] = measurement_config.muon_QCD_MC_category_templates_trees[
                category]
        if normalise_to_fit:
            normalisation = normalisations_muon[norm_variable]
        if use_qcd_data_region:
            qcd_data_region = 'QCD non iso mu+jets ge3j'

    histograms = get_histograms_from_trees(
        trees=[signal_region_tree, control_region_tree],
        branch=branchName,
        weightBranch='1',
        files=histogram_files,
        nBins=nBins,
        xMin=x_limits[0],
        xMax=x_limits[-1])

    selection = 'SolutionCategory == 0'
    histogramsNoSolution = get_histograms_from_trees(
        trees=[signal_region_tree],
        branch=branchName,
        weightBranch='1',
        selection=selection,
        files=histogram_files,
        nBins=nBins,
        xMin=x_limits[0],
        xMax=x_limits[-1])

    selection = 'SolutionCategory == 1'
    histogramsCorrect = get_histograms_from_trees(trees=[signal_region_tree],
                                                  branch=branchName,
                                                  weightBranch='1',
                                                  selection=selection,
                                                  files=histogram_files,
                                                  nBins=nBins,
                                                  xMin=x_limits[0],
                                                  xMax=x_limits[-1])

    selection = 'SolutionCategory == 2'
    histogramsNotSL = get_histograms_from_trees(trees=[signal_region_tree],
                                                branch=branchName,
                                                weightBranch='1',
                                                selection=selection,
                                                files=histogram_files,
                                                nBins=nBins,
                                                xMin=x_limits[0],
                                                xMax=x_limits[-1])

    selection = 'SolutionCategory == 3'
    histogramsNotReco = get_histograms_from_trees(trees=[signal_region_tree],
                                                  branch=branchName,
                                                  weightBranch='1',
                                                  selection=selection,
                                                  files=histogram_files,
                                                  nBins=nBins,
                                                  xMin=x_limits[0],
                                                  xMax=x_limits[-1])

    selection = 'SolutionCategory > 3'
    histogramsWrong = get_histograms_from_trees(trees=[signal_region_tree],
                                                branch=branchName,
                                                weightBranch='1',
                                                selection=selection,
                                                files=histogram_files,
                                                nBins=nBins,
                                                xMin=x_limits[0],
                                                xMax=x_limits[-1])

    # Split histograms up into signal/control (?)
    signal_region_hists = {}
    inclusive_control_region_hists = {}
    for sample in histograms.keys():
        signal_region_hists[sample] = histograms[sample][signal_region_tree]
        if use_qcd_data_region:
            inclusive_control_region_hists[sample] = histograms[sample][
                control_region_tree]

    prepare_histograms(histograms,
                       rebin=1,
                       scale_factor=measurement_config.luminosity_scale)
    prepare_histograms(histogramsNoSolution,
                       rebin=1,
                       scale_factor=measurement_config.luminosity_scale)
    prepare_histograms(histogramsCorrect,
                       rebin=1,
                       scale_factor=measurement_config.luminosity_scale)
    prepare_histograms(histogramsNotSL,
                       rebin=1,
                       scale_factor=measurement_config.luminosity_scale)
    prepare_histograms(histogramsNotReco,
                       rebin=1,
                       scale_factor=measurement_config.luminosity_scale)
    prepare_histograms(histogramsWrong,
                       rebin=1,
                       scale_factor=measurement_config.luminosity_scale)

    qcd_from_data = signal_region_hists['QCD']

    # Which histograms to draw, and properties
    histograms_to_draw = [
        signal_region_hists['data'], qcd_from_data,
        signal_region_hists['V+Jets'], signal_region_hists['SingleTop'],
        histogramsNoSolution['TTJet'][signal_region_tree],
        histogramsNotSL['TTJet'][signal_region_tree],
        histogramsNotReco['TTJet'][signal_region_tree],
        histogramsWrong['TTJet'][signal_region_tree],
        histogramsCorrect['TTJet'][signal_region_tree]
    ]
    histogram_lables = [
        'data',
        'QCD',
        'V+Jets',
        'Single-Top',
        samples_latex['TTJet'] + ' - no solution',
        samples_latex['TTJet'] + ' - not SL',
        samples_latex['TTJet'] + ' - not reconstructible',
        samples_latex['TTJet'] + ' - wrong reco',
        samples_latex['TTJet'] + ' - correct',
    ]
    histogram_colors = [
        'black', 'yellow', 'green', 'magenta', 'black', 'burlywood',
        'chartreuse', 'blue', 'red'
    ]

    histogram_properties = Histogram_properties()
    histogram_properties.name = name_prefix + b_tag_bin
    if category != 'central':
        histogram_properties.name += '_' + category
    histogram_properties.title = title
    histogram_properties.x_axis_title = x_axis_title
    histogram_properties.y_axis_title = y_axis_title
    histogram_properties.x_limits = x_limits
    histogram_properties.y_limits = y_limits
    histogram_properties.y_max_scale = y_max_scale
    histogram_properties.xerr = None
    # workaround for rootpy issue #638
    histogram_properties.emptybins = True
    if b_tag_bin:
        histogram_properties.additional_text = channel_latex[
            channel] + ', ' + b_tag_bins_latex[b_tag_bin]
    else:
        histogram_properties.additional_text = channel_latex[channel]
    histogram_properties.legend_location = legend_location
    histogram_properties.cms_logo_location = cms_logo_location
    histogram_properties.preliminary = preliminary
    histogram_properties.set_log_y = log_y
    histogram_properties.legend_color = legend_color
    if ratio_y_limits:
        histogram_properties.ratio_y_limits = ratio_y_limits

    if normalise_to_fit:
        histogram_properties.mc_error = get_normalisation_error(normalisation)
        histogram_properties.mc_errors_label = 'fit uncertainty'
    else:
        histogram_properties.mc_error = mc_uncertainty
        histogram_properties.mc_errors_label = 'MC unc.'

    # Actually draw histograms
    make_data_mc_comparison_plot(
        histograms_to_draw,
        histogram_lables,
        histogram_colors,
        histogram_properties,
        save_folder=output_folder,
        show_ratio=False,
        normalise=normalise,
    )
    histogram_properties.name += '_with_ratio'
    loc = histogram_properties.legend_location
    # adjust legend location as it is relative to canvas!
    histogram_properties.legend_location = (loc[0], loc[1] + 0.05)
    make_data_mc_comparison_plot(
        histograms_to_draw,
        histogram_lables,
        histogram_colors,
        histogram_properties,
        save_folder=output_folder,
        show_ratio=True,
        normalise=normalise,
    )
Esempio n. 6
0
h2.linewidth = 0
h2.legendstyle = 'F'

stack = HistStack()
stack.Add(h1)
stack.Add(h2)

# plot with matplotlib
plot_with_plotting_script = True

if plot_with_plotting_script:
	properties = Histogram_properties()
	properties.name = 'matplotlib_hist'
	properties.x_axis_title = 'Mass'
	properties.y_axis_title = 'Events'
	make_data_mc_comparison_plot( [h3, h1, h2], ['data', 'background', 'signal'], ['black', 'green', 'red'], properties )
	
	properties.name += '_with_ratio'
	make_data_mc_comparison_plot( [h3, h1, h2], ['data', 'background', 'signal'], ['black', 'green', 'red'], properties, show_ratio = True )

	properties.name = 'matplotlib_hist_comparison'
	properties.y_limits = [0, 0.4]
	make_control_region_comparison( h1, h2, 'background', 'signal', properties )

else:
	fig = plt.figure(figsize=(14, 10), dpi=300)#, facecolor='white')
	axes = plt.axes()
	axes.xaxis.set_minor_locator(AutoMinorLocator())
	axes.yaxis.set_minor_locator(AutoMinorLocator())
	# axes.yaxis.set_major_locator(MultipleLocator(20))
	axes.tick_params(which='major', labelsize=15, length=8)
Esempio n. 7
0
 qcd_predicted_mc = histograms['QCD'][control_region]
 
 histograms_to_draw = [histograms['data'][control_region], qcd_predicted_mc,
                       histograms['V+Jets'][control_region],
                       histograms['SingleTop'][control_region], histograms['TTJet'][control_region]]
 histogram_lables = ['data', 'QCD', 'V+Jets', 'Single-Top', samples_latex['TTJet']]
 histogram_colors = ['black', 'yellow', 'green', 'magenta', 'red']
 
 histogram_properties = Histogram_properties()
 histogram_properties.name = 'EPlusJets_BJets_invmass_' + b_tag_bin
 histogram_properties.title = e_title + ', ' + b_tag_bins_latex[b_tag_bin]
 histogram_properties.x_axis_title = '$M_{\mathrm{b}\\bar{\mathrm{b}}}$'
 histogram_properties.y_axis_title = 'Normalised events/(20 GeV)'
 histogram_properties.x_limits = [0, 800]
 histogram_properties.mc_error = 0.15
 make_data_mc_comparison_plot(histograms_to_draw, histogram_lables, histogram_colors,
                              histogram_properties, save_folder = output_folder, show_ratio = False)
 histogram_properties.name += '_with_ratio'
 make_data_mc_comparison_plot(histograms_to_draw, histogram_lables, histogram_colors,
                              histogram_properties, save_folder = output_folder, show_ratio = True)
 
 #bjet invariant mass
 b_tag_bin = '3btags'
 control_region = 'TTbar_plus_X_analysis/EPlusJets/Ref selection/bjet_invariant_mass_' + b_tag_bin
 
 histograms = get_histograms_from_files([control_region], histogram_files)
 prepare_histograms(histograms, rebin=10, scale_factor = measurement_config.luminosity_scale)
 
 qcd_predicted_mc = histograms['QCD'][control_region]
 
 histograms_to_draw = [histograms['data'][control_region], qcd_predicted_mc,
                       histograms['V+Jets'][control_region],
h2.linewidth = 0
h2.legendstyle = "F"

stack = HistStack()
stack.Add(h1)
stack.Add(h2)

# plot with matplotlib
plot_with_plotting_script = True

if plot_with_plotting_script:
    properties = Histogram_properties()
    properties.name = "matplotlib_hist"
    properties.x_axis_title = "Mass"
    properties.y_axis_title = "Events"
    make_data_mc_comparison_plot([h3, h1, h2], ["data", "background", "signal"], ["black", "green", "red"], properties)

    properties.name += "_with_ratio"
    make_data_mc_comparison_plot(
        [h3, h1, h2], ["data", "background", "signal"], ["black", "green", "red"], properties, show_ratio=True
    )

    properties.name = "matplotlib_hist_comparison"
    properties.y_limits = [0, 0.4]
    make_control_region_comparison(h1, h2, "background", "signal", properties)

else:
    fig = plt.figure(figsize=(14, 10), dpi=300)  # , facecolor='white')
    axes = plt.axes()
    axes.xaxis.set_minor_locator(AutoMinorLocator())
    axes.yaxis.set_minor_locator(AutoMinorLocator())
def drawHistograms( dictionaryOfHistograms, uncertaintyBand, config, channel, variable ) :
    histograms_to_draw = [
        dictionaryOfHistograms['Data'],
        dictionaryOfHistograms['QCD'],
        dictionaryOfHistograms['V+Jets'],
        dictionaryOfHistograms['SingleTop'],
        dictionaryOfHistograms['TTJet'],
    ]

    histogram_lables   = [
        'data',
        'QCD', 
        'V+jets', 
        'single-top', 
        samples_latex['TTJet'],
    ]

    histogram_colors   = [
        colours['data'], 
        colours['QCD'], 
        colours['V+Jets'], 
        colours['Single-Top'], 
        colours['TTJet'],
    ]


    # Find maximum y of samples
    maxData = max( list(histograms_to_draw[0].y()) )
    y_limits = [0, maxData * 1.4]

    # More histogram settings to look semi decent
    histogram_properties = Histogram_properties()
    histogram_properties.name                   = '{channel}_{variable}'.format(channel = channel, variable=variable)
    histogram_properties.title                  = '$%.1f$ fb$^{-1}$ (%d TeV)' % ( config.new_luminosity/1000., config.centre_of_mass_energy )
    histogram_properties.x_axis_title           = variables_latex[variable]
    histogram_properties.y_axis_title           = 'Events'
    if variable in ['HT', 'ST', 'MET', 'WPT', 'lepton_pt']:
        histogram_properties.y_axis_title       = 'Events / {binWidth} GeV'.format( binWidth=binWidth )
        histogram_properties.x_axis_title           = '{variable} (GeV)'.format( variable = variables_latex[variable] )


    histogram_properties.x_limits               = [ reco_bin_edges[0], reco_bin_edges[-1] ]
    histogram_properties.y_limits               = y_limits
    histogram_properties.y_max_scale            = 1.3
    histogram_properties.xerr                   = None
    # workaround for rootpy issue #638
    histogram_properties.emptybins              = True
    histogram_properties.additional_text        = channel_latex[channel.lower()]
    histogram_properties.legend_location        = ( 0.9, 0.73 )
    histogram_properties.cms_logo_location      = 'left'
    histogram_properties.preliminary            = True
    # histogram_properties.preliminary            = False
    histogram_properties.set_log_y              = False
    histogram_properties.legend_color           = False
    histogram_properties.ratio_y_limits     = [0.5, 1.5]

    # Draw histogram with ratio plot
    histogram_properties.name += '_with_ratio'
    loc = histogram_properties.legend_location
    # adjust legend location as it is relative to canvas!
    histogram_properties.legend_location = ( loc[0], loc[1] + 0.05 )

    make_data_mc_comparison_plot( 
        histograms_to_draw, 
        histogram_lables, 
        histogram_colors,
        histogram_properties, 
        save_folder = 'plots/control_plots_with_systematic/',
        show_ratio = True, 
        normalise = False,
        systematics_for_ratio = uncertaintyBand,
        systematics_for_plot = uncertaintyBand,
    )

    histogram_properties.set_log_y = True
    histogram_properties.y_limits = [0.1, y_limits[-1]*100 ]
    histogram_properties.legend_location = ( 0.9, 0.9 )
    histogram_properties.name += '_logY'
    make_data_mc_comparison_plot( 
        histograms_to_draw, 
        histogram_lables, 
        histogram_colors,
        histogram_properties, 
        save_folder = 'plots/control_plots_with_systematic/logY/',
        show_ratio = True, 
        normalise = False,
        systematics_for_ratio = uncertaintyBand,
        systematics_for_plot = uncertaintyBand,
    )    
def plot_fit_variable(histograms,
                      fit_variable,
                      variable,
                      bin_range,
                      fit_variable_distribution,
                      qcd_fit_variable_distribution,
                      title,
                      save_path,
                      channel='electron'):
    global fit_variable_properties, b_tag_bin, save_as, b_tag_bin_ctl
    histograms_ = deepcopy(histograms)
    mc_uncertainty = 0.10
    prepare_histograms(histograms_,
                       rebin=fit_variable_properties[fit_variable]['rebin'],
                       scale_factor=measurement_config.luminosity_scale)

    ######################################
    # plot the control regions as they are
    ######################################
    histogram_properties = Histogram_properties()
    histogram_properties.x_axis_title = fit_variable_properties[fit_variable][
        'x-title']
    histogram_properties.y_axis_title = fit_variable_properties[fit_variable][
        'y-title']
    histogram_properties.x_limits = [
        fit_variable_properties[fit_variable]['min'],
        fit_variable_properties[fit_variable]['max']
    ]
    histogram_properties.y_max_scale = 2

    histogram_lables = [
        'data', 'QCD', 'V+Jets', 'Single-Top', samples_latex['TTJet']
    ]
    histogram_colors = ['black', 'yellow', 'green', 'magenta', 'red']
    #     qcd_from_data = histograms_['data'][qcd_fit_variable_distribution].Clone()
    # clean against other processes
    histograms_for_cleaning = {
        'data': histograms_['data'][qcd_fit_variable_distribution],
        'V+Jets': histograms_['V+Jets'][qcd_fit_variable_distribution],
        'SingleTop': histograms_['SingleTop'][qcd_fit_variable_distribution],
        'TTJet': histograms_['TTJet'][qcd_fit_variable_distribution]
    }
    qcd_from_data = clean_control_region(
        histograms_for_cleaning, subtract=['TTJet', 'V+Jets', 'SingleTop'])

    histograms_to_draw = [
        histograms_['data'][qcd_fit_variable_distribution],
        histograms_['QCD'][qcd_fit_variable_distribution],
        histograms_['V+Jets'][qcd_fit_variable_distribution],
        histograms_['SingleTop'][qcd_fit_variable_distribution],
        histograms_['TTJet'][qcd_fit_variable_distribution]
    ]

    histogram_properties.title = title
    histogram_properties.additional_text = channel_latex[
        channel] + ', ' + b_tag_bins_latex[b_tag_bin_ctl]
    histogram_properties.name = variable + '_' + bin_range + '_' + fit_variable + '_%s_QCDConversions' % b_tag_bin_ctl
    make_data_mc_comparison_plot(
        histograms_to_draw,
        histogram_lables,
        histogram_colors,
        histogram_properties,
        save_folder=save_path + '/qcd/',
        show_ratio=False,
        save_as=save_as,
    )
    ######################################
    # plot QCD against data control region with TTJet, SingleTop and V+Jets removed
    ######################################
    histograms_to_draw = [
        qcd_from_data,
        histograms_['QCD'][qcd_fit_variable_distribution],
    ]
    histogram_properties.y_max_scale = 1.5
    histogram_properties.name = variable + '_' + bin_range + '_' + fit_variable + '_%s_QCDConversions_subtracted' % b_tag_bin_ctl
    make_data_mc_comparison_plot(
        histograms_to_draw,
        histogram_lables=['data', 'QCD'],
        histogram_colors=['black', 'yellow'],
        histogram_properties=histogram_properties,
        save_folder=save_path + '/qcd/',
        show_ratio=False,
        save_as=save_as,
    )
    ######################################
    # plot signal region
    ######################################
    # scale QCD to predicted
    n_qcd_predicted_mc = histograms_['QCD'][
        fit_variable_distribution].Integral()
    n_qcd_fit_variable_distribution = qcd_from_data.Integral()
    if not n_qcd_fit_variable_distribution == 0:
        qcd_from_data.Scale(1.0 / n_qcd_fit_variable_distribution *
                            n_qcd_predicted_mc)

    histograms_to_draw = [
        histograms_['data'][fit_variable_distribution], qcd_from_data,
        histograms_['V+Jets'][fit_variable_distribution],
        histograms_['SingleTop'][fit_variable_distribution],
        histograms_['TTJet'][fit_variable_distribution]
    ]

    histogram_properties.additional_text = channel_latex[
        channel] + ', ' + b_tag_bins_latex[b_tag_bin]
    histogram_properties.name = variable + '_' + bin_range + '_' + fit_variable + '_' + b_tag_bin
    make_data_mc_comparison_plot(
        histograms_to_draw,
        histogram_lables,
        histogram_colors,
        histogram_properties,
        save_folder=save_path,
        show_ratio=False,
        save_as=save_as,
    )
    ######################################
    # plot templates
    ######################################
    histogram_properties.mc_error = mc_uncertainty
    histogram_properties.mc_errors_label = '$\mathrm{t}\\bar{\mathrm{t}}$ uncertainty'
    histogram_properties.name = variable + '_' + bin_range + '_' + fit_variable + '_' + b_tag_bin + '_templates'
    histogram_properties.y_max_scale = 2
    # change histogram order for better visibility
    histograms_to_draw = [
        histograms_['TTJet'][fit_variable_distribution] +
        histograms_['SingleTop'][fit_variable_distribution],
        histograms_['TTJet'][fit_variable_distribution],
        histograms_['SingleTop'][fit_variable_distribution],
        histograms_['V+Jets'][fit_variable_distribution], qcd_from_data
    ]
    histogram_lables = [
        'QCD', 'V+Jets', 'Single-Top', samples_latex['TTJet'],
        samples_latex['TTJet'] + ' + ' + 'Single-Top'
    ]
    histogram_lables.reverse()
    # change QCD color to orange for better visibility
    histogram_colors = ['orange', 'green', 'magenta', 'red', 'black']
    histogram_colors.reverse()
    # plot template
    make_shape_comparison_plot(
        shapes=histograms_to_draw,
        names=histogram_lables,
        colours=histogram_colors,
        histogram_properties=histogram_properties,
        fill_area=False,
        alpha=1,
        save_folder=save_path,
        save_as=save_as,
    )
                    elif template == 'data':
                        histograms[template].Scale( initial_values_[template][whichBin][0])
                    
                    pass
                
                histogramsToDraw = [    histograms['data'],
                                        histograms['QCD'],
                                        histograms['V+Jets'],
                                        histograms['SingleTop'],
                                        histograms['TTJet']
                                    ]
                
                histogram_lables = ['data', 'QCD', 'V+Jets', 'Single-Top', 'TTJet']
                histogram_colors = ['black', 'yellow', 'green', 'magenta', 'red']
                histogram_properties = Histogram_properties()
                
                histogram_properties.name = 'Closure_'+'simple'+'_'+fitVariable+'_'+variable+'_'+str(whichBin)
                histogram_properties.x_axis_title = fit_variable_properties[fitVariable]['x-title']
                histogram_properties.y_axis_title = fit_variable_properties[fitVariable]['y-title']
                
                make_data_mc_comparison_plot( histogramsToDraw, histogram_lables, histogram_colors,
                                             histogram_properties,
                                             save_folder = 'data/closure_test/'+test+'/absolute_eta_M3_angle_bl/8TeV/',
                                             show_ratio = False,
                                             save_as = ['pdf'],
                                             )
                pass
            pass
        pass
    pass
            'TTJet': path_to_files + 'TTJet_%spb_PFElectron_%sPF2PATJets_PFMET.root' % (str(lumi), pfmuon),
            'data' : path_to_files + '%s_%spb_PFElectron_%sPF2PATJets_PFMET.root' % (data, str(lumi), pfmuon),
            'WJets': path_to_files + 'WJetsToLNu_%spb_PFElectron_%sPF2PATJets_PFMET.root' % (str(lumi), pfmuon),
            'ZJets': path_to_files + 'DYJetsToLL_%spb_PFElectron_%sPF2PATJets_PFMET.root' % (str(lumi), pfmuon),
            'QCD': path_to_files + 'QCD_%spb_PFElectron_%sPF2PATJets_PFMET.root' % (str(lumi), pfmuon),
            'SingleTop': path_to_files + 'SingleTop_%spb_PFElectron_%sPF2PATJets_PFMET.root' % (str(lumi), pfmuon),
                       }
    
    b_tag_bin = '0btag'
    control_region = 'topReconstruction/backgroundShape/mttbar_3jets_conversions_withMETAndAsymJets_' + b_tag_bin
    histograms = get_histograms_from_files([control_region], histogram_files)
    prepare_histograms(histograms, rebin=50)
    
    histograms_to_draw = [histograms['data'][control_region], histograms['QCD'][control_region], 
                          histograms['ZJets'][control_region], histograms['WJets'][control_region], 
                          histograms['SingleTop'][control_region], histograms['TTJet'][control_region]]
    histogram_lables = ['data', 'QCD', samples_latex['ZJets'], samples_latex['WJets'], 'Single-Top', samples_latex['TTJet']]
    histogram_colors = ['black', 'yellow', 'blue', 'green', 'magenta', 'red']
    
    histogram_properties = Histogram_properties()
    histogram_properties.name = 'Mttbar'
    histogram_properties.title = 'CMS Preliminary, $\mathcal{L}$ = 5.1 fb$^{-1}$ at $\sqrt{s}$ = 7 TeV \n e+jets, $\geq$4 jets, ' + b_tag_bins_latex[b_tag_bin]
    histogram_properties.x_axis_title = '$m_{\mathrm{t}\\bar{\mathrm{t}}}$ [GeV]'
    histogram_properties.y_axis_title = 'Events/(50 GeV)'
    histogram_properties.x_limits=[300,1800]
    histogram_properties.mc_error = 0.15
    histogram_properties.mc_errors_label = '$\mathrm{t}\\bar{\mathrm{t}}$ uncertainty'
    
    make_data_mc_comparison_plot(histograms_to_draw, histogram_lables, histogram_colors, 
                                 histogram_properties)
def plot_fit_variable( histograms, fit_variable, variable, bin_range,
                      fit_variable_distribution, qcd_fit_variable_distribution,
                      title, save_path, channel = 'electron' ):
    global fit_variable_properties, b_tag_bin, save_as, b_tag_bin_ctl
    histograms_ = deepcopy( histograms )
    mc_uncertainty = 0.10
    prepare_histograms( histograms_, rebin = fit_variable_properties[fit_variable]['rebin'], scale_factor = measurement_config.luminosity_scale )
    
    ######################################
    # plot the control regions as they are
    ######################################
    histogram_properties = Histogram_properties()
    histogram_properties.x_axis_title = fit_variable_properties[fit_variable]['x-title']
    histogram_properties.y_axis_title = fit_variable_properties[fit_variable]['y-title']
    histogram_properties.x_limits = [fit_variable_properties[fit_variable]['min'], fit_variable_properties[fit_variable]['max']]
    histogram_properties.y_max_scale = 2

    histogram_lables = ['data', 'QCD', 'V+Jets', 'Single-Top', samples_latex['TTJet']]
    histogram_colors = ['black', 'yellow', 'green', 'magenta', 'red']
#     qcd_from_data = histograms_['data'][qcd_fit_variable_distribution].Clone()
    # clean against other processes
    histograms_for_cleaning = {'data':histograms_['data'][qcd_fit_variable_distribution],
                               'V+Jets':histograms_['V+Jets'][qcd_fit_variable_distribution],
                               'SingleTop':histograms_['SingleTop'][qcd_fit_variable_distribution],
                               'TTJet':histograms_['TTJet'][qcd_fit_variable_distribution]}
    qcd_from_data = clean_control_region( histograms_for_cleaning, subtract = ['TTJet', 'V+Jets', 'SingleTop'] )
    
    histograms_to_draw = [histograms_['data'][qcd_fit_variable_distribution],
                          histograms_['QCD'][qcd_fit_variable_distribution],
                          histograms_['V+Jets'][qcd_fit_variable_distribution],
                          histograms_['SingleTop'][qcd_fit_variable_distribution],
                          histograms_['TTJet'][qcd_fit_variable_distribution]]
    
    histogram_properties.title = title
    histogram_properties.additional_text = channel_latex[channel] + ', ' + b_tag_bins_latex[b_tag_bin_ctl]
    histogram_properties.name = variable + '_' + bin_range + '_' + fit_variable + '_%s_QCDConversions' % b_tag_bin_ctl
    make_data_mc_comparison_plot( histograms_to_draw, histogram_lables, histogram_colors,
                                 histogram_properties,
                                 save_folder = save_path + '/qcd/',
                                 show_ratio = False,
                                 save_as = save_as,
                                 )
    ######################################
    # plot QCD against data control region with TTJet, SingleTop and V+Jets removed
    ######################################
    histograms_to_draw = [qcd_from_data,
                          histograms_['QCD'][qcd_fit_variable_distribution],
                          ]
    histogram_properties.y_max_scale = 1.5
    histogram_properties.name = variable + '_' + bin_range + '_' + fit_variable + '_%s_QCDConversions_subtracted' % b_tag_bin_ctl
    make_data_mc_comparison_plot( histograms_to_draw,
                                  histogram_lables = ['data', 'QCD'],
                                  histogram_colors = ['black', 'yellow'],
                                  histogram_properties = histogram_properties,
                                  save_folder = save_path + '/qcd/',
                                  show_ratio = False,
                                  save_as = save_as,
                                  )
    ######################################
    # plot signal region
    ######################################
    # scale QCD to predicted
    n_qcd_predicted_mc = histograms_['QCD'][fit_variable_distribution].Integral()
    n_qcd_fit_variable_distribution = qcd_from_data.Integral()
    if not n_qcd_fit_variable_distribution == 0:
        qcd_from_data.Scale( 1.0 / n_qcd_fit_variable_distribution * n_qcd_predicted_mc )
    
    histograms_to_draw = [histograms_['data'][fit_variable_distribution], qcd_from_data,
                          histograms_['V+Jets'][fit_variable_distribution],
                          histograms_['SingleTop'][fit_variable_distribution],
                          histograms_['TTJet'][fit_variable_distribution]]
    
    histogram_properties.additional_text = channel_latex[channel] + ', ' + b_tag_bins_latex[b_tag_bin]
    histogram_properties.name = variable + '_' + bin_range + '_' + fit_variable + '_' + b_tag_bin
    make_data_mc_comparison_plot( histograms_to_draw,
                                  histogram_lables,
                                  histogram_colors,
                                  histogram_properties,
                                  save_folder = save_path,
                                  show_ratio = False,
                                  save_as = save_as,
                                 )
    ######################################
    # plot templates
    ######################################
    histogram_properties.mc_error = mc_uncertainty
    histogram_properties.mc_errors_label = '$\mathrm{t}\\bar{\mathrm{t}}$ uncertainty'
    histogram_properties.name = variable + '_' + bin_range + '_' + fit_variable + '_' + b_tag_bin + '_templates'
    histogram_properties.y_max_scale = 2
    # change histogram order for better visibility
    histograms_to_draw = [histograms_['TTJet'][fit_variable_distribution] + histograms_['SingleTop'][fit_variable_distribution],
                          histograms_['TTJet'][fit_variable_distribution],
                          histograms_['SingleTop'][fit_variable_distribution],
                          histograms_['V+Jets'][fit_variable_distribution],
                          qcd_from_data]
    histogram_lables = ['QCD', 'V+Jets', 'Single-Top', samples_latex['TTJet'], samples_latex['TTJet'] + ' + ' + 'Single-Top']
    histogram_lables.reverse()
    # change QCD color to orange for better visibility
    histogram_colors = ['orange', 'green', 'magenta', 'red', 'black']
    histogram_colors.reverse()
    # plot template
    make_shape_comparison_plot( shapes = histograms_to_draw,
                                names = histogram_lables,
                                colours = histogram_colors,
                                histogram_properties = histogram_properties,
                                fill_area = False,
                                alpha = 1,
                                save_folder = save_path,
                                save_as = save_as,
                                )
def make_ttbarReco_plot( channel, x_axis_title, y_axis_title,
              signal_region_tree,
              control_region_tree,
              branchName,
              name_prefix, x_limits, nBins,
              use_qcd_data_region = False,
              y_limits = [],
              y_max_scale = 1.2,
              rebin = 1,
              legend_location = ( 0.98, 0.78 ), cms_logo_location = 'right',
              log_y = False,
              legend_color = False,
              ratio_y_limits = [0.3, 1.7],
              normalise = False,
              ):
    global output_folder, measurement_config, category, normalise_to_fit
    global preliminary, norm_variable, sum_bins, b_tag_bin, histogram_files

    # Input files, normalisations, tree/region names
    qcd_data_region = ''
    title = title_template % ( measurement_config.new_luminosity / 1000., measurement_config.centre_of_mass_energy )
    normalisation = None
    if channel == 'electron':
        histogram_files['data'] = measurement_config.data_file_electron_trees
        histogram_files['QCD'] = measurement_config.electron_QCD_MC_category_templates_trees[category]
        if normalise_to_fit:
            normalisation = normalisations_electron[norm_variable]
        if use_qcd_data_region:
            qcd_data_region = 'QCDConversions'
    if channel == 'muon':
        histogram_files['data'] = measurement_config.data_file_muon_trees
        histogram_files['QCD'] = measurement_config.muon_QCD_MC_category_templates_trees[category]
        if normalise_to_fit:
            normalisation = normalisations_muon[norm_variable]
        if use_qcd_data_region:
            qcd_data_region = 'QCD non iso mu+jets ge3j'

    histograms = get_histograms_from_trees( trees = [signal_region_tree, control_region_tree], branch = branchName, weightBranch = '1', files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1] )

    selection = 'SolutionCategory == 0'
    histogramsNoSolution = get_histograms_from_trees( trees = [signal_region_tree], branch = branchName, weightBranch = '1', selection = selection, files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1] )

    selection = 'SolutionCategory == 1'
    histogramsCorrect = get_histograms_from_trees( trees = [signal_region_tree], branch = branchName, weightBranch = '1', selection = selection, files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1] )

    selection = 'SolutionCategory == 2'
    histogramsNotSL = get_histograms_from_trees( trees = [signal_region_tree], branch = branchName, weightBranch = '1', selection = selection, files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1] )

    selection = 'SolutionCategory == 3'
    histogramsNotReco = get_histograms_from_trees( trees = [signal_region_tree], branch = branchName, weightBranch = '1', selection = selection, files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1] )

    selection = 'SolutionCategory > 3'
    histogramsWrong = get_histograms_from_trees( trees = [signal_region_tree], branch = branchName, weightBranch = '1', selection = selection, files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1] )

    # Split histograms up into signal/control (?)
    signal_region_hists = {}
    inclusive_control_region_hists = {}
    for sample in histograms.keys():
        signal_region_hists[sample] = histograms[sample][signal_region_tree]
        if use_qcd_data_region:
            inclusive_control_region_hists[sample] = histograms[sample][control_region_tree]

    prepare_histograms( histograms, rebin = 1, scale_factor = measurement_config.luminosity_scale )
    prepare_histograms( histogramsNoSolution, rebin = 1, scale_factor = measurement_config.luminosity_scale )
    prepare_histograms( histogramsCorrect, rebin = 1, scale_factor = measurement_config.luminosity_scale )
    prepare_histograms( histogramsNotSL, rebin = 1, scale_factor = measurement_config.luminosity_scale )
    prepare_histograms( histogramsNotReco, rebin = 1, scale_factor = measurement_config.luminosity_scale )
    prepare_histograms( histogramsWrong, rebin = 1, scale_factor = measurement_config.luminosity_scale )

    qcd_from_data = signal_region_hists['QCD']

    # Which histograms to draw, and properties
    histograms_to_draw = [signal_region_hists['data'], qcd_from_data,
                          signal_region_hists['V+Jets'],
                          signal_region_hists['SingleTop'],
                          histogramsNoSolution['TTJet'][signal_region_tree],
                          histogramsNotSL['TTJet'][signal_region_tree],
                          histogramsNotReco['TTJet'][signal_region_tree],
                          histogramsWrong['TTJet'][signal_region_tree],
                          histogramsCorrect['TTJet'][signal_region_tree]
                          ]
    histogram_lables = ['data', 'QCD', 'V+Jets', 'Single-Top', 
                        samples_latex['TTJet'] + ' - no solution',
                        samples_latex['TTJet'] + ' - not SL',
                        samples_latex['TTJet'] + ' - not reconstructible',
                        samples_latex['TTJet'] + ' - wrong reco',
                        samples_latex['TTJet'] + ' - correct',
                        ]
    histogram_colors = ['black', 'yellow', 'green', 'magenta',
                        'black',
                        'burlywood',
                        'chartreuse',
                        'blue',
                        'red'
                        ]

    histogram_properties = Histogram_properties()
    histogram_properties.name = name_prefix + b_tag_bin
    if category != 'central':
        histogram_properties.name += '_' + category
    histogram_properties.title = title
    histogram_properties.x_axis_title = x_axis_title
    histogram_properties.y_axis_title = y_axis_title
    histogram_properties.x_limits = x_limits
    histogram_properties.y_limits = y_limits
    histogram_properties.y_max_scale = y_max_scale
    histogram_properties.xerr = None
    # workaround for rootpy issue #638
    histogram_properties.emptybins = True
    if b_tag_bin:
        histogram_properties.additional_text = channel_latex[channel] + ', ' + b_tag_bins_latex[b_tag_bin]
    else:
        histogram_properties.additional_text = channel_latex[channel]
    histogram_properties.legend_location = legend_location
    histogram_properties.cms_logo_location = cms_logo_location
    histogram_properties.preliminary = preliminary
    histogram_properties.set_log_y = log_y
    histogram_properties.legend_color = legend_color
    if ratio_y_limits:
        histogram_properties.ratio_y_limits = ratio_y_limits

    if normalise_to_fit:
        histogram_properties.mc_error = get_normalisation_error( normalisation )
        histogram_properties.mc_errors_label = 'fit uncertainty'
    else:
        histogram_properties.mc_error = mc_uncertainty
        histogram_properties.mc_errors_label = 'MC unc.'

    # Actually draw histograms
    make_data_mc_comparison_plot( histograms_to_draw, histogram_lables, histogram_colors,
                                 histogram_properties, save_folder = output_folder,
                                 show_ratio = False, normalise = normalise,
                                 )
    histogram_properties.name += '_with_ratio'
    loc = histogram_properties.legend_location
    # adjust legend location as it is relative to canvas!
    histogram_properties.legend_location = ( loc[0], loc[1] + 0.05 )
    make_data_mc_comparison_plot( histograms_to_draw, histogram_lables, histogram_colors,
                                 histogram_properties, save_folder = output_folder,
                                 show_ratio = True, normalise = normalise,
                                 )