Esempio n. 1
0
def main():
    divisors2 = euler.count_divisors(3)
    i = 4
    while True:
        num = i * (i - 1) // 2
        divisors1 = divisors2
        divisors2 = euler.count_divisors(i)
        i += 1
        if divisors1 * divisors2 > LIMIT:
            if euler.count_divisors(num) > LIMIT:
                return num
Esempio n. 2
0
 def test_count_divisors(self):
     self.assertEqual(euler.count_divisors(28), 6)
     #self.assertEqual(euler.count_divisors(1), 1)
     self.assertEqual(euler.count_divisors(2), 2)
     self.assertEqual(euler.count_divisors(3), 2)
     self.assertEqual(euler.count_divisors(10), 4)
Esempio n. 3
0
def euler_problem12():
    for number in euler.generate_triangle_numbers():
        if euler.count_divisors(number) > 500:
            return number
Esempio n. 4
0
def compute():
    i = 2
    while count_divisors(i * (i-1) // 2) < 500:
        i += 1
    return i * (i - 1) // 2
Esempio n. 5
0
Highly divisible triangular number
Problem 12
The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...

Let us list the factors of the first seven triangle numbers:

 1: 1
 3: 1,3
 6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
We can see that 28 is the first triangle number to have over five divisors.

What is the value of the first triangle number to have over five hundred divisors?
"""

from euler import triangle_number, count_divisors

n = 1
while True:
    number = triangle_number(n)
    n += 1
    if count_divisors(number) >= 500:
        break
print number