Esempio n. 1
0
    def setUp(self):
        self.person = Person("Test User", 1234, "*****@*****.**",
                             defaultdict(lambda: "Expense"), "GBP", "abc",
                             "xyz", [])
        self.consumer = oauth2.Consumer("def", "jkl")
        self.splitwise = Splitwise(self.consumer, self.person)
        self.db = Database("sqlite:///:memory:")
        self.db.create_tables()
        self.fixer = Fixer()

        self.sync_handler = SyncHandler(db=self.db,
                                        person=self.person,
                                        splitwise=self.splitwise,
                                        fixer=self.fixer)
Esempio n. 2
0
 def setUp(self):
     self.fixer = Fixer()
Esempio n. 3
0
class TestFixer(unittest.TestCase):
    @classmethod
    def _load_file_content(self, filename):
        absolute_filename = os.path.abspath(
            os.path.join(os.path.dirname(__file__), filename))
        with open(absolute_filename, 'r') as f:
            data = f.read()
        return data

    def setUp(self):
        self.fixer = Fixer()

    def testValidateCurrency(self):
        self.assertTrue(self.fixer._validate_currency("EUR"),
                        "EUR should be a valid known currency")
        self.assertTrue(self.fixer._validate_currency("GBP"),
                        "GBP should be a valid known currency")
        self.assertTrue(self.fixer._validate_currency("DKK"),
                        "DKK should be a valid known currency")
        self.assertTrue(self.fixer._validate_currency("SEK"),
                        "SEK should be a valid known currency")
        self.assertFalse(self.fixer._validate_currency("JSP"),
                         "JSP should not be a valid known currency")
        self.assertFalse(self.fixer._validate_currency("RYU"),
                         "RYU should not be a valid known currency")

    def testCurrencyConversionWithSameCurrency(self):
        self.assertEquals(
            self.fixer.get_conversion_rate(for_date=date(2015, 4, 18),
                                           from_currency="GBP",
                                           to_currency="GBP"), 1.0,
            "Conversion rate for same currency should be 1.0")
        self.assertEquals(
            self.fixer.get_conversion_rate(for_date=date(2015, 6, 18),
                                           from_currency="EUR",
                                           to_currency="EUR"), 1.0,
            "Conversion rate for same currency should be 1.0")

    def testCurrencyConversion(self):
        conversions = {
            "2016-10-14":
            self._load_file_content("data/currency/2016-10-14.json"),
            "2016-10-21":
            self._load_file_content("data/currency/2016-10-21.json")
        }
        m = Mock()

        requested_urls = []

        def mock_request(url):
            requested_urls.append(url)
            if url.endswith("2016-10-14"):
                return conversions["2016-10-14"]
            if url.endswith("2016-10-21"):
                return conversions["2016-10-21"]

        m.side_effect = mock_request

        self.fixer._request = m

        sek_rate = self.fixer.get_conversion_rate(for_date=date(2016, 10, 14),
                                                  from_currency="SEK",
                                                  to_currency="GBP")
        self.assertEquals(sek_rate, 0.09)
        self.assertEquals(requested_urls[0], "http://api.fixer.io/2016-10-14")

        eur_rate = self.fixer.get_conversion_rate(for_date=date(2016, 10, 21),
                                                  from_currency="EUR",
                                                  to_currency="GBP")
        self.assertEquals(eur_rate, 0.89)
        self.assertEquals(requested_urls[1], "http://api.fixer.io/2016-10-21")
Esempio n. 4
0
def read_token(token_file='api.token'):
    with open(token_file) as f:
        return f.read().strip()


def main():
    updater = Updater(token=read_token())
    dispatcher = updater.dispatcher

    start_handler = CommandHandler('start', start)
    dispatcher.add_handler(start_handler)

    echo_handler = MessageHandler(Filters.text, echo)
    dispatcher.add_handler(echo_handler)

    caps_handler = CommandHandler('caps', caps, pass_args=True)
    dispatcher.add_handler(caps_handler)

    convert_handler = CommandHandler('convert', convert, pass_args=True)
    dispatcher.add_handler(convert_handler)

    dispatcher.add_error_handler(error)

    updater.start_polling()
    updater.idle()


if __name__ == '__main__':
    f = Fixer()
    main()
Esempio n. 5
0
    def run_merge_test(cnn,
                       bbox=[0, 1024, 0, 1024],
                       data='gt',
                       slices=[70, 71, 72, 73, 74],
                       min_pixels=1000,
                       N=20,
                       oversampling=False,
                       keep_zeros=True,
                       verbose=False):

        if data == 'rhoana':
            print 'not implemented yet'
            return [], []

        print '-' * 80
        print '-' * 80
        print 'New Experiment:'
        print '  Data:', data
        print '  Slices:', slices
        print '  No. splits for borders:', N
        print '  Keep zeros in segmentation:', keep_zeros

        # global_vis = []
        global_vi_diffs = []
        # global_surenesses = []
        # global_merge_pairs = []

        for s in slices:

            if verbose:
                print '-' * 80
                print 'Working on slice', s

            # load slice
            input_image, input_prob, input_gold, input_rhoana = Util.read_section(
                s, keep_zeros=keep_zeros)

            # apply bbox
            input_image = input_image[bbox[0]:bbox[1], bbox[2]:bbox[3]]
            input_prob = input_prob[bbox[0]:bbox[1], bbox[2]:bbox[3]]
            input_gold = input_gold[bbox[0]:bbox[1], bbox[2]:bbox[3]]
            input_rhoana = input_rhoana[bbox[0]:bbox[1], bbox[2]:bbox[3]]

            framed_gold = Util.frame_image(input_gold, shape=(200, 200))

            hist = Util.get_histogram(framed_gold.astype(np.uint64))
            labels = range(len(hist))
            np.random.shuffle(labels)

            slice_vi_diffs = []

            for l in labels:

                if l == 0:
                    continue

                if len(framed_gold[framed_gold == l]) < min_pixels:
                    continue

                neighbors = Util.grab_neighbors(framed_gold, l)
                np.random.shuffle(neighbors)

                good_neighbors = []

                for n in neighbors:

                    if n == 0:
                        continue

                    if len(framed_gold[framed_gold == n]) < min_pixels:
                        continue

                    good_neighbors.append(n)

                if len(good_neighbors) > 0:

                    for n in good_neighbors:

                        # print 'merging', l, n

                        before_merge_error = np.zeros(framed_gold.shape)
                        before_merge_error[framed_gold == l] = 1
                        before_merge_error[framed_gold == n] = 2
                        before_merge_error = mh.croptobbox(before_merge_error)

                        cropped_image, cropped_prob, cropped_segmentation, cropped_binary, bbox, real_border = Uglify.merge_label(
                            input_image,
                            input_prob,
                            framed_gold,
                            l,
                            n,
                            crop=True)

                        vi_before = Util.vi(
                            before_merge_error[10:-10,
                                               10:-10].astype(np.uint8),
                            mh.croptobbox(cropped_binary)[10:-10,
                                                          10:-10].astype(
                                                              np.uint8))

                        # print 'VI after merge error:', vi_before

                        borders, best_border_image, result, result_no_border, results_no_border, predictions = Fixer.fix_single_merge(
                            cnn,
                            cropped_image,
                            cropped_prob,
                            cropped_binary,
                            real_border=real_border,
                            N=N,
                            erode=True,
                            oversampling=False)

                        if result_no_border.shape[0] == 0:
                            continue

                        if best_border_image.max() == 0:
                            # print 'no solution'
                            continue

            #             if before_merge_error.shape[0] != result_no_border.shape[0] or before_merge_error.shape[1] != result_no_border.shape[1]:
            #               result_no_border = np.resize(result_no_border, before_merge_error.shape)

            #             if before_merge_error.size != mh.croptobbox(r)

            #             compare_result = np.zeros(before_merge_error.shape, dtype=np.uint8)
            #             compare_result[:] = result_no_border[101:-101, 101:-101][0:before_merge_error.shape[0], 0:before_merge_error.shape[1]]

                        best_vi = np.inf
                        vi_diffs = []

                        # sorted_predictions = sorted(predictions)

                        for r in results_no_border:

                            if r.shape[0] == 0:
                                continue

                            r = r[100:-100, 100:-100]

                            result_no_border_center = (r.shape[0] / 2,
                                                       r.shape[1] / 2)
                            before_merge_center = (
                                before_merge_error.shape[0] / 2 - 10,
                                before_merge_error.shape[1] / 2 - 10)

                            r = r[result_no_border_center[0] -
                                  before_merge_center[0]:
                                  result_no_border_center[0] +
                                  before_merge_center[0],
                                  result_no_border_center[1] -
                                  before_merge_center[1]:
                                  result_no_border_center[1] +
                                  before_merge_center[1]]

                            b = before_merge_error[result_no_border_center[0] -
                                                   before_merge_center[0]:
                                                   result_no_border_center[0] +
                                                   before_merge_center[0],
                                                   result_no_border_center[1] -
                                                   before_merge_center[1]:
                                                   result_no_border_center[1] +
                                                   before_merge_center[1]]

                            vi_after_fixing = Util.vi(b.astype(np.uint8),
                                                      r.astype(np.uint8))

                            vi_diffs.append(vi_before - vi_after_fixing)

                        # now we have vi_diffs for this one merge error
                        slice_vi_diffs.append((vi_diffs, predictions))

            global_vi_diffs.append(slice_vi_diffs)

        vi_correction_bins = [0, 0, 0, 0, 0]
        bin_counts = [0, 0, 0, 0, 0]

        for s in global_vi_diffs:
            for merge_errors in s:
                vi_diff_per_error = merge_errors[0]
                predictions_per_error = merge_errors[1]

                # sort by prediction
                found_borders = sorted(zip(vi_diff_per_error,
                                           predictions_per_error),
                                       key=lambda x: x[1])
                for i in range(5):
                    if len(found_borders) > i:
                        for j in range(i, len(found_borders)):
                            print i, j, len(vi_correction_bins), len(
                                found_borders)
                            vi_correction_bins[j] += found_borders[j][0]
                            bin_counts[j] += 1

        for i in range(5):
            vi_correction_bins[i] /= bin_counts[i]

        return global_vi_diffs, vi_correction_bins
Esempio n. 6
0
    def run_split_test(cnn,
                       bbox=[0, 1024, 0, 1024],
                       data='gt',
                       slices=[70, 71, 72, 73, 74],
                       oversampling=False,
                       smallest_first=False,
                       no_splits=2,
                       keep_zeros=True,
                       fill_zeros=False,
                       verbose=False):
        '''
    data: gt/rhoana
    slices: [x,y,z..]
    oversampling: True/False
    smallest_first: True/False
    no_splits: 1/2/3..
    '''

        print '-' * 80
        print '-' * 80
        print 'New Experiment:'
        print '  Data:', data
        print '  Slices:', slices
        print '  Oversampling:', oversampling
        print '  Merge smallest first:', smallest_first
        print '  No. splits to uglify:', no_splits
        print '  Keep zeros in segmentation:', keep_zeros

        global_eds = []
        global_ris = []
        global_vis = []
        global_vi_diffs = []
        global_ed_diffs = []
        global_surenesses = []
        global_ed_surenesses = []
        global_merge_pairs = []
        global_ugly_segmentations = []
        global_best_indices = []

        for s in slices:

            if verbose:
                print '-' * 80
                print 'Working on slice', s

            # load slice
            input_image, input_prob, input_gold, input_rhoana = Util.read_section(
                s, keep_zeros=keep_zeros, fill_zeros=fill_zeros)

            # apply bbox
            input_image = input_image[bbox[0]:bbox[1], bbox[2]:bbox[3]]
            input_prob = input_prob[bbox[0]:bbox[1], bbox[2]:bbox[3]]
            input_gold = input_gold[bbox[0]:bbox[1], bbox[2]:bbox[3]]
            input_rhoana = input_rhoana[bbox[0]:bbox[1], bbox[2]:bbox[3]]

            # choose segmentation based on data mode
            framed_gold = Util.frame_image(input_gold)
            framed_rhoana = Util.frame_image(input_rhoana)

            if data == 'gt':
                segmentation = framed_gold

                # if GT, uglify the segmenation based on the number of splits
                ugly_segmentation = Uglify.split(input_image,
                                                 input_prob,
                                                 segmentation,
                                                 n=no_splits)

            else:
                segmentation = framed_gold
                ugly_segmentation = framed_rhoana

            global_ugly_segmentations.append(ugly_segmentation)

            before_vi = Util.vi(ugly_segmentation, segmentation)
            # before_ri = Util.ri(ugly_segmentation, segmentation)
            before_ed = Util.ed(ugly_segmentation, segmentation)

            if verbose:
                print 'Labels before:', len(Util.get_histogram(segmentation))
                print 'Labels after:', len(
                    Util.get_histogram(ugly_segmentation))

                print 'VI after uglifying:', before_vi

            #
            # now run the fixer
            #
            vi_s, ed_s, merge_pairs, surenesses = Fixer.splits(
                cnn,
                input_image,
                input_prob,
                ugly_segmentation,
                segmentation,
                smallest_first=smallest_first,
                oversampling=oversampling,
                verbose=verbose)

            best_index = vi_s.index(np.min(vi_s))
            best_vi = vi_s[best_index]
            best_sureness = surenesses[best_index]

            best_ed_index = ed_s.index(np.min(ed_s))
            best_ed = ed_s[best_ed]
            best_sureness_ed = surenesses[best_ed]

            vi_diff = before_vi - best_vi
            ed_diff = before_ed - best_ed

            global_vis.append(best_vi)
            global_vi_diffs.append(vi_diff)
            global_surenesses.append(best_sureness)
            global_merge_pairs.append(merge_pairs)
            global_best_indices.append(best_index)

            global_eds.append(best_ed)
            global_ed_diffs.append(ed_diff)
            global_surenesses_ed.append(best_sureness_ed)

        #
        # now all done
        #

        print 'VI:'
        Util.stats(global_vis)

        print 'VI before-after:'
        Util.stats(global_vi_diffs)

        print 'Surenesses:'
        Util.stats(global_surenesses)

        print 'ED:'
        Util.stats(global_eds)

        print 'ED before-after:'
        Util.stats(global_ed_diffs)

        print 'ED Surenesses:'
        Util.stats(global_surenesses_ed)

        return global_vis, global_vi_diffs, global_surenesses, global_eds, global_ed_diffs, global_surenesses_ed, global_merge_pairs, global_best_indices, global_ugly_segmentations
 def onClosing(self):
     Fixer.save(self.typos)
Esempio n. 8
0
# def get_align(self):
# def get_size(self):
# def get_offset(self, fieldname):
# def get_ref_qualifier(self):
# def spelling(self):
# def __eq__(self, other):
# def __ne__(self, other):

def printType(cppType, columnWidth, printer=printf):
    printer('{{:<{0}}}{{:<{0}}}{{:<{0}}}'.format(columnWidth),
            '"' + cppType.spelling + '"',
            cppType.kind,
            cppType.get_ref_qualifier())

if __name__ == '__main__':
    util = Fixer('Print all of the types in a translation unit.')
    util.add_argument('--column-width', dest='columnWidth', default=45,
                      help='Width in characters of each output column')
    args, translationUnit = util.setup()

    grabber = TypeGrabber()
    traverse(translationUnit.cursor, grabber)

    if len(grabber.types):
        printf('{{:<{0}}}{{:<{0}}}{{:<{0}}}'.format(args.columnWidth),
               '---- Name ----', 
               '---- Kind ----',
               '---- Ref Qualifier ----')
    for cppType in grabber.types:
        printType(cppType, args.columnWidth)