action='store', dest='num_epochs', type=int, default=2) parser.add_argument('--gpu', action="store_true", default=False) results = parser.parse_args() data_dir_in = results.data_dir arch_in = results.arch save_dir_in = results.save_dir lr_in = results.lr hidden_size = results.h_units epochs = results.num_epochs gpu_on = results.gpu train_data, trainloader, validloader, testloader = load_data(data_dir_in) model = getattr(models, arch_in)(pretrained=True) for param in model.parameters(): param.requires_grad = False build_model(model, hidden_size) train_model(model, gpu_on, trainloader, validloader, lr_in, epochs) test_model(model, gpu_on, testloader) save_model(model, arch_in, train_data, save_dir_in)
def api_keys(): api_keys = load_data('api_keys.yaml') return render_template('api_keys.html',api_keys=api_keys)
def api_docs(): api = load_data('api.yaml') return render_template('api_docs.html',api=api)
from keras.models import Sequential from keras.layers import Dense import numpy as np import funcs from collections import Counter if __name__ == '__main__': print('Getting data') # data_train, label_train = funcs.get_train_data() data_train = funcs.load_data("INPUT_DATA.pkl") label_train = funcs.load_data("INPUT_LABELS.pkl") print("len of train " + str(len(data_train))) print("len of lable " + str(len(label_train))) print("===========================") # # Provide Input Data # # ======================================================== # input_data = [] # for data_item in data_train: # mean = np.mean(data_item) # # dt = Counter(data_item) # ent = np.zeros(129) # ent[0] = mean # for idx in range(1,128): # ent[idx] = dt[idx] # input_data.append(ent) # input_data = np.asarray(input_data) # # print(len(input_data)) # # print(input_data[0]) # # exit()
bin_width_ms = 1 bin_width_ms_session = 50 smooth_sd_ms = 100 fr_convert = 1000 trial_duration = 2000 bin_edges_trial = np.arange(0 ,trial_duration, bin_width_ms) max_list = [] cluster_list = [] start_trial_list = [] end_trial_list = [] spikes_times_session_list =[] for recording_to_extract,session in zip(recordings_to_extract_hp,sessions_hp):cluster_list path_to_data = '/'.join([kilosort_folder, recording_to_extract]) os.chdir(path_to_data) ephys_session = fu.load_data(recording_to_extract,kilosort_folder,'/',True ) beh_session = di.Session('/media/behrenslab/90c50efc-05cf-4045-95e4-9dabd129fb47/Ephys_Reversal_Learning/data/Reversal_learning Behaviour Data and Code/data_3_tasks_ephys/{}'.format(session)) forced_trials = beh_session.trial_data['forced_trial'] non_forced_array = np.where(forced_trials == 0)[0] task = beh_session.trial_data['task'] task_non_forced = task[non_forced_array] #Trial Initiation Timestamps pyControl_choice = [event.time for event in beh_session.events if event.name in ['choice_state']] pyControl_choice = np.array(pyControl_choice) pyControl_end_trial = [event.time for event in beh_session.events if event.name in ['inter_trial_interval']][2:] #first two ITIs are free rewards pyControl_end_trial = np.array(pyControl_end_trial) task = beh_session.trial_data['task'] task_1_end_trial = np.where(task == 1)[0] task_2_end_trial = np.where(task == 2)[0] task_2_change = np.where(task ==2)[0]
table.write(4, 6, 'k_minus:' + str(k_alpha_minus)) table.write(5, 6, 'PINC:' + str(PINC)) # clear current error times current_error_times = 0 # select data set [file_name, sheet_name, col, row_start, seq_len, interval] = dataset.select_dataset_windpower8_boundvmd(flag) # preprocess data print('> Loading data... ') [X_train, Y_train, X_test, Y_test] = fc.load_data(file_name, type='excel', sheet_name=sheet_name, pre_seq_len=timesteps, row=row_start - 1, col=col - 1, seq_len=seq_len, interval=interval) # normalization [x_train, x_maxmin] = fc.maponezero(X_train) [y_train, y_maxmin] = fc.maponezero(Y_train) x_test = fc.maponezero(X_test, "apply", x_maxmin) y_test = fc.maponezero(Y_test, "apply", y_maxmin) x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1)) x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1)) for times in range(0, exp_times): while True: width_upper_history = [] width_lower_history = [] alpha_history = []