Esempio n. 1
0
    def __init__(self, options):
        gr.hier_block2.__init__(self, "transmit_path",
                                gr.io_signature(0, 0, 0),
                                gr.io_signature(0, 0, 0))
        #Set up usrp block
        self.u = usrp.source_c()
        adc_rate = self.u.adc_rate()  # 64 MS/s
        usrp_decim = 16
        gain = 65
        self.u.set_decim_rate(usrp_decim)
        usrp_rate = adc_rate / usrp_decim  #  320 kS/s
        print usrp_rate
        #subdev_spec = usrp.pick_subdev(self.u)
        subdev_spec = (0, 0)
        mux_value = usrp.determine_rx_mux_value(self.u, subdev_spec)
        self.u.set_mux(mux_value)
        self.subdev = usrp.selected_subdev(self.u, subdev_spec)
        self.subdev.set_gain(gain)
        self.subdev.set_auto_tr(False)
        self.subdev.set_enable(True)

        if not (self.set_freq(915e6)):
            print "Failed to set initial frequency"

        #set up the rest of the path
        deci = 1

        self.agc = gr.agc_cc(rate=1e-7,
                             reference=1.0,
                             gain=0.001,
                             max_gain=0.5)

        matchtaps = [complex(-1, -1)] * 8 + [complex(
            1, 1)] * 8 + [complex(-1, -1)] * 8 + [complex(1, 1)] * 8
        #matchtaps = [complex(-1,-1)] * 8 + [complex(1,1)] * 8
        self.matchfilter = gr.fir_filter_ccc(1, matchtaps)

        reverse = [complex(1, 1)] * (8 / deci) + [complex(
            -1, -1)] * (8 / deci) + [complex(
                1, 1)] * (8 / deci) + [complex(-1, -1)] * (8 / deci)
        #pretaps = matchtaps * 3 + reverse * 4 + matchtaps * 4 + reverse * 8 + matchtaps * 6 + matchtaps * 62
        pretaps = matchtaps * 2 + reverse * 2 + matchtaps * 2 + reverse * 4 + matchtaps * 3 + matchtaps * 31
        #pretaps =  matchtaps * 3 + reverse * 8 + matchtaps * 6 + matchtaps * 64
        self.preamble_filter = gr.fir_filter_ccc(1, pretaps)

        self.c_f = gr.complex_to_real()
        self.c_f2 = gr.complex_to_real()

        self.lock = howto.lock_time(32, 5, 32)

        self.pd = howto.find_pre_ff(55, 200)

        self.dec = symbols_decoder()

        self.vect = gr.vector_sink_f()

        #self.connect(self.u, self.agc, self.matchfilter, self.c_f, (self.lock, 0),  self.dec, self.vect)
        #self.connect(self.agc, self.preamble_filter, self.c_f2, self.pd, (self.lock, 1))
        self.connect(self.u, self.agc, self.matchfilter, self.c_f, self.vect)
Esempio n. 2
0
  def __init__(self, options): 
    gr.hier_block2.__init__(self, "transmit_path", 
                             gr.io_signature(0, 0, 0), 
                             gr.io_signature(0, 0, 0))
    #Set up usrp block
    self.u = usrp.source_c()
    adc_rate = self.u.adc_rate()                # 64 MS/s
    usrp_decim = 16
    gain = 65
    self.u.set_decim_rate(usrp_decim)
    usrp_rate = adc_rate / usrp_decim           #  320 kS/s
    print usrp_rate
    #subdev_spec = usrp.pick_subdev(self.u)
    subdev_spec = (0,0)
    mux_value = usrp.determine_rx_mux_value(self.u, subdev_spec)
    self.u.set_mux(mux_value)
    self.subdev = usrp.selected_subdev(self.u, subdev_spec)
    self.subdev.set_gain(gain)
    self.subdev.set_auto_tr(False)
    self.subdev.set_enable(True)

    if not(self.set_freq(915e6)):	
      print "Failed to set initial frequency"

    #set up the rest of the path
    deci = 1

    self.agc = gr.agc_cc( rate = 1e-7, reference = 1.0, gain = 0.001, max_gain = 0.5)

    matchtaps = [complex(-1,-1)] * 8 + [complex(1,1)] * 8 + [complex(-1,-1)]* 8 + [complex(1,1)]* 8
    #matchtaps = [complex(-1,-1)] * 8 + [complex(1,1)] * 8 
    self.matchfilter = gr.fir_filter_ccc(1, matchtaps)

    reverse = [complex(1,1)] * (8 / deci) + [complex(-1,-1)] * (8 / deci) + [complex(1,1)]* (8 / deci) + [complex(-1,-1)]* (8 / deci)
    #pretaps = matchtaps * 3 + reverse * 4 + matchtaps * 4 + reverse * 8 + matchtaps * 6 + matchtaps * 62
    pretaps = matchtaps * 2 + reverse * 2 + matchtaps * 2 + reverse * 4 + matchtaps * 3 + matchtaps * 31
    #pretaps =  matchtaps * 3 + reverse * 8 + matchtaps * 6 + matchtaps * 64
    self.preamble_filter = gr.fir_filter_ccc(1, pretaps)

    self.c_f = gr.complex_to_real()
    self.c_f2 = gr.complex_to_real()

    self.lock = howto.lock_time(32, 5, 32)

    self.pd = howto.find_pre_ff(55, 200)

    self.dec = symbols_decoder()

    self.vect = gr.vector_sink_f()
    
    #self.connect(self.u, self.agc, self.matchfilter, self.c_f, (self.lock, 0),  self.dec, self.vect)
    #self.connect(self.agc, self.preamble_filter, self.c_f2, self.pd, (self.lock, 1))
    self.connect(self.u, self.agc, self.matchfilter, self.c_f, self.vect)
Esempio n. 3
0
 def __init__(self):
     gr.top_block.__init__(self)
     input_sample_rate = 1e6
     symbol_rate = 152.34e3
     output_samples_per_symbol = 5
     output_sample_rate = output_samples_per_symbol * symbol_rate
     # least common multiple
     lcm = gru.lcm(input_sample_rate, output_sample_rate)
     intrp = int(lcm // input_sample_rate)
     decim = int(lcm // output_sample_rate)
     print intrp
     print decim
     resampler = blks2.rational_resampler_ccc(intrp, decim, None, None)
     src = gr.file_source(gr.sizeof_gr_complex, "infile")
     sink = gr.file_sink(gr.sizeof_float, "outfile")
     f2c = gr.float_to_complex()
     c2r = gr.complex_to_real()
     #ddc_coeffs = \
     #gr.firdes.low_pass (1.0,           # gain
     #input_sample_rate,   # sampling rate
     #2e3,         # low pass cutoff freq
     #6e3,         # width of trans. band
     #gr.firdes.WIN_HANN)
     # just grab the lower sideband:
     #ddc =  gr.freq_xlating_fir_filter_ccf(1,ddc_coeffs,-111.5e3,input_sample_rate)
     qdemod = gr.quadrature_demod_cf(1.0)
     lp_coeffs = \
      gr.firdes.low_pass (1.0,           # gain
       output_sample_rate,   # sampling rate
       symbol_rate,         # low pass cutoff freq
       symbol_rate,         # width of trans. band
       gr.firdes.WIN_HANN)
     lp = gr.fir_filter_fff(1, lp_coeffs)
     self.connect(src, resampler, qdemod, lp, sink)
Esempio n. 4
0
  def __init__(self,delay_num,delay_denom):
    gr.hier_block2.__init__(self,"moms_block",
      gr.io_signature(1,1,gr.sizeof_gr_complex),
      gr.io_signature(1,1,gr.sizeof_gr_complex))

    cmplx_to_real  = gr.complex_to_real()
    cmplx_to_img   = gr.complex_to_imag()

    iirf_real = gr.iir_filter_ffd([1.5],[1, -0.5])
    self.moms_real = moms_ff()
    self.moms_real.set_init_ip_fraction(delay_num,delay_denom)

    iirf_imag = gr.iir_filter_ffd([1.5],[1, -0.5])
    self.moms_imag = moms_ff()
    self.moms_imag.set_init_ip_fraction(delay_num,delay_denom)

    float_to_cmplx = gr.float_to_complex()

    self.connect((self,0),            (cmplx_to_real,0))
    self.connect((self,0),            (cmplx_to_img,0))
    self.connect((cmplx_to_real,0),   (iirf_real,0))
    self.connect((cmplx_to_img,0),    (iirf_imag,0))
    self.connect((iirf_real,0),       (self.moms_real,0))
    self.connect((iirf_imag,0),       (self.moms_imag,0))
    self.connect((self.moms_real,0),  (float_to_cmplx,0))
    self.connect((self.moms_imag,0),  (float_to_cmplx,1))
    self.connect((float_to_cmplx,0),  (self,0))
Esempio n. 5
0
	def __init__(self):
		gr.top_block.__init__(self)
		input_sample_rate = 1e6
		symbol_rate = 152.34e3
		output_samples_per_symbol = 5
		output_sample_rate = output_samples_per_symbol * symbol_rate
		# least common multiple
		lcm = gru.lcm(input_sample_rate, output_sample_rate)
		intrp = int(lcm // input_sample_rate)
		decim = int(lcm // output_sample_rate)
		print intrp
		print decim
		resampler = blks2.rational_resampler_ccc(intrp, decim, None, None)
		src = gr.file_source(gr.sizeof_gr_complex, "infile")
		sink = gr.file_sink(gr.sizeof_float, "outfile")
		f2c = gr.float_to_complex()
		c2r = gr.complex_to_real()
		#ddc_coeffs = \
			#gr.firdes.low_pass (1.0,           # gain
				#input_sample_rate,   # sampling rate
				#2e3,         # low pass cutoff freq
				#6e3,         # width of trans. band
				#gr.firdes.WIN_HANN)
		# just grab the lower sideband:
		#ddc =  gr.freq_xlating_fir_filter_ccf(1,ddc_coeffs,-111.5e3,input_sample_rate)
		qdemod = gr.quadrature_demod_cf(1.0)
		lp_coeffs = \
			gr.firdes.low_pass (1.0,           # gain
				output_sample_rate,   # sampling rate
				symbol_rate,         # low pass cutoff freq
				symbol_rate,         # width of trans. band
				gr.firdes.WIN_HANN)
		lp = gr.fir_filter_fff (1,lp_coeffs)
		self.connect(src,resampler,qdemod,lp,sink)
    def __init__(self, *args, **kwargs):
        """
    Hierarchical block for BPSK demodulation.

    The input is the complex modulated signal at baseband.
        Demodulated packets are sent to the handler.

        @param callback:  function of two args: ok, payload
        @type callback: ok: bool; payload: string
        @param threshold: detect access_code with up to threshold bits wrong (-1 -> use default)
        @type threshold: int

        See ieee802_15_4_demod for remaining parameters.
    """
        try:
            self.callback = kwargs.pop('callback')
            self.threshold = kwargs.pop('threshold')    
            #Return the demodulator
            self.demodulator = kwargs.pop('demodulator')
            self.gui = kwargs.pop('gui')
            self._samples_per_symbol = kwargs.pop('sps')
        except KeyError:
            pass
        gr.hier_block2.__init__(self, "ieee_pkt_receiver",
                        gr.io_signature(1, 1, gr.sizeof_gr_complex),  # Input
                        gr.io_signature(0, 0, 0))  # Output
        
        self._rcvd_pktq = gr.msg_queue()          # holds packets from the PHY
        
        #Create the sink of packets
        self._packet_sink = ieee.ieee802_15_4_packet_sink(self._rcvd_pktq, self.threshold)
        
        #self.complex_to_float = gr.complex_to_float(1)
        self.complex_to_real = gr.complex_to_real()
        #self.null_sink = gr.null_sink(gr.sizeof_float*1)
        #self.connect((self.gr_complex_to_float_0, 0), (self.gr_vector_sink_x_0, 0))
        #self.connect(self.complex_to_float, self.null_sink)
#        self.wxgui_constellationsink2_0 = constsink_gl.const_sink_c(
#            self.gui.GetWin(),
#            title="Constellation Plot",
#            sample_rate=self._samples_per_symbol,
#            frame_rate=5,
#            const_size=2048,
#            M=2,
#            theta=0,
#            alpha=0.005,
#            fmax=0.06,
#            mu=0.5,
#            gain_mu=0.005,
#            symbol_rate=self._samples_per_symbol/2,
#            omega_limit=0.005,
#        )
#        self.gui.Add(self.wxgui_constellationsink2_0.win)
        

        self.connect(self, self.demodulator, self.complex_to_real, self._packet_sink)
        #self.connect(self, self.demodulator, self.wxgui_constellationsink2_0)
      
        self._watcher = _queue_watcher_thread(self._rcvd_pktq, self.callback)
Esempio n. 7
0
    def __init__(self, usrp_rate, usrp_interp):
        gr.hier_block2.__init__(self, "downlink_test_file_sink",
                                gr.io_signature(1, 1, gr.sizeof_gr_complex),
                                gr.io_signature(0, 0, 0))
        self.c_to_f = gr.complex_to_real()
        self.chop = gr.head(gr.sizeof_float, 350)
        self.f = gr.file_sink(gr.sizeof_float, 'output.dat')

        self.connect(self, self.c_to_f, self.chop, self.f)
Esempio n. 8
0
  def __init__(self,usrp_rate,usrp_interp):
    gr.hier_block2.__init__(self,"downlink_test_file_sink",
                            gr.io_signature(1,1,gr.sizeof_gr_complex),
                            gr.io_signature(0,0,0))
    self.c_to_f = gr.complex_to_real()
    self.chop = gr.head(gr.sizeof_float, 350)
    self.f = gr.file_sink(gr.sizeof_float,'output.dat')

    self.connect(self,self.c_to_f, self.chop,self.f)
Esempio n. 9
0
 def test_complex_to_real(self):
     src_data = (0, 1, -1, 3 + 4j, -3 - 4j, -3 + 4j)
     expected_result = (0, 1, -1, 3, -3, -3)
     src = gr.vector_source_c(src_data)
     op = gr.complex_to_real()
     dst = gr.vector_sink_f()
     self.tb.connect(src, op)
     self.tb.connect(op, dst)
     self.tb.run()
     actual_result = dst.data()
     self.assertFloatTuplesAlmostEqual(expected_result, actual_result)
Esempio n. 10
0
 def test_complex_to_real (self):
     src_data = (0, 1, -1, 3+4j, -3-4j, -3+4j)
     expected_result = (0, 1, -1, 3, -3, -3)
     src = gr.vector_source_c (src_data)
     op = gr.complex_to_real ()
     dst = gr.vector_sink_f ()
     self.tb.connect (src, op)
     self.tb.connect (op, dst)
     self.tb.run ()
     actual_result = dst.data ()
     self.assertFloatTuplesAlmostEqual (expected_result, actual_result)
	def __init__(self):
		gr.top_block.__init__(self, "CW/SSB Receiver")

		##################################################
		# Variables
		##################################################
		self.samp_rate = samp_rate = 96000
		self.xlate_filter_taps = xlate_filter_taps = firdes.low_pass(1, samp_rate, 48000, 5000, firdes.WIN_HAMMING, 6.76)
		self.sql_lev = sql_lev = -100
		self.rf_gain = rf_gain = 20
		self.pass_trans = pass_trans = 600
		self.pass_low = pass_low = 300
		self.pass_high = pass_high = 1200
		self.freq = freq = 144800000
		self.af_gain = af_gain = 5
		self.sat_file_name = sat_file_name = "Undefined"

		##################################################
		# Blocks
		##################################################
		self.xlating_fir_filter = gr.freq_xlating_fir_filter_ccc(1, (xlate_filter_taps), 0, samp_rate)
		self.gr_simple_squelch_cc_0 = gr.simple_squelch_cc(sql_lev, 1)
		self.gr_multiply_const_vxx_0 = gr.multiply_const_vff((af_gain, ))
		self.gr_complex_to_real_0 = gr.complex_to_real(1)
		self.gr_agc2_xx_0 = gr.agc2_cc(1e-1, 20.8e-6, 0.3, 1.0, 0.0)
		self.fcd_source_c_1 = fcd.source_c("hw:1")
		self.fcd_source_c_1.set_freq(freq)
		self.fcd_source_c_1.set_freq_corr(-10)
		    
		self.band_pass_filter_0 = gr.fir_filter_ccf(2, firdes.band_pass(
			1, samp_rate, pass_low, pass_high, pass_trans, firdes.WIN_HAMMING, 6.76))
		self.audio_sink = audio.sink(48000, "", True)

		self.wavfile_sink = gr.wavfile_sink(self.sat_file_name, 1, 11025, 16)
		self.blks2_rational_resampler_xxx_0 = blks2.rational_resampler_fff(
			interpolation=11025,
			decimation=48000,
			taps=None,
			fractional_bw=None,
		)

		##################################################
		# Connections
		##################################################
		self.connect((self.fcd_source_c_1, 0), (self.xlating_fir_filter, 0))
		self.connect((self.xlating_fir_filter, 0), (self.gr_simple_squelch_cc_0, 0))
		self.connect((self.band_pass_filter_0, 0), (self.gr_agc2_xx_0, 0))
		self.connect((self.gr_complex_to_real_0, 0), (self.gr_multiply_const_vxx_0, 0))
		self.connect((self.gr_agc2_xx_0, 0), (self.gr_complex_to_real_0, 0))
		self.connect((self.gr_simple_squelch_cc_0, 0), (self.band_pass_filter_0, 0))
		self.connect((self.gr_multiply_const_vxx_0, 0), (self.audio_sink, 0))
		self.connect((self.gr_multiply_const_vxx_0, 0), (self.audio_sink, 1))
		self.connect((self.gr_complex_to_real_0, 0), (self.blks2_rational_resampler_xxx_0, 0))
		self.connect((self.blks2_rational_resampler_xxx_0, 0), (self.wavfile_sink, 0))
Esempio n. 12
0
	def __init__(self, input_path, sample_rate, output_path):
		gr.top_block.__init__(self)

		self.source = gr.file_source(
			gr.sizeof_gr_complex, input_path, False)
		self.lowpass_and_decimate = gr.fir_filter_ccf(
			8, firdes.low_pass(1, sample_rate, FREQ_SPACE, 100))
		self.lsb_tune = gr.freq_xlating_fir_filter_ccc(
			1, (1,), -FREQ_SPACE, sample_rate/8)
		self.boost_volume = gr.multiply_const_vcc((10, ))
		self.complex_to_real = gr.complex_to_real(1)
		self.sink = gr.wavfile_sink(output_path, 1, sample_rate/8, 16)

		self.connect((self.source, 0), (self.lowpass_and_decimate, 0))
		self.connect((self.lowpass_and_decimate, 0), (self.lsb_tune, 0))
		self.connect((self.lsb_tune, 0), (self.boost_volume, 0))
		self.connect((self.boost_volume, 0), (self.complex_to_real, 0))
		self.connect((self.complex_to_real, 0), (self.sink, 0))
Esempio n. 13
0
	def __init__(self):
		gr.top_block.__init__(self, "CW/SSB Receiver")

		##################################################
		# Variables
		##################################################
		self.samp_rate = samp_rate = 96000
		self.xlate_filter_taps = xlate_filter_taps = firdes.low_pass(1, samp_rate, 48000, 5000, firdes.WIN_HAMMING, 6.76)
		self.sql_lev = sql_lev = -100
		self.rf_gain = rf_gain = 20
		self.pass_trans = pass_trans = 600
		self.pass_low = pass_low = 300
		self.pass_high = pass_high = 1200
		self.freq = freq = 144800000
		self.af_gain = af_gain = 5

		##################################################
		# Blocks
		##################################################
		self.xlating_fir_filter = gr.freq_xlating_fir_filter_ccc(1, (xlate_filter_taps), 0, samp_rate)
		self.gr_simple_squelch_cc_0 = gr.simple_squelch_cc(sql_lev, 1)
		self.gr_multiply_const_vxx_0 = gr.multiply_const_vff((af_gain, ))
		self.gr_complex_to_real_0 = gr.complex_to_real(1)
		self.gr_agc2_xx_0 = gr.agc2_cc(1e-1, 20.8e-6, 0.3, 1.0, 0.0)
		self.fcd_source_c_1 = fcd.source_c("hw:1")
		self.fcd_source_c_1.set_freq(freq)
		self.fcd_source_c_1.set_freq_corr(-10)
		    
		self.band_pass_filter_0 = gr.fir_filter_ccf(2, firdes.band_pass(
			1, samp_rate, pass_low, pass_high, pass_trans, firdes.WIN_HAMMING, 6.76))
		self.audio_sink = audio.sink(48000, "", True)

		##################################################
		# Connections
		##################################################
		self.connect((self.fcd_source_c_1, 0), (self.xlating_fir_filter, 0))
		self.connect((self.xlating_fir_filter, 0), (self.gr_simple_squelch_cc_0, 0))
		self.connect((self.band_pass_filter_0, 0), (self.gr_agc2_xx_0, 0))
		self.connect((self.gr_complex_to_real_0, 0), (self.gr_multiply_const_vxx_0, 0))
		self.connect((self.gr_agc2_xx_0, 0), (self.gr_complex_to_real_0, 0))
		self.connect((self.gr_simple_squelch_cc_0, 0), (self.band_pass_filter_0, 0))
		self.connect((self.gr_multiply_const_vxx_0, 0), (self.audio_sink, 0))
		self.connect((self.gr_multiply_const_vxx_0, 0), (self.audio_sink, 1))
Esempio n. 14
0
    def __init__(self):
        gr.hier_block2.__init__(self, 'gsm_decode_harddecision',
                gr.io_signature(1, 1, gr.sizeof_gr_complex * 148 ),
                gr.io_signature(1,1,58*2))

        conf = mlse.make_packet_config_gsm()
        slice1 = conf.make_slicer(conf.PAYLOAD_FRONT)
        slice2 = conf.make_slicer(conf.PAYLOAD_REAR)
        cat = mlse.vector_concat_vv(58*gr.sizeof_gr_complex, 58*gr.sizeof_gr_complex)
        tostream = gr.vector_to_stream(gr.sizeof_gr_complex, 58*2)
        real = gr.complex_to_real()
        sign = gr.binary_slicer_fb()
        demap = gr.map_bb([1,0]) # invert 0 and 1 because in gsm 0 is mapped to +1 and 1 to -1
        tovect = gr.stream_to_vector(1, 58*2)

        self.connect(self, slice1)
        self.connect(self, slice2)
        self.connect(slice1, (cat,0))
        self.connect(slice2, (cat,1))
        self.connect(cat, tostream, real, sign, demap, tovect, self)
    def __init__(self, *args, **kwargs):
        """
    Hierarchical block for BPSK demodulation.

    The input is the complex modulated signal at baseband.
        Demodulated packets are sent to the handler.

        @param callback:  function of two args: ok, payload
        @type callback: ok: bool; payload: string
        @param threshold: detect access_code with up to threshold bits wrong (-1 -> use default)
        @type threshold: int

        See ieee802_15_4_demod for remaining parameters.
    """
        try:
            self.callback = kwargs.pop('callback')
            self.threshold = kwargs.pop('threshold')    
            #Return the demodulator
            self.demodulator = kwargs.pop('demodulator')
            self.gui = kwargs.pop('gui')
            self._samples_per_symbol = kwargs.pop('sps')
        except KeyError:
            pass
        gr.hier_block2.__init__(self, "ieee_pkt_receiver",
                        gr.io_signature(1, 1, gr.sizeof_gr_complex),  # Input
                        gr.io_signature(0, 0, 0))  # Output
        
        self._rcvd_pktq = gr.msg_queue()          # holds packets from the PHY
        
        #Create the sink of packets
        self._packet_sink = ieee.ieee802_15_4_packet_sink(self._rcvd_pktq, self.threshold)
        
        #self.complex_to_float = gr.complex_to_float(1)
        self.complex_to_real = gr.complex_to_real()
        
        self.connect(self, self.demodulator, self.complex_to_real, self._packet_sink)
      
        self._watcher = _queue_watcher_thread(self._rcvd_pktq, self.callback)
Esempio n. 16
0
    def __init__(self):
        gr.hier_block2.__init__(
            self, 'gsm_decode_harddecision',
            gr.io_signature(1, 1, gr.sizeof_gr_complex * 148),
            gr.io_signature(1, 1, 58 * 2))

        conf = mlse.make_packet_config_gsm()
        slice1 = conf.make_slicer(conf.PAYLOAD_FRONT)
        slice2 = conf.make_slicer(conf.PAYLOAD_REAR)
        cat = mlse.vector_concat_vv(58 * gr.sizeof_gr_complex,
                                    58 * gr.sizeof_gr_complex)
        tostream = gr.vector_to_stream(gr.sizeof_gr_complex, 58 * 2)
        real = gr.complex_to_real()
        sign = gr.binary_slicer_fb()
        demap = gr.map_bb(
            [1,
             0])  # invert 0 and 1 because in gsm 0 is mapped to +1 and 1 to -1
        tovect = gr.stream_to_vector(1, 58 * 2)

        self.connect(self, slice1)
        self.connect(self, slice2)
        self.connect(slice1, (cat, 0))
        self.connect(slice2, (cat, 1))
        self.connect(cat, tostream, real, sign, demap, tovect, self)
Esempio n. 17
0
    def __init__(self, demod_rate, audio_decimation):
        """
        Hierarchical block for demodulating a broadcast FM signal.

        The input is the downconverted complex baseband signal
        (gr_complex).  The output is two streams of the demodulated
        audio (float) 0=Left, 1=Right.

        @param demod_rate: input sample rate of complex baseband input.
        @type demod_rate: float
        @param audio_decimation: how much to decimate demod_rate to get to audio.
        @type audio_decimation: integer
        """
        gr.hier_block2.__init__(
            self,
            "wfm_rcv_fmdet",
            gr.io_signature(1, 1, gr.sizeof_gr_complex),  # Input signature
            gr.io_signature(2, 2, gr.sizeof_float))  # Output signature
        lowfreq = -125e3 / demod_rate
        highfreq = 125e3 / demod_rate
        audio_rate = demod_rate / audio_decimation

        # We assign to self so that outsiders can grab the demodulator
        # if they need to.  E.g., to plot its output.
        #
        # input: complex; output: float

        self.fm_demod = gr.fmdet_cf(demod_rate, lowfreq, highfreq, 0.05)

        # input: float; output: float
        self.deemph_Left = fm_deemph(audio_rate)
        self.deemph_Right = fm_deemph(audio_rate)

        # compute FIR filter taps for audio filter
        width_of_transition_band = audio_rate / 32
        audio_coeffs = gr.firdes.low_pass(
            1.0,  # gain
            demod_rate,  # sampling rate
            15000,
            width_of_transition_band,
            gr.firdes.WIN_HAMMING)

        # input: float; output: float
        self.audio_filter = gr.fir_filter_fff(audio_decimation, audio_coeffs)
        if 1:
            # Pick off the stereo carrier/2 with this filter. It
            # attenuated 10 dB so apply 10 dB gain We pick off the
            # negative frequency half because we want to base band by
            # it!
            ##  NOTE THIS WAS HACKED TO OFFSET INSERTION LOSS DUE TO
            ##  DEEMPHASIS

            stereo_carrier_filter_coeffs = gr.firdes.complex_band_pass(
                10.0, demod_rate, -19020, -18980, width_of_transition_band,
                gr.firdes.WIN_HAMMING)

            #print "len stereo carrier filter = ",len(stereo_carrier_filter_coeffs)
            #print "stereo carrier filter ", stereo_carrier_filter_coeffs
            #print "width of transition band = ",width_of_transition_band, " audio rate = ", audio_rate

            # Pick off the double side band suppressed carrier
            # Left-Right audio. It is attenuated 10 dB so apply 10 dB
            # gain

            stereo_dsbsc_filter_coeffs = gr.firdes.complex_band_pass(
                20.0, demod_rate, 38000 - 15000 / 2, 38000 + 15000 / 2,
                width_of_transition_band, gr.firdes.WIN_HAMMING)
            #print "len stereo dsbsc filter = ",len(stereo_dsbsc_filter_coeffs)
            #print "stereo dsbsc filter ", stereo_dsbsc_filter_coeffs

            # construct overlap add filter system from coefficients
            # for stereo carrier
            self.stereo_carrier_filter = gr.fir_filter_fcc(
                audio_decimation, stereo_carrier_filter_coeffs)

            # carrier is twice the picked off carrier so arrange to do
            # a commplex multiply
            self.stereo_carrier_generator = gr.multiply_cc()

            # Pick off the rds signal
            stereo_rds_filter_coeffs = gr.firdes.complex_band_pass(
                30.0, demod_rate, 57000 - 1500, 57000 + 1500,
                width_of_transition_band, gr.firdes.WIN_HAMMING)
            #print "len stereo dsbsc filter = ",len(stereo_dsbsc_filter_coeffs)
            #print "stereo dsbsc filter ", stereo_dsbsc_filter_coeffs
            # construct overlap add filter system from coefficients for stereo carrier

            self.rds_signal_filter = gr.fir_filter_fcc(
                audio_decimation, stereo_rds_filter_coeffs)
            self.rds_carrier_generator = gr.multiply_cc()
            self.rds_signal_generator = gr.multiply_cc()
            self_rds_signal_processor = gr.null_sink(gr.sizeof_gr_complex)

            loop_bw = 2 * math.pi / 100.0
            max_freq = -2.0 * math.pi * 18990 / audio_rate
            min_freq = -2.0 * math.pi * 19010 / audio_rate
            self.stereo_carrier_pll_recovery = gr.pll_refout_cc(
                loop_bw, max_freq, min_freq)

            #self.stereo_carrier_pll_recovery.squelch_enable(False)
            ##pll_refout does not have squelch yet, so disabled for
            #now

            # set up mixer (multiplier) to get the L-R signal at
            # baseband

            self.stereo_basebander = gr.multiply_cc()

            # pick off the real component of the basebanded L-R
            # signal.  The imaginary SHOULD be zero

            self.LmR_real = gr.complex_to_real()
            self.Make_Left = gr.add_ff()
            self.Make_Right = gr.sub_ff()

            self.stereo_dsbsc_filter = gr.fir_filter_fcc(
                audio_decimation, stereo_dsbsc_filter_coeffs)

        if 1:

            # send the real signal to complex filter to pick off the
            # carrier and then to one side of a multiplier
            self.connect(self, self.fm_demod, self.stereo_carrier_filter,
                         self.stereo_carrier_pll_recovery,
                         (self.stereo_carrier_generator, 0))

            # send the already filtered carrier to the otherside of the carrier
            # the resulting signal from this multiplier is the carrier
            # with correct phase but at -38000 Hz.
            self.connect(self.stereo_carrier_pll_recovery,
                         (self.stereo_carrier_generator, 1))

            # send the new carrier to one side of the mixer (multiplier)
            self.connect(self.stereo_carrier_generator,
                         (self.stereo_basebander, 0))

            # send the demphasized audio to the DSBSC pick off filter,  the complex
            # DSBSC signal at +38000 Hz is sent to the other side of the mixer/multiplier
            # the result is BASEBANDED DSBSC with phase zero!
            self.connect(self.fm_demod, self.stereo_dsbsc_filter,
                         (self.stereo_basebander, 1))

            # Pick off the real part since the imaginary is
            # theoretically zero and then to one side of a summer
            self.connect(self.stereo_basebander, self.LmR_real,
                         (self.Make_Left, 0))

            #take the same real part of the DSBSC baseband signal and
            #send it to negative side of a subtracter
            self.connect(self.LmR_real, (self.Make_Right, 1))

            # Make rds carrier by taking the squared pilot tone and
            # multiplying by pilot tone
            self.connect(self.stereo_basebander,
                         (self.rds_carrier_generator, 0))
            self.connect(self.stereo_carrier_pll_recovery,
                         (self.rds_carrier_generator, 1))

            # take signal, filter off rds, send into mixer 0 channel
            self.connect(self.fm_demod, self.rds_signal_filter,
                         (self.rds_signal_generator, 0))

            # take rds_carrier_generator output and send into mixer 1
            # channel
            self.connect(self.rds_carrier_generator,
                         (self.rds_signal_generator, 1))

            # send basebanded rds signal and send into "processor"
            # which for now is a null sink
            self.connect(self.rds_signal_generator, self_rds_signal_processor)

        if 1:
            # pick off the audio, L+R that is what we used to have and
            # send it to the summer
            self.connect(self.fm_demod, self.audio_filter, (self.Make_Left, 1))

            # take the picked off L+R audio and send it to the PLUS
            # side of the subtractor
            self.connect(self.audio_filter, (self.Make_Right, 0))

            # The result of  Make_Left  gets    (L+R) +  (L-R) and results in 2*L
            # The result of Make_Right gets  (L+R) - (L-R) and results in 2*R
            self.connect(self.Make_Left, self.deemph_Left, (self, 0))
            self.connect(self.Make_Right, self.deemph_Right, (self, 1))
    def __init__ (self, fg, demod_rate, audio_decimation):
        """
        Hierarchical block for demodulating a broadcast FM signal.
        
        The input is the downconverted complex baseband signal (gr_complex).
        The output is two streams of the demodulated audio (float) 0=Left, 1=Right.
        
        @param fg: flow graph.
        @type fg: flow graph
        @param demod_rate: input sample rate of complex baseband input.
        @type demod_rate: float
        @param audio_decimation: how much to decimate demod_rate to get to audio.
        @type audio_decimation: integer
        """

        bandwidth = 200e3
        audio_rate = demod_rate / audio_decimation


        # We assign to self so that outsiders can grab the demodulator 
        # if they need to.  E.g., to plot its output.
        #
        # input: complex; output: float
        alpha = 0.25*bandwidth * math.pi / demod_rate
        beta = alpha * alpha / 4.0
        max_freq = 2.0*math.pi*100e3/demod_rate
            
        self.fm_demod = gr.pll_freqdet_cf (alpha,beta,max_freq,-max_freq)

        # input: float; output: float
        self.deemph_Left  = fm_deemph (fg, audio_rate)
        self.deemph_Right = fm_deemph (fg, audio_rate)
        
        # compute FIR filter taps for audio filter
        width_of_transition_band = audio_rate / 32
        audio_coeffs = gr.firdes.low_pass (1.0 ,         # gain
                                           demod_rate,      # sampling rate
                                           15000 ,
                                           width_of_transition_band,
                                           gr.firdes.WIN_HAMMING)
        # input: float; output: float
        self.audio_filter = gr.fir_filter_fff (audio_decimation, audio_coeffs)
        if 1:
            # Pick off the stereo carrier/2 with this filter. It attenuated 10 dB so apply 10 dB gain
            # We pick off the negative frequency half because we want to base band by it!
            ##  NOTE  THIS WAS HACKED TO OFFSET INSERTION LOSS DUE TO DEEMPHASIS

            stereo_carrier_filter_coeffs = gr.firdes.complex_band_pass(10.0,
                                                                   demod_rate,
                                                                   -19020,
                                                                   -18980,
                                                                   width_of_transition_band,
                                                                   gr.firdes.WIN_HAMMING)
            
            #print "len stereo carrier filter = ",len(stereo_carrier_filter_coeffs)
            #print "stereo carrier filter ", stereo_carrier_filter_coeffs
            #print "width of transition band = ",width_of_transition_band, " audio rate = ", audio_rate

            # Pick off the double side band suppressed carrier Left-Right audio. It is attenuated 10 dB so apply 10 dB gain

            stereo_dsbsc_filter_coeffs = gr.firdes.complex_band_pass(20.0,
                                                                     demod_rate,
                                                                     38000-15000/2,
                                                                     38000+15000/2,
                                                                     width_of_transition_band,
                                                                     gr.firdes.WIN_HAMMING)
            #print "len stereo dsbsc filter = ",len(stereo_dsbsc_filter_coeffs)
            #print "stereo dsbsc filter ", stereo_dsbsc_filter_coeffs
            # construct overlap add filter system from coefficients for stereo carrier

            self.stereo_carrier_filter = gr.fir_filter_fcc(audio_decimation, stereo_carrier_filter_coeffs)

            # carrier is twice the picked off carrier so arrange to do a commplex multiply

            self.stereo_carrier_generator = gr.multiply_cc();

            # Pick off the rds signal

            stereo_rds_filter_coeffs = gr.firdes.complex_band_pass(30.0,
                                                                     demod_rate,
                                                                     57000 - 1500,
                                                                     57000 + 1500,
                                                                     width_of_transition_band,
                                                                     gr.firdes.WIN_HAMMING)
            #print "len stereo dsbsc filter = ",len(stereo_dsbsc_filter_coeffs)
            #print "stereo dsbsc filter ", stereo_dsbsc_filter_coeffs
            # construct overlap add filter system from coefficients for stereo carrier

            self.stereo_carrier_filter = gr.fir_filter_fcc(audio_decimation, stereo_carrier_filter_coeffs)
	    self.rds_signal_filter = gr.fir_filter_fcc(audio_decimation, stereo_rds_filter_coeffs)






	    self.rds_carrier_generator = gr.multiply_cc();
	    self.rds_signal_generator = gr.multiply_cc();
	    self_rds_signal_processor = gr.null_sink(gr.sizeof_gr_complex);



            alpha = 5 * 0.25 * math.pi / (audio_rate)
            beta = alpha * alpha / 4.0
            max_freq = -2.0*math.pi*18990/audio_rate;
            min_freq = -2.0*math.pi*19010/audio_rate;
            
            self.stereo_carrier_pll_recovery = gr.pll_refout_cc(alpha,beta,max_freq,min_freq);
            #self.stereo_carrier_pll_recovery.squelch_enable(False) #pll_refout does not have squelch yet, so disabled for now 
            

            # set up mixer (multiplier) to get the L-R signal at baseband

            self.stereo_basebander = gr.multiply_cc();

            # pick off the real component of the basebanded L-R signal.  The imaginary SHOULD be zero

            self.LmR_real = gr.complex_to_real();
            self.Make_Left = gr.add_ff();
            self.Make_Right = gr.sub_ff();
            
            self.stereo_dsbsc_filter = gr.fir_filter_fcc(audio_decimation, stereo_dsbsc_filter_coeffs)


        if 1:

            # send the real signal to complex filter to pick off the carrier and then to one side of a multiplier
            fg.connect (self.fm_demod,self.stereo_carrier_filter,self.stereo_carrier_pll_recovery, (self.stereo_carrier_generator,0))
            # send the already filtered carrier to the otherside of the carrier
            fg.connect (self.stereo_carrier_pll_recovery, (self.stereo_carrier_generator,1))
            # the resulting signal from this multiplier is the carrier with correct phase but at -38000 Hz.

            # send the new carrier to one side of the mixer (multiplier)
            fg.connect (self.stereo_carrier_generator, (self.stereo_basebander,0))
            # send the demphasized audio to the DSBSC pick off filter,  the complex
            # DSBSC signal at +38000 Hz is sent to the other side of the mixer/multiplier
            fg.connect (self.fm_demod,self.stereo_dsbsc_filter, (self.stereo_basebander,1))
            # the result is BASEBANDED DSBSC with phase zero!

            # Pick off the real part since the imaginary is theoretically zero and then to one side of a summer
            fg.connect (self.stereo_basebander, self.LmR_real, (self.Make_Left,0))
            #take the same real part of the DSBSC baseband signal and send it to negative side of a subtracter
            fg.connect (self.LmR_real,(self.Make_Right,1))

	    # Make rds carrier by taking the squared pilot tone and multiplying by pilot tone
	    fg.connect (self.stereo_basebander,(self.rds_carrier_generator,0))
            fg.connect (self.stereo_carrier_pll_recovery,(self.rds_carrier_generator,1)) 
	    # take signal, filter off rds,  send into mixer 0 channel
	    fg.connect (self.fm_demod,self.rds_signal_filter,(self.rds_signal_generator,0))
            # take rds_carrier_generator output and send into mixer 1 channel
	    fg.connect (self.rds_carrier_generator,(self.rds_signal_generator,1))
	    # send basebanded rds signal and send into "processor" which for now is a null sink
	    fg.connect (self.rds_signal_generator,self_rds_signal_processor)
	    

        if 1:
            # pick off the audio, L+R that is what we used to have and send it to the summer
            fg.connect(self.fm_demod, self.audio_filter, (self.Make_Left, 1))
            # take the picked off L+R audio and send it to the PLUS side of the subtractor
            fg.connect(self.audio_filter,(self.Make_Right, 0))
            # The result of  Make_Left  gets    (L+R) +  (L-R) and results in 2*L
            # The result of Make_Right gets  (L+R) - (L-R) and results in 2*R


            # kludge the signals into a stereo channel
            kludge = gr.kludge_copy(gr.sizeof_float)
            fg.connect(self.Make_Left , self.deemph_Left, (kludge, 0))
            fg.connect(self.Make_Right, self.deemph_Right, (kludge, 1))

           #send it to the audio system
            gr.hier_block.__init__(self,
                                   fg,
                                   self.fm_demod,       # head of the pipeline
                                   kludge)              # tail of the pipeline
        else:
            fg.connect (self.fm_demod, self.audio_filter)
            gr.hier_block.__init__(self,
                                   fg,
                                   self.fm_demod,       # head of the pipeline
                                   self.audio_filter)   # tail of the pipeline
Esempio n. 19
0
def complex_to_real(N):
    op = gr.complex_to_real()
    tb = helper(N, op, gr.sizeof_gr_complex, gr.sizeof_float, 1, 1)
    return tb
Esempio n. 20
0
	def __init__(self):
		grc_wxgui.top_block_gui.__init__(self, title="USRP LRIT Receiver")

		##################################################
		# Variables
		##################################################
		self.config_filename = config_filename = "usrp_rx_lrit.cfg"
		self._saved_decim_config = ConfigParser.ConfigParser()
		self._saved_decim_config.read(config_filename)
		try: saved_decim = self._saved_decim_config.getint("main", "decim")
		except: saved_decim = 160
		self.saved_decim = saved_decim
		self.decim = decim = saved_decim
		self.symbol_rate = symbol_rate = 293e3
		self._saved_gain_mu_config = ConfigParser.ConfigParser()
		self._saved_gain_mu_config.read(config_filename)
		try: saved_gain_mu = self._saved_gain_mu_config.getfloat("main", "gain_mu")
		except: saved_gain_mu = 0.005
		self.saved_gain_mu = saved_gain_mu
		self._saved_gain_config = ConfigParser.ConfigParser()
		self._saved_gain_config.read(config_filename)
		try: saved_gain = self._saved_gain_config.getfloat("main", "gain")
		except: saved_gain = 33
		self.saved_gain = saved_gain
		self._saved_freq_config = ConfigParser.ConfigParser()
		self._saved_freq_config.read(config_filename)
		try: saved_freq = self._saved_freq_config.getfloat("main", "freq")
		except: saved_freq = 137e6
		self.saved_freq = saved_freq
		self._saved_costas_alpha_config = ConfigParser.ConfigParser()
		self._saved_costas_alpha_config.read(config_filename)
		try: saved_costas_alpha = self._saved_costas_alpha_config.getfloat("main", "costas_alpha")
		except: saved_costas_alpha = 0.005
		self.saved_costas_alpha = saved_costas_alpha
		self.samp_rate = samp_rate = 64e6/decim
		self.sps = sps = samp_rate/symbol_rate
		self.gain_mu = gain_mu = saved_gain_mu
		self.gain = gain = saved_gain
		self.freq = freq = saved_freq
		self.costas_alpha = costas_alpha = saved_costas_alpha

		##################################################
		# Notebooks
		##################################################
		self.displays = wx.Notebook(self.GetWin(), style=wx.NB_TOP)
		self.displays.AddPage(grc_wxgui.Panel(self.displays), "USRP RX")
		self.displays.AddPage(grc_wxgui.Panel(self.displays), "Costas Output")
		self.GridAdd(self.displays, 2, 0, 1, 3)

		##################################################
		# Controls
		##################################################
		self._decim_text_box = forms.text_box(
			parent=self.GetWin(),
			value=self.decim,
			callback=self.set_decim,
			label="Decim",
			converter=forms.int_converter(),
		)
		self.GridAdd(self._decim_text_box, 0, 0, 1, 1)
		_gain_mu_sizer = wx.BoxSizer(wx.VERTICAL)
		self._gain_mu_text_box = forms.text_box(
			parent=self.GetWin(),
			sizer=_gain_mu_sizer,
			value=self.gain_mu,
			callback=self.set_gain_mu,
			label="Gain Mu",
			converter=forms.float_converter(),
			proportion=0,
		)
		self._gain_mu_slider = forms.slider(
			parent=self.GetWin(),
			sizer=_gain_mu_sizer,
			value=self.gain_mu,
			callback=self.set_gain_mu,
			minimum=0,
			maximum=0.5,
			num_steps=100,
			style=wx.SL_HORIZONTAL,
			cast=float,
			proportion=1,
		)
		self.GridAdd(_gain_mu_sizer, 1, 1, 1, 1)
		_gain_sizer = wx.BoxSizer(wx.VERTICAL)
		self._gain_text_box = forms.text_box(
			parent=self.GetWin(),
			sizer=_gain_sizer,
			value=self.gain,
			callback=self.set_gain,
			label="Gain",
			converter=forms.float_converter(),
			proportion=0,
		)
		self._gain_slider = forms.slider(
			parent=self.GetWin(),
			sizer=_gain_sizer,
			value=self.gain,
			callback=self.set_gain,
			minimum=0,
			maximum=115,
			num_steps=115,
			style=wx.SL_HORIZONTAL,
			cast=float,
			proportion=1,
		)
		self.GridAdd(_gain_sizer, 0, 1, 1, 1)
		_freq_sizer = wx.BoxSizer(wx.VERTICAL)
		self._freq_text_box = forms.text_box(
			parent=self.GetWin(),
			sizer=_freq_sizer,
			value=self.freq,
			callback=self.set_freq,
			label="Frequency",
			converter=forms.float_converter(),
			proportion=0,
		)
		self._freq_slider = forms.slider(
			parent=self.GetWin(),
			sizer=_freq_sizer,
			value=self.freq,
			callback=self.set_freq,
			minimum=135e6,
			maximum=139e6,
			num_steps=400,
			style=wx.SL_HORIZONTAL,
			cast=float,
			proportion=1,
		)
		self.GridAdd(_freq_sizer, 0, 2, 1, 1)
		_costas_alpha_sizer = wx.BoxSizer(wx.VERTICAL)
		self._costas_alpha_text_box = forms.text_box(
			parent=self.GetWin(),
			sizer=_costas_alpha_sizer,
			value=self.costas_alpha,
			callback=self.set_costas_alpha,
			label="Costas Alpha",
			converter=forms.float_converter(),
			proportion=0,
		)
		self._costas_alpha_slider = forms.slider(
			parent=self.GetWin(),
			sizer=_costas_alpha_sizer,
			value=self.costas_alpha,
			callback=self.set_costas_alpha,
			minimum=0,
			maximum=0.5,
			num_steps=100,
			style=wx.SL_HORIZONTAL,
			cast=float,
			proportion=1,
		)
		self.GridAdd(_costas_alpha_sizer, 1, 0, 1, 1)

		##################################################
		# Blocks
		##################################################
		self.gr_add_const_vxx_0 = gr.add_const_vff((48.0, ))
		self.gr_agc_xx_0 = gr.agc_cc(1e-6, 1.0, 1.0/32767.0, 1.0)
		self.gr_binary_slicer_fb_0 = gr.binary_slicer_fb()
		self.gr_char_to_float_0 = gr.char_to_float()
		self.gr_complex_to_real_0 = gr.complex_to_real(1)
		self.gr_file_sink_0 = gr.file_sink(gr.sizeof_char*1, "bits.dat")
		self.gr_file_source_0 = gr.file_source(gr.sizeof_gr_complex*1, "lrit.dat", False)
		self.gr_float_to_char_0 = gr.float_to_char()
		self.gr_mpsk_receiver_cc_0 = gr.mpsk_receiver_cc(2, 0, costas_alpha, costas_alpha*costas_alpha/4.0, -0.05, 0.05, 0.5, gain_mu, sps, gain_mu*gain_mu/4.0, 0.05)
		self.gr_probe_mpsk_snr_c_0 = grc_blks2.probe_mpsk_snr_c(
			type='snr',
			alpha=0.0001,
			probe_rate=10,
		)
		self.gr_throttle_0 = gr.throttle(gr.sizeof_gr_complex*1, samp_rate)
		self.wxgui_fftsink2_0 = fftsink2.fft_sink_c(
			self.displays.GetPage(0).GetWin(),
			baseband_freq=freq,
			y_per_div=10,
			y_divs=10,
			ref_level=50,
			sample_rate=samp_rate,
			fft_size=1024,
			fft_rate=30,
			average=False,
			avg_alpha=None,
			title="Spectrum",
			peak_hold=False,
		)
		self.displays.GetPage(0).GridAdd(self.wxgui_fftsink2_0.win, 0, 0, 1, 1)
		self.wxgui_numbersink2_0 = numbersink2.number_sink_f(
			self.displays.GetPage(1).GetWin(),
			unit="dB",
			minval=0,
			maxval=30,
			factor=1.0,
			decimal_places=1,
			ref_level=0,
			sample_rate=10,
			number_rate=10,
			average=False,
			avg_alpha=None,
			label="SNR",
			peak_hold=False,
			show_gauge=True,
		)
		self.displays.GetPage(1).GridAdd(self.wxgui_numbersink2_0.win, 2, 0, 1, 1)
		self.wxgui_scopesink2_0 = scopesink2.scope_sink_c(
			self.displays.GetPage(0).GetWin(),
			title="Waveform",
			sample_rate=samp_rate,
			v_scale=0.5,
			t_scale=20.0/samp_rate,
			ac_couple=False,
			xy_mode=True,
			num_inputs=1,
		)
		self.displays.GetPage(0).GridAdd(self.wxgui_scopesink2_0.win, 1, 0, 1, 1)
		self.wxgui_scopesink2_1 = scopesink2.scope_sink_c(
			self.displays.GetPage(1).GetWin(),
			title="Scope Plot",
			sample_rate=samp_rate,
			v_scale=0.4,
			t_scale=20.0/samp_rate,
			ac_couple=False,
			xy_mode=True,
			num_inputs=1,
		)
		self.displays.GetPage(1).GridAdd(self.wxgui_scopesink2_1.win, 0, 0, 1, 1)

		##################################################
		# Connections
		##################################################
		self.connect((self.gr_agc_xx_0, 0), (self.wxgui_scopesink2_0, 0))
		self.connect((self.gr_file_source_0, 0), (self.gr_throttle_0, 0))
		self.connect((self.gr_throttle_0, 0), (self.gr_agc_xx_0, 0))
		self.connect((self.gr_probe_mpsk_snr_c_0, 0), (self.wxgui_numbersink2_0, 0))
		self.connect((self.gr_mpsk_receiver_cc_0, 0), (self.gr_probe_mpsk_snr_c_0, 0))
		self.connect((self.gr_agc_xx_0, 0), (self.gr_mpsk_receiver_cc_0, 0))
		self.connect((self.gr_mpsk_receiver_cc_0, 0), (self.wxgui_scopesink2_1, 0))
		self.connect((self.gr_agc_xx_0, 0), (self.wxgui_fftsink2_0, 0))
		self.connect((self.gr_mpsk_receiver_cc_0, 0), (self.gr_complex_to_real_0, 0))
		self.connect((self.gr_complex_to_real_0, 0), (self.gr_binary_slicer_fb_0, 0))
		self.connect((self.gr_binary_slicer_fb_0, 0), (self.gr_char_to_float_0, 0))
		self.connect((self.gr_char_to_float_0, 0), (self.gr_add_const_vxx_0, 0))
		self.connect((self.gr_add_const_vxx_0, 0), (self.gr_float_to_char_0, 0))
		self.connect((self.gr_float_to_char_0, 0), (self.gr_file_sink_0, 0))
Esempio n. 21
0
    def __init__(self,
                 if_rate,        # Incoming sample rate
                 symbol_rate,    # Original symbol rate
                 excess_bw,      # RRC excess bandwidth, typically 0.35-0.5
                 costas_alpha,   # Costas loop 1st order gain, typically 0.01-0.2
                 costas_beta,    # Costas loop 2nd order gain, typically alpha^2/4.0
                 costas_max,     # Costas loop max frequency offset in radians/sample
                 mm_gain_mu,     # M&M loop 1st order gain, typically 0.001-0.2
                 mm_gain_omega,  # M&M loop 2nd order gain, typically alpha^2/4.0
                 mm_omega_limit, # M&M loop max timing error
                 ):
        
        gr.hier_block2.__init__(self, "receive_path",
                                gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature
                                gr.io_signature(0, 0, 0))                    # Output signature
        
        grc_wxgui.top_block_gui.__init__(self, title="Top Block")
        
        self._if_rate = if_rate
        self._sps = int(self._if_rate/symbol_rate)
        print "IF sample rate:", n2s(self._if_rate)
        print "Symbol rate:", n2s(symbol_rate)
        print "Samples/symbol:", self._sps
        print "RRC bandwidth:", excess_bw
        
        # Create AGC to scale input to unity
        self._agc = gr.agc_cc(1e-5, 1.0, 1.0, 1.0)

	# Create RRC with specified excess bandwidth
	taps = gr.firdes.root_raised_cosine(1.0,          # Gain
					    self._sps,    # Sampling rate
					    1.0,          # Symbol rate
					    excess_bw,    # Roll-off factor
					    11*self._sps) # Number of taps

	self._rrc = gr.fir_filter_ccf(1, taps)
        
        # Create a Costas loop frequency/phase recovery block

        print "Costas alpha:", costas_alpha
        print "Costas beta:", costas_beta
        print "Costas max:", costas_max
        
        self._costas = gr.costas_loop_cc(costas_alpha,  # PLL first order gain
                                         costas_beta,   # PLL second order gain
                                         costas_max,    # Max frequency offset rad/sample
                                         -costas_max,   # Min frequency offset rad/sample
                                         2)             # BPSK

        # Create a M&M bit synchronization retiming block
        mm_mu = 0.5
        mm_omega = self._sps

        print "MM gain mu:", mm_gain_mu
        print "MM gain omega:", mm_gain_omega
        print "MM omega limit:", mm_omega_limit
        
        self._mm = gr.clock_recovery_mm_cc(mm_omega,       # Initial samples/symbol
                                           mm_gain_omega,  # Second order gain
                                           mm_mu,          # Initial symbol phase
                                           mm_gain_mu,     # First order gain
                                           mm_omega_limit) # Maximum timing offset

        # Add an SNR probe on the demodulated constellation
        self._snr_probe = gr.probe_mpsk_snr_c(10.0/symbol_rate)
        
#        #Null for recuperate the out of snr
#        self.gr_null_sink_0 = gr.null_sink(gr.sizeof_double)
#        
#        self.connect(self._snr_probe, (self.gr_null_sink_0,0))
        
        self.connect(self._mm, self._snr_probe)
        
        # Slice the resulting constellation into bits.
        # Get inphase channel and make decision about 0
        self._c2r = gr.complex_to_real()
        self._slicer = gr.binary_slicer_fb() 
        
        # Descramble BERT sequence.  A channel error will create 3 incorrect bits
        self._descrambler = gr.descrambler_bb(0x8A, 0x7F, 7) # CCSDS 7-bit descrambler

        # Measure BER by the density of 0s in the stream
        self._ber = gr.probe_density_b(1.0/symbol_rate)
        
#        #Null for recuperate the out of ber
#        self.gr_null_sink_1 = gr.null_sink(gr.sizeof_double)
#        
#        self.connect(self._ber, self.gr_null_sink_1)
        
        self.create_number_sink(self._sps)
        self.connect((self._snr_probe, 0), (self.wxgui_numbersink2_0, 0))
        self.connect((self._ber, 0), (self.wxgui_numbersink2_1, 0))

        self.connect(self, self._agc, self._rrc, self._costas, self._mm, 
                     self._c2r, self._slicer, self._descrambler, self._ber)
Esempio n. 22
0
    def __init__(self,frame,panel,vbox,argv):
        stdgui2.std_top_block.__init__ (self,frame,panel,vbox,argv)

        usage="%prog: [options] [input_filename]. \n If you don't specify an input filename the usrp will be used as source\n " \
              "Make sure your input capture file containes interleaved shorts not complex floats"
        parser=OptionParser(option_class=eng_option, usage=usage)
        parser.add_option("-a", "--args", type="string", default="",
                          help="UHD device address args [default=%default]")
        parser.add_option("", "--spec", type="string", default=None,
	                  help="Subdevice of UHD device where appropriate")
        parser.add_option("-A", "--antenna", type="string", default=None,
                          help="select Rx Antenna where appropriate")
        parser.add_option("-s", "--samp-rate", type="eng_float", default=1e6,
                          help="set sample rate")
        parser.add_option("-f", "--freq", type="eng_float", default=519.25e6,
                          help="set frequency to FREQ", metavar="FREQ")
        parser.add_option("-g", "--gain", type="eng_float", default=None,
                          help="set gain in dB (default is midpoint)")
        parser.add_option("-c", "--contrast", type="eng_float", default=1.0,
                          help="set contrast (default is 1.0)")
        parser.add_option("-b", "--brightness", type="eng_float", default=0.0,
                          help="set brightness (default is 0)")
        parser.add_option("-p", "--pal", action="store_true", default=False,
                          help="PAL video format (this is the default)")
        parser.add_option("-n", "--ntsc", action="store_true", default=False,
                          help="NTSC video format")
        parser.add_option("-o", "--out-filename", type="string", default="sdl",
                          help="For example out_raw_uchar.gray. If you don't specify an output filename you will get a video_sink_sdl realtime output window. You then need to have gr-video-sdl installed)")
        parser.add_option("-r", "--repeat", action="store_false", default=True,
                          help="repeat file in a loop")
        parser.add_option("", "--freq-min", type="eng_float", default=50.25e6,
                          help="Set a minimum frequency [default=%default]")
        parser.add_option("", "--freq-max", type="eng_float", default=900.25e6,
                          help="Set a maximum frequency [default=%default]")

        (options, args) = parser.parse_args()
        if not ((len(args) == 1) or (len(args) == 0)):
            parser.print_help()
            sys.exit(1)
        
        if len(args) == 1:
          filename = args[0]
        else:
          filename = None

        self.frame = frame
        self.panel = panel
        
        self.contrast = options.contrast
        self.brightness = options.brightness
        self.state = "FREQ"
        self.freq = 0

        self.tv_freq_min = options.freq_min
        self.tv_freq_max = options.freq_max

        # build graph
        self.u=None

        if not (options.out_filename=="sdl"):
          options.repeat=False

        usrp_rate = options.samp_rate

        if not ((filename is None) or (filename=="usrp")):
          # file is data source
          self.filesource = gr.file_source(gr.sizeof_short,filename,options.repeat)
          self.istoc = gr.interleaved_short_to_complex()
          self.connect(self.filesource,self.istoc)
          self.src=self.istoc

          options.gain=0.0
          self.gain=0.0

        else: # use a UHD device
          self.u = uhd.usrp_source(device_addr=options.args, stream_args=uhd.stream_args('fc32'))

          # Set the subdevice spec
          if(options.spec):
            self.u.set_subdev_spec(options.spec, 0)
            
          # Set the antenna
          if(options.antenna):
            self.u.set_antenna(options.antenna, 0)

          self.u.set_samp_rate(usrp_rate)
          dev_rate = self.u.get_samp_rate()

          if options.gain is None:
            # if no gain was specified, use the mid-point in dB
            g = self.u.get_gain_range()
            options.gain = float(g.start()+g.stop())/2.0

          self.src=self.u

        self.gain = options.gain        

        f2uc=gr.float_to_uchar()

        # sdl window as final sink
        if not (options.pal or options.ntsc):
          options.pal=True #set default to PAL

        if options.pal:
          lines_per_frame=625.0
          frames_per_sec=25.0
          show_width=768

        elif options.ntsc:
          lines_per_frame=525.0
          frames_per_sec=29.97002997
          show_width=640

        width=int(usrp_rate/(lines_per_frame*frames_per_sec))
        height=int(lines_per_frame)

        if (options.out_filename=="sdl"):
          #Here comes the tv screen, you have to build and install
          #gr-video-sdl for this (subproject of gnuradio, only in cvs
          #for now)
          try:
            video_sink = video_sdl.sink_uc ( frames_per_sec, width, height, 0,
                                             show_width, height)
          except:
            print "gr-video-sdl is not installed"
            print "realtime \"sdl\" video output window is not available"
            raise SystemExit, 1
          self.dst=video_sink
        else:
          print "You can use the imagemagick display tool to show the resulting imagesequence"
          print "use the following line to show the demodulated TV-signal:"
          print "display -depth 8 -size " +str(width)+ "x" + str(height) \
              + " gray:" + options.out_filename
          print "(Use the spacebar to advance to next frames)" 
          options.repeat=False
          file_sink=gr.file_sink(gr.sizeof_char, options.out_filename)
          self.dst =file_sink 

        self.agc=gr.agc_cc(1e-7,1.0,1.0) #1e-7
        self.am_demod = gr.complex_to_mag ()
        self.set_blacklevel=gr.add_const_ff(0.0)
        self.invert_and_scale = gr.multiply_const_ff (0.0) #-self.contrast *128.0*255.0/(200.0)

        # now wire it all together
        #sample_rate=options.width*options.height*options.framerate

        process_type='do_no_sync'
        if process_type=='do_no_sync':
          self.connect (self.src, self.agc,self.am_demod,
                        self.invert_and_scale, self.set_blacklevel,
                        f2uc,self.dst)
        elif process_type=='do_tv_sync_adv':
          #defaults: gr.tv_sync_adv (double sampling_freq, unsigned
          #int tv_format,bool output_active_video_only=false, bool
          #do_invert=false, double wanted_black_level=0.0, double
          #wanted_white_level=255.0, double avg_alpha=0.1, double
          #initial_gain=1.0, double initial_offset=0.0,bool
          #debug=false)

          #note, this block is not yet in cvs
          self.tv_sync_adv=gr.tv_sync_adv(usrp_rate, 0, False, False,
                                          0.0, 255.0, 0.01, 1.0, 0.0, False)
          self.connect (self.src, self.am_demod, self.invert_and_scale,
                        self.tv_sync_adv, s2f, f2uc, self.dst) 

        elif process_type=='do_nullsink':
          #self.connect (self.src, self.am_demod,self.invert_and_scale,f2uc,video_sink)
          c2r=gr.complex_to_real()
          nullsink=gr.null_sink(gr.sizeof_float)
          self.connect (self.src, c2r,nullsink) #video_sink)
        elif process_type=='do_tv_sync_corr':
          frame_size=width*height #int(usrp_rate/25.0)
          nframes=10# 32
          search_window=20*nframes 
          debug=False
          video_alpha=0.3 #0.1
          corr_alpha=0.3
          
          #Note: this block is not yet in cvs
          tv_corr=gr.tv_correlator_ff(frame_size,nframes, search_window,
                                      video_alpha, corr_alpha,debug) 
          shift=gr.add_const_ff(-0.7)
          
          self.connect (self.src, self.agc, self.am_demod, tv_corr,
                        self.invert_and_scale, self.set_blacklevel,
                        f2uc, self.dst)
        else: # process_type=='do_test_image':
          src_vertical_bars = gr.sig_source_f (usrp_rate, gr.GR_SIN_WAVE,
                                               10.0 *usrp_rate/320, 255,128)
          self.connect(src_vertical_bars, f2uc, self.dst)

        self._build_gui(vbox, usrp_rate, usrp_rate, usrp_rate)
 

        frange = self.u.get_freq_range()
        if(frange.start() > self.tv_freq_max or frange.stop() <  self.tv_freq_min):
            sys.stderr.write("Radio does not support required frequency range.\n")
            sys.exit(1)
        if(options.freq < self.tv_freq_min or options.freq > self.tv_freq_max):
            sys.stderr.write("Requested frequency is outside of required frequency range.\n")
            sys.exit(1)

        # set initial values
        self.set_gain(options.gain)
        self.set_contrast(self.contrast)
        self.set_brightness(options.brightness)
        if not(self.set_freq(options.freq)):
            self._set_status_msg("Failed to set initial frequency")
Esempio n. 23
0
    def __init__(self, options):
        
        gr.hier_block2.__init__(self, "bpsk_demodulator",
                                gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature
                                gr.io_signature(0, 0, 0))                    # Output signature
        
        grc_wxgui.top_block_gui.__init__(self, title="Top Block")
        
        self._samples_per_symbol = options.samples_per_symbol
        
        # Number of bits per symbol
        self._bits_per_symbol = 1
        # Create AGC to scale input to unity
        self._agc = gr.agc_cc(1e-5, 1.0, 1.0, 1.0)
        # Create RRC with specified excess bandwidth
        taps = gr.firdes.root_raised_cosine(1.0,       # Gain
                        self._samples_per_symbol,      # Sampling rate
                        1.0,                           # Symbol rate
                        0.35,                          # Roll-off factor
                        11*self._samples_per_symbol)                  # Number of taps
        
        self._rrc = gr.fir_filter_ccf(1, taps)
        
        # Create a Costas loop frequency/phase recovery block
        self._costas = digital.costas_loop_cc(6.28/100.0, 2)
        self.gr_null_sink_f1 = gr.null_sink(gr.sizeof_float*1)
        
        
        # Create a M&M bit synchronization retiming block        
        self._mm = digital.clock_recovery_mm_cc(self._samples_per_symbol,       # Initial samples/symbol
                                           1e-06,  # Second order gain
                                           0.5,          # Initial symbol phase
                                           0.001,     # First order gain
                                           0.0001) # Maximum timing offset
        
        # Add an SNR probe on the demodulated constellation
        #self._snr_probe = gr.probe_mpsk_snr_c(10.0/symbol_rate)
        self._symbol_rate = options.data_rate / self._bits_per_symbol
        #self._snr_probe = digital.mpsk_snr_est_cc(0, 10000, 0.001) # 0 at the first mean Simple
        
        self._snr_probe = digital.probe_mpsk_snr_est_c(digital.SNR_EST_M2M4, alpha=10.0/self._symbol_rate)
        #self._snr_probe = digital.mpsk_snr_est_cc(digital.SNR_EST_SIMPLE, alpha=10.0/self._symbol_rate)
    
  
        # Slice the resulting constellation into bits.
        # Get inphase channel and make decision about 0
        self._c2r = gr.complex_to_real()
        self._slicer = digital.binary_slicer_fb() 
        
        # Descramble BERT sequence.  A channel error will create 3 incorrect bits
        self._descrambler = gr.descrambler_bb(0x8A, 0x7F, 31) # CCSDS 7-bit descrambler

        # Measure BER by the density of 0s in the stream
        # self._ber = gr.probe_density_b(1.0/symbol_rate)
        self._ber = grc_blks2.error_rate(type='BER', 
                                         win_size=1000,
                                         bits_per_symbol=1)
        
        #self.create_number_sink(self._samples_per_symbol)
        self.gr_null_sink_f2 = gr.null_sink(gr.sizeof_float*1)
        
        #Create a vector source reference to calculate BER
        self._vector_source_ref = gr.vector_source_b(([1,]), True, 1)
        
        #create a comparator 
        self.comparator = howto.compare_vector_cci((1, 1, 1, 1 ,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1), (0,0, 1, 1, 0,0), 5, 0, True)
        
        
        #Connection of blocks
        #"""""""""""""""""""""""""""""""""-->_snr_probe-->gr_null_sink_cc
        # agc --> _rrc --> costas --> _mm --> _c2r  -->  _slicer  -->   _descrambler --> _ber --> gr_null_sink_f2
        #"""""""""""""""""""""""""--> gr_null_sink_f1 ""           _vector_source_ref-->
        
#        
#        self.connect(self, self._agc, self._rrc, self._costas, self._mm, 
#                     self._c2r, self._slicer, self._descrambler, self.comparator, (self._ber, 1))
#        
                
        self.connect(self, self._agc, self._rrc, self._costas, self._mm, 
                     self._c2r, self._slicer, self._descrambler, (self._ber, 1))
        
        
        self.connect((self._costas, 1), (self.gr_null_sink_f1, 0))
        self.connect(self._mm, self._snr_probe)
        
        self.connect(self._vector_source_ref, (self._ber,0)) 
        self.connect(self._ber, self.gr_null_sink_f2)
Esempio n. 24
0
def complex_to_real(N):
    op = gr.complex_to_real()
    tb = helper(N, op, gr.sizeof_gr_complex, gr.sizeof_float, 1, 1)
    return tb
Esempio n. 25
0
        def __init__(self):
                grc_wxgui.top_block_gui.__init__(self, title="Top Block")
                _icon_path = "/usr/share/icons/hicolor/32x32/apps/gnuradio-grc.png"
                self.SetIcon(wx.Icon(_icon_path, wx.BITMAP_TYPE_ANY))
 
                ##################################################
                # Variables
                ##################################################
                self.samp_rate = samp_rate = 192000
                self.Noise = Noise = 0.01
                self.Loudness = Loudness = 0.7
                self.Frequency = Frequency = 5000
 
                ##################################################
                # Blocks
                ##################################################
                _Noise_sizer = wx.BoxSizer(wx.VERTICAL)
                self._Noise_text_box = forms.text_box(
                        parent=self.GetWin(),
                        sizer=_Noise_sizer,
                        value=self.Noise,
                        callback=self.set_Noise,
                        label="Noise",
                        converter=forms.float_converter(),
                        proportion=0,
                )
                self._Noise_slider = forms.slider(
                        parent=self.GetWin(),
                        sizer=_Noise_sizer,
                        value=self.Noise,
                        callback=self.set_Noise,
                        minimum=0.0,
                        maximum=1,
                        num_steps=1000,
                        style=wx.SL_HORIZONTAL,
                        cast=float,
                        proportion=1,
                )
                self.Add(_Noise_sizer)
                _Loudness_sizer = wx.BoxSizer(wx.VERTICAL)
                self._Loudness_text_box = forms.text_box(
                        parent=self.GetWin(),
                        sizer=_Loudness_sizer,
                        value=self.Loudness,
                        callback=self.set_Loudness,
                        label="Loudness",
                        converter=forms.float_converter(),
                        proportion=0,
                )
                self._Loudness_slider = forms.slider(
                        parent=self.GetWin(),
                        sizer=_Loudness_sizer,
                        value=self.Loudness,
                        callback=self.set_Loudness,
                        minimum=0.0,
                        maximum=1.0,
                        num_steps=1000,
                        style=wx.SL_HORIZONTAL,
                        cast=float,
                        proportion=1,
                )
                self.Add(_Loudness_sizer)
                _Frequency_sizer = wx.BoxSizer(wx.VERTICAL)
                self._Frequency_text_box = forms.text_box(
                        parent=self.GetWin(),
                        sizer=_Frequency_sizer,
                        value=self.Frequency,
                        callback=self.set_Frequency,
                        label="Frequency",
                        converter=forms.int_converter(),
                        proportion=0,
                )
                self._Frequency_slider = forms.slider(
                        parent=self.GetWin(),
                        sizer=_Frequency_sizer,
                        value=self.Frequency,
                        callback=self.set_Frequency,
                        minimum=10,
                        maximum=20000,
                        num_steps=1000,
                        style=wx.SL_HORIZONTAL,
                        cast=int,
                        proportion=1,
                )
                self.Add(_Frequency_sizer)
                self.wxgui_waterfallsink2_0 = waterfallsink2.waterfall_sink_c(
                        self.GetWin(),
                        baseband_freq=0,
                        dynamic_range=100,
                        ref_level=0,
                        ref_scale=4.0,
                        sample_rate=samp_rate,
                        fft_size=2048,
                        fft_rate=15,
                        average=False,
                        avg_alpha=0.1,
                        title="Waterfall Plot",
                        size=(900,200),
                )
                self.Add(self.wxgui_waterfallsink2_0.win)
                def wxgui_waterfallsink2_0_callback(x, y):
                        self.set_Frequency(x)
 
                self.wxgui_waterfallsink2_0.set_callback(wxgui_waterfallsink2_0_callback)
                self.wxgui_fftsink2_0 = fftsink2.fft_sink_c(
                        self.GetWin(),
                        baseband_freq=0,
                        y_per_div=10,
                        y_divs=10,
                        ref_level=0,
                        ref_scale=4.0,
                        sample_rate=samp_rate,
                        fft_size=2048,
                        fft_rate=15,
                        average=True,
                        avg_alpha=0.1,
                        title="FFT Plot",
                        peak_hold=True,
                )
                self.Add(self.wxgui_fftsink2_0.win)
                self.gr_sig_source_x_2 = gr.sig_source_c(samp_rate, gr.GR_SIN_WAVE, Frequency, Loudness, 0)
                self.gr_noise_source_x_0 = gr.noise_source_c(gr.GR_GAUSSIAN, Noise, 0)
                self.gr_complex_to_real_0 = gr.complex_to_real(1)
                self.gr_add_xx_1 = gr.add_vcc(1)
                self.audio_sink_0 = audio.sink(samp_rate, "", True)
 
                ##################################################
                # Connections
                ##################################################
                self.connect((self.gr_complex_to_real_0, 0), (self.audio_sink_0, 0))
                self.connect((self.gr_noise_source_x_0, 0), (self.gr_add_xx_1, 0))
                self.connect((self.gr_sig_source_x_2, 0), (self.gr_add_xx_1, 1))
                self.connect((self.gr_add_xx_1, 0), (self.gr_complex_to_real_0, 0))
                self.connect((self.gr_add_xx_1, 0), (self.wxgui_waterfallsink2_0, 0))
                self.connect((self.gr_add_xx_1, 0), (self.wxgui_fftsink2_0, 0))
	def __init__(self, satellite='NOAAxx', decim=50, baseband_file="/home/martin/GNURadioData/hrpt/baseband/HRPT_NOAA19_2010-09-10_12-35-34_UTC_U2_d50.sam", frames_file=os.environ['HOME'] + '/noaa_hrpt_frames.hmf', deframer_outsync_frames=5, deframer_insync_frames=2, clock_alpha=0.005, gain_mu=0.005, pll_alpha=0.005, pll_beta=0.00001, deframer_sync_check=True, symb_rate=600*1109):
		grc_wxgui.top_block_gui.__init__(self, title="NOAA HRPT Receiver from baseband file")
		_icon_path = "/usr/share/icons/hicolor/32x32/apps/gnuradio-grc.png"
		self.SetIcon(wx.Icon(_icon_path, wx.BITMAP_TYPE_ANY))

		##################################################
		# Parameters
		##################################################
		self.satellite = satellite
		self.decim = decim
		self.baseband_file = baseband_file
		self.frames_file = frames_file
		self.deframer_outsync_frames = deframer_outsync_frames
		self.deframer_insync_frames = deframer_insync_frames
		self.clock_alpha = clock_alpha
		self.gain_mu = gain_mu
		self.pll_alpha = pll_alpha
		self.pll_beta = pll_beta
		self.deframer_sync_check = deframer_sync_check
		self.symb_rate = symb_rate

		##################################################
		# Variables
		##################################################
		self.decim_tb = decim_tb = decim
		self.symb_rate_tb = symb_rate_tb = symb_rate
		self.samp_rate = samp_rate = 100e6/decim_tb
		self.sps = sps = samp_rate/symb_rate_tb
		self.satellite_text = satellite_text = satellite
		self.samp_rate_st = samp_rate_st = samp_rate
		self.pll_beta_sl = pll_beta_sl = pll_beta
		self.pll_alpha_sl = pll_alpha_sl = pll_alpha
		self.max_clock_offset = max_clock_offset = 0.1
		self.max_carrier_offset = max_carrier_offset = 2*math.pi*100e3/samp_rate
		self.hs = hs = int(sps/2.0)
		self.gain_mu_sl = gain_mu_sl = gain_mu
		self.frames_file_text_inf = frames_file_text_inf = frames_file
		self.deframer_sync_after_text = deframer_sync_after_text = deframer_insync_frames
		self.deframer_nosync_after_text = deframer_nosync_after_text = deframer_outsync_frames
		self.deframer_check_sync_text = deframer_check_sync_text = deframer_sync_check
		self.datetime_text = datetime_text = strftime("%A, %B %d %Y %H:%M:%S", localtime())
		self.clock_alpha_sl = clock_alpha_sl = clock_alpha
		self.baseband_file_text_inf = baseband_file_text_inf = baseband_file

		##################################################
		# Notebooks
		##################################################
		self.rx_ntb = wx.Notebook(self.GetWin(), style=wx.NB_TOP)
		self.rx_ntb.AddPage(grc_wxgui.Panel(self.rx_ntb), "Input baseband")
		self.rx_ntb.AddPage(grc_wxgui.Panel(self.rx_ntb), "PLL demodulator and Clock sync")
		self.rx_ntb.AddPage(grc_wxgui.Panel(self.rx_ntb), "Deframer")
		self.rx_ntb.AddPage(grc_wxgui.Panel(self.rx_ntb), "Output")
		self.Add(self.rx_ntb)

		##################################################
		# Controls
		##################################################
		self._decim_tb_text_box = forms.text_box(
			parent=self.rx_ntb.GetPage(0).GetWin(),
			value=self.decim_tb,
			callback=self.set_decim_tb,
			label="Decimation",
			converter=forms.int_converter(),
		)
		self.rx_ntb.GetPage(0).GridAdd(self._decim_tb_text_box, 1, 3, 1, 1)
		self._symb_rate_tb_text_box = forms.text_box(
			parent=self.rx_ntb.GetPage(1).GetWin(),
			value=self.symb_rate_tb,
			callback=self.set_symb_rate_tb,
			label="Symbol rate",
			converter=forms.int_converter(),
		)
		self.rx_ntb.GetPage(1).GridAdd(self._symb_rate_tb_text_box, 2, 1, 1, 1)
		self._satellite_text_static_text = forms.static_text(
			parent=self.rx_ntb.GetPage(0).GetWin(),
			value=self.satellite_text,
			callback=self.set_satellite_text,
			label="Sat ",
			converter=forms.str_converter(),
		)
		self.rx_ntb.GetPage(0).GridAdd(self._satellite_text_static_text, 1, 0, 1, 1)
		self._samp_rate_st_static_text = forms.static_text(
			parent=self.rx_ntb.GetPage(0).GetWin(),
			value=self.samp_rate_st,
			callback=self.set_samp_rate_st,
			label="Sample rate",
			converter=forms.float_converter(),
		)
		self.rx_ntb.GetPage(0).GridAdd(self._samp_rate_st_static_text, 1, 4, 1, 1)
		_pll_beta_sl_sizer = wx.BoxSizer(wx.VERTICAL)
		self._pll_beta_sl_text_box = forms.text_box(
			parent=self.rx_ntb.GetPage(1).GetWin(),
			sizer=_pll_beta_sl_sizer,
			value=self.pll_beta_sl,
			callback=self.set_pll_beta_sl,
			label="PLL Beta",
			converter=forms.float_converter(),
			proportion=0,
		)
		self._pll_beta_sl_slider = forms.slider(
			parent=self.rx_ntb.GetPage(1).GetWin(),
			sizer=_pll_beta_sl_sizer,
			value=self.pll_beta_sl,
			callback=self.set_pll_beta_sl,
			minimum=0.000001,
			maximum=0.001,
			num_steps=1000,
			style=wx.SL_HORIZONTAL,
			cast=float,
			proportion=1,
		)
		self.rx_ntb.GetPage(1).GridAdd(_pll_beta_sl_sizer, 2, 0, 1, 1)
		_pll_alpha_sl_sizer = wx.BoxSizer(wx.VERTICAL)
		self._pll_alpha_sl_text_box = forms.text_box(
			parent=self.rx_ntb.GetPage(1).GetWin(),
			sizer=_pll_alpha_sl_sizer,
			value=self.pll_alpha_sl,
			callback=self.set_pll_alpha_sl,
			label="PLL Alpha",
			converter=forms.float_converter(),
			proportion=0,
		)
		self._pll_alpha_sl_slider = forms.slider(
			parent=self.rx_ntb.GetPage(1).GetWin(),
			sizer=_pll_alpha_sl_sizer,
			value=self.pll_alpha_sl,
			callback=self.set_pll_alpha_sl,
			minimum=0.001,
			maximum=0.1,
			num_steps=100,
			style=wx.SL_HORIZONTAL,
			cast=float,
			proportion=1,
		)
		self.rx_ntb.GetPage(1).GridAdd(_pll_alpha_sl_sizer, 1, 0, 1, 1)
		_gain_mu_sl_sizer = wx.BoxSizer(wx.VERTICAL)
		self._gain_mu_sl_text_box = forms.text_box(
			parent=self.rx_ntb.GetPage(1).GetWin(),
			sizer=_gain_mu_sl_sizer,
			value=self.gain_mu_sl,
			callback=self.set_gain_mu_sl,
			label="Gain MU",
			converter=forms.float_converter(),
			proportion=0,
		)
		self._gain_mu_sl_slider = forms.slider(
			parent=self.rx_ntb.GetPage(1).GetWin(),
			sizer=_gain_mu_sl_sizer,
			value=self.gain_mu_sl,
			callback=self.set_gain_mu_sl,
			minimum=0.0001,
			maximum=0.01,
			num_steps=100,
			style=wx.SL_HORIZONTAL,
			cast=float,
			proportion=1,
		)
		self.rx_ntb.GetPage(1).GridAdd(_gain_mu_sl_sizer, 1, 2, 1, 1)
		self._frames_file_text_inf_static_text = forms.static_text(
			parent=self.rx_ntb.GetPage(3).GetWin(),
			value=self.frames_file_text_inf,
			callback=self.set_frames_file_text_inf,
			label="Frames filename",
			converter=forms.str_converter(),
		)
		self.rx_ntb.GetPage(3).GridAdd(self._frames_file_text_inf_static_text, 3, 0, 1, 1)
		self._deframer_sync_after_text_static_text = forms.static_text(
			parent=self.rx_ntb.GetPage(2).GetWin(),
			value=self.deframer_sync_after_text,
			callback=self.set_deframer_sync_after_text,
			label="Deframe sync after",
			converter=forms.float_converter(),
		)
		self.rx_ntb.GetPage(2).GridAdd(self._deframer_sync_after_text_static_text, 3, 0, 1, 1)
		self._deframer_nosync_after_text_static_text = forms.static_text(
			parent=self.rx_ntb.GetPage(2).GetWin(),
			value=self.deframer_nosync_after_text,
			callback=self.set_deframer_nosync_after_text,
			label="Deframer out of sync after",
			converter=forms.float_converter(),
		)
		self.rx_ntb.GetPage(2).GridAdd(self._deframer_nosync_after_text_static_text, 4, 0, 1, 1)
		self._deframer_check_sync_text_static_text = forms.static_text(
			parent=self.rx_ntb.GetPage(2).GetWin(),
			value=self.deframer_check_sync_text,
			callback=self.set_deframer_check_sync_text,
			label="Deframer check sync enable",
			converter=forms.str_converter(),
		)
		self.rx_ntb.GetPage(2).GridAdd(self._deframer_check_sync_text_static_text, 2, 0, 1, 1)
		self._datetime_text_static_text = forms.static_text(
			parent=self.rx_ntb.GetPage(3).GetWin(),
			value=self.datetime_text,
			callback=self.set_datetime_text,
			label="Local time of aquisition start",
			converter=forms.str_converter(),
		)
		self.rx_ntb.GetPage(3).GridAdd(self._datetime_text_static_text, 1, 0, 1, 1)
		_clock_alpha_sl_sizer = wx.BoxSizer(wx.VERTICAL)
		self._clock_alpha_sl_text_box = forms.text_box(
			parent=self.rx_ntb.GetPage(1).GetWin(),
			sizer=_clock_alpha_sl_sizer,
			value=self.clock_alpha_sl,
			callback=self.set_clock_alpha_sl,
			label="Clock alpha",
			converter=forms.float_converter(),
			proportion=0,
		)
		self._clock_alpha_sl_slider = forms.slider(
			parent=self.rx_ntb.GetPage(1).GetWin(),
			sizer=_clock_alpha_sl_sizer,
			value=self.clock_alpha_sl,
			callback=self.set_clock_alpha_sl,
			minimum=0.001,
			maximum=0.1,
			num_steps=100,
			style=wx.SL_HORIZONTAL,
			cast=float,
			proportion=1,
		)
		self.rx_ntb.GetPage(1).GridAdd(_clock_alpha_sl_sizer, 1, 1, 1, 1)
		self._baseband_file_text_inf_static_text = forms.static_text(
			parent=self.rx_ntb.GetPage(3).GetWin(),
			value=self.baseband_file_text_inf,
			callback=self.set_baseband_file_text_inf,
			label="Baseband filename",
			converter=forms.str_converter(),
		)
		self.rx_ntb.GetPage(3).GridAdd(self._baseband_file_text_inf_static_text, 4, 0, 1, 1)

		##################################################
		# Blocks
		##################################################
		self.cs2cf = gr.interleaved_short_to_complex()
		self.gr_agc_xx_0_0 = gr.agc_cc(10e-6, 1, 1.0/32767.0, 1.0)
		self.gr_binary_slicer_fb_0 = gr.binary_slicer_fb()
		self.gr_clock_recovery_mm_xx_0 = gr.clock_recovery_mm_cc(sps/2.0, clock_alpha**2/4.0, 0.5, gain_mu_sl, max_clock_offset)
		self.gr_complex_to_real_0 = gr.complex_to_real(1)
		self.gr_costas_loop_cc_0 = gr.costas_loop_cc(pll_alpha_sl, pll_beta_sl, 0.07, -0.07, 2)
		self.gr_file_sink_0_0 = gr.file_sink(gr.sizeof_short*1, frames_file)
		self.gr_file_sink_0_0.set_unbuffered(False)
		self.gr_file_source_0 = gr.file_source(gr.sizeof_short*1, baseband_file, False)
		self.gr_moving_average_xx_0 = gr.moving_average_cc(hs, 1.0/hs, 4000)
		self.gr_throttle_0 = gr.throttle(gr.sizeof_short*1, samp_rate*2)
		self.noaa_hrpt_decoder_0 = noaa.hrpt_decoder(True,False)
		self.poesweather_univ_hrpt_deframer_0 = poesweather.univ_hrpt_deframer(deframer_sync_check, 11090, deframer_insync_frames, deframer_outsync_frames)
		self.wxgui_fftsink1 = fftsink2.fft_sink_c(
			self.rx_ntb.GetPage(0).GetWin(),
			baseband_freq=0,
			y_per_div=5,
			y_divs=10,
			ref_level=50,
			ref_scale=2.0,
			sample_rate=samp_rate,
			fft_size=1024,
			fft_rate=30,
			average=True,
			avg_alpha=0.1,
			title="Not filtered spectrum",
			peak_hold=False,
		)
		self.rx_ntb.GetPage(0).Add(self.wxgui_fftsink1.win)
		self.wxgui_scopesink2_1 = scopesink2.scope_sink_c(
			self.rx_ntb.GetPage(1).GetWin(),
			title="PSK constellation diagram",
			sample_rate=symb_rate,
			v_scale=0.4,
			v_offset=0,
			t_scale=1/samp_rate,
			ac_couple=False,
			xy_mode=True,
			num_inputs=1,
			trig_mode=gr.gr_TRIG_MODE_AUTO,
		)
		self.rx_ntb.GetPage(1).Add(self.wxgui_scopesink2_1.win)

		##################################################
		# Connections
		##################################################
		self.connect((self.gr_file_source_0, 0), (self.gr_throttle_0, 0))
		self.connect((self.gr_throttle_0, 0), (self.cs2cf, 0))
		self.connect((self.cs2cf, 0), (self.gr_agc_xx_0_0, 0))
		self.connect((self.cs2cf, 0), (self.wxgui_fftsink1, 0))
		self.connect((self.gr_complex_to_real_0, 0), (self.gr_binary_slicer_fb_0, 0))
		self.connect((self.poesweather_univ_hrpt_deframer_0, 0), (self.gr_file_sink_0_0, 0))
		self.connect((self.gr_binary_slicer_fb_0, 0), (self.poesweather_univ_hrpt_deframer_0, 0))
		self.connect((self.poesweather_univ_hrpt_deframer_0, 0), (self.noaa_hrpt_decoder_0, 0))
		self.connect((self.gr_moving_average_xx_0, 0), (self.gr_clock_recovery_mm_xx_0, 0))
		self.connect((self.gr_agc_xx_0_0, 0), (self.gr_costas_loop_cc_0, 0))
		self.connect((self.gr_costas_loop_cc_0, 0), (self.gr_moving_average_xx_0, 0))
		self.connect((self.gr_clock_recovery_mm_xx_0, 0), (self.gr_complex_to_real_0, 0))
		self.connect((self.gr_clock_recovery_mm_xx_0, 0), (self.wxgui_scopesink2_1, 0))
Esempio n. 27
0
    def __init__(self):
        grc_wxgui.top_block_gui.__init__(
            self, title="Communication System Graphical Analyzer (LAPS/UFCG)")

        ##################################################
        # Default Variables
        ##################################################
        self.sps = 2
        self.snr = 20
        self.symbol_rate = 140000
        self.mod_type = "DBPSK"
        self.view = 1
        self.band = 200
        self.excess_bw = 0.35
        self.fading_flag = False
        self.fdts = -8
        self.fading_state_rx = False

        ##################################################
        # Blocks Definition
        ##################################################

        #A bit stream of 1's is generated at the source, scrambled,
        #modulated and sent to the input of an AWGN channel.
        #random.seed(42)
        #self.source = gr.vector_source_b([random.randint(0, 2) for i in range(0,10^8)], True)
        self.source = gr.vector_source_b((1, ), True, 1)
        self.thottle = gr.throttle(gr.sizeof_char, 10e5)
        self.scrambler = gr.scrambler_bb(0x40801, 0x92F72,
                                         20)  #Taxa de simbolos constante
        self.pack = gr.unpacked_to_packed_bb(1, gr.GR_MSB_FIRST)
        self.modulator = utils.mods[self.mod_type](self.sps,
                                                   excess_bw=self.excess_bw)
        self.channel = utils.channel(1 / 10.0**(self.snr / 10.0), self.band,
                                     self.symbol_rate, self.sps)

        #The noisy signal is demodulated, descrambled and the BER
        #is estimated by the ber_estim block using the receiver
        #density of 0 bits.
        self.demodulator = utils.demods[self.mod_type](
            self.sps, excess_bw=self.excess_bw)
        self.descrambler = gr.descrambler_bb(0x40801, 0x92F72, 20)
        self.char2float = gr.char_to_float()
        self.mov_average = gr.moving_average_ff(524288, 1 / 524288., 10000)
        self.ber = utils.ber_estim()
        #self.ber = utils.ber_estim_simple(3)

        ##################################################
        # GUI Elements Definition
        ##################################################

        #Defines an adds FFT Window to GUI
        self.fft = fftsink.fft_sink_c(self.GetWin(),
                                      sample_rate=self.symbol_rate * self.sps,
                                      baseband_freq=5e6)
        self.GridAdd(self.fft.win, 0, 3, 4, 3)
        self.ctr = gr.complex_to_real(1)

        #Defines and adds SNR slider to GUI
        _snr_sizer = wx.BoxSizer(wx.HORIZONTAL)
        self._snr_text_box = forms.text_box(parent=self.GetWin(),
                                            sizer=_snr_sizer,
                                            value=self.snr,
                                            callback=self.callback_snr,
                                            label=" SNR (dB)",
                                            converter=forms.float_converter(),
                                            proportion=0)
        self._snr_slider = forms.slider(parent=self.GetWin(),
                                        sizer=_snr_sizer,
                                        value=self.snr,
                                        callback=self.callback_snr,
                                        minimum=0,
                                        maximum=20,
                                        style=wx.RA_HORIZONTAL,
                                        proportion=1)
        self.GridAdd(_snr_sizer, 4, 3, 1, 3)

        #Defines and adds bandwidth slider to GUI
        band_sizer = wx.BoxSizer(wx.HORIZONTAL)
        self.band_text_box = forms.text_box(parent=self.GetWin(),
                                            sizer=band_sizer,
                                            value=self.band,
                                            callback=self.callback_band,
                                            label="Bandwidth (kHz)",
                                            converter=forms.float_converter(),
                                            proportion=0)
        self.band_slider = forms.slider(parent=self.GetWin(),
                                        sizer=band_sizer,
                                        value=self.band,
                                        callback=self.callback_band,
                                        minimum=30,
                                        maximum=200,
                                        style=wx.RA_HORIZONTAL,
                                        proportion=1)
        self.GridAdd(band_sizer, 5, 3, 1, 3)

        #Defines and adds Rayleigh GUI elements

        fading_sizer = wx.BoxSizer(wx.HORIZONTAL)
        self.fading_text_box = forms.text_box(
            parent=self.GetWin(),
            sizer=fading_sizer,
            value=self.fdts,
            callback=self.callback_fading,
            label='Fading/log(FdTs)',
            converter=forms.float_converter(),
            proportion=0)
        self.fading_slider = forms.slider(parent=self.GetWin(),
                                          sizer=fading_sizer,
                                          value=self.fdts,
                                          callback=self.callback_fading,
                                          minimum=-8,
                                          maximum=-2,
                                          style=wx.RA_HORIZONTAL,
                                          proportion=1)
        self.GridAdd(fading_sizer, 6, 3, 1, 3)

        #Defines and adds modulation type chooser to GUI
        self._mod_type_chooser = forms.radio_buttons(
            parent=self.GetWin(),
            value=self.mod_type,
            callback=self.set_mod_type,
            label="Modulation",
            choices=["DBPSK", "DQPSK", "D8PSK"],
            labels=["DBPSK", "DQPSK", "D8PSK"],
            style=wx.RA_HORIZONTAL)
        self.GridAdd(self._mod_type_chooser, 7, 4, 1, 2)

        #Defines and adds signal source chooser
        self.sig_src_chooser = forms.radio_buttons(
            parent=self.GetWin(),
            value=self.view,
            callback=self.callback_view,
            label="Signal Source",
            choices=[0, 1],
            labels=["Transmitter", "Receiver"],
            style=wx.RA_VERTICAL)
        self.GridAdd(self.sig_src_chooser, 7, 3, 1, 1)

        #Definition of the of constellation window and attachment to the GUI
        self.constel = constsink.const_sink_c(self.GetWin(),
                                              title="RX Constellation Plot",
                                              sample_rate=self.symbol_rate,
                                              const_size=256,
                                              mod=self.mod_type)
        self.GridAdd(self.constel.win, 0, 0, 8, 3)

        #Definition of the constellation sink window and attachment to the GUI
        self.number_sink = bersink.number_sink_f(self.GetWin(),
                                                 sample_rate=self.symbol_rate)
        self.GridAdd(self.number_sink.win, 8, 0, 1, 6)

        ##################################################
        # Blocks Connections
        ##################################################

        #The necessary block connections to the system work as described above.
        self.connect(self.source, self.scrambler, self.thottle, self.pack)
        #self.connect(self.source , self.thottle, self.pack)
        self.connect(self.pack, self.modulator, self.channel, self.demodulator)
        self.connect(self.channel, self.fft)
        self.connect(self.demodulator.diffdec, self.constel)
        self.connect(self.demodulator, self.descrambler, self.char2float,
                     self.mov_average)
        self.connect(self.mov_average, self.ber, self.number_sink)
Esempio n. 28
0
    def __init__ (self, demod_rate, audio_decimation):
        """
        Hierarchical block for demodulating a broadcast FM signal.

        The input is the downconverted complex baseband signal
        (gr_complex).  The output is two streams of the demodulated
        audio (float) 0=Left, 1=Right.

        Args:
            demod_rate: input sample rate of complex baseband input. (float)
            audio_decimation: how much to decimate demod_rate to get to audio. (integer)
        """
	gr.hier_block2.__init__(self, "wfm_rcv_fmdet",
				gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature
				gr.io_signature(2, 2, gr.sizeof_float))      # Output signature
        lowfreq = -125e3/demod_rate
	highfreq = 125e3/demod_rate
        audio_rate = demod_rate / audio_decimation

        # We assign to self so that outsiders can grab the demodulator
        # if they need to.  E.g., to plot its output.
        #
        # input: complex; output: float

        self.fm_demod = gr.fmdet_cf (demod_rate, lowfreq, highfreq, 0.05)

        # input: float; output: float
        self.deemph_Left  = fm_deemph (audio_rate)
        self.deemph_Right = fm_deemph (audio_rate)

        # compute FIR filter taps for audio filter
        width_of_transition_band = audio_rate / 32
        audio_coeffs = gr.firdes.low_pass (1.0 ,         # gain
                                           demod_rate,      # sampling rate
                                           15000 ,
                                           width_of_transition_band,
                                           gr.firdes.WIN_HAMMING)

        # input: float; output: float
        self.audio_filter = gr.fir_filter_fff (audio_decimation, audio_coeffs)
        if 1:
            # Pick off the stereo carrier/2 with this filter. It
            # attenuated 10 dB so apply 10 dB gain We pick off the
            # negative frequency half because we want to base band by
            # it!
            ##  NOTE THIS WAS HACKED TO OFFSET INSERTION LOSS DUE TO
            ##  DEEMPHASIS

            stereo_carrier_filter_coeffs = gr.firdes.complex_band_pass(10.0,
                                                                       demod_rate,
                                                                       -19020,
                                                                       -18980,
                                                                       width_of_transition_band,
                                                                       gr.firdes.WIN_HAMMING)

            #print "len stereo carrier filter = ",len(stereo_carrier_filter_coeffs)
            #print "stereo carrier filter ", stereo_carrier_filter_coeffs
            #print "width of transition band = ",width_of_transition_band, " audio rate = ", audio_rate

            # Pick off the double side band suppressed carrier
            # Left-Right audio. It is attenuated 10 dB so apply 10 dB
            # gain

            stereo_dsbsc_filter_coeffs = gr.firdes.complex_band_pass(20.0,
                                                                     demod_rate,
                                                                     38000-15000/2,
                                                                     38000+15000/2,
                                                                     width_of_transition_band,
                                                                     gr.firdes.WIN_HAMMING)
            #print "len stereo dsbsc filter = ",len(stereo_dsbsc_filter_coeffs)
            #print "stereo dsbsc filter ", stereo_dsbsc_filter_coeffs

            # construct overlap add filter system from coefficients
            # for stereo carrier
            self.stereo_carrier_filter = gr.fir_filter_fcc(audio_decimation,
                                                           stereo_carrier_filter_coeffs)

            # carrier is twice the picked off carrier so arrange to do
            # a commplex multiply
            self.stereo_carrier_generator = gr.multiply_cc();

            # Pick off the rds signal
            stereo_rds_filter_coeffs = gr.firdes.complex_band_pass(30.0,
                                                                   demod_rate,
                                                                   57000 - 1500,
                                                                   57000 + 1500,
                                                                   width_of_transition_band,
                                                                   gr.firdes.WIN_HAMMING)
            #print "len stereo dsbsc filter = ",len(stereo_dsbsc_filter_coeffs)
            #print "stereo dsbsc filter ", stereo_dsbsc_filter_coeffs
            # construct overlap add filter system from coefficients for stereo carrier

	    self.rds_signal_filter = gr.fir_filter_fcc(audio_decimation,
                                                       stereo_rds_filter_coeffs)
	    self.rds_carrier_generator = gr.multiply_cc();
	    self.rds_signal_generator = gr.multiply_cc();
	    self_rds_signal_processor = gr.null_sink(gr.sizeof_gr_complex);

            loop_bw = 2*math.pi/100.0
            max_freq = -2.0*math.pi*18990/audio_rate;
            min_freq = -2.0*math.pi*19010/audio_rate;
            self.stereo_carrier_pll_recovery = gr.pll_refout_cc(loop_bw,
                                                                max_freq,
                                                                min_freq);

            #self.stereo_carrier_pll_recovery.squelch_enable(False)
            ##pll_refout does not have squelch yet, so disabled for
            #now

            # set up mixer (multiplier) to get the L-R signal at
            # baseband

            self.stereo_basebander = gr.multiply_cc();

            # pick off the real component of the basebanded L-R
            # signal.  The imaginary SHOULD be zero

            self.LmR_real = gr.complex_to_real();
            self.Make_Left = gr.add_ff();
            self.Make_Right = gr.sub_ff();

            self.stereo_dsbsc_filter = gr.fir_filter_fcc(audio_decimation,
                                                         stereo_dsbsc_filter_coeffs)


        if 1:

            # send the real signal to complex filter to pick off the
            # carrier and then to one side of a multiplier
            self.connect (self, self.fm_demod, self.stereo_carrier_filter,
                          self.stereo_carrier_pll_recovery,
                          (self.stereo_carrier_generator,0))

            # send the already filtered carrier to the otherside of the carrier
            # the resulting signal from this multiplier is the carrier
            # with correct phase but at -38000 Hz.
            self.connect (self.stereo_carrier_pll_recovery, (self.stereo_carrier_generator,1))

            # send the new carrier to one side of the mixer (multiplier)
            self.connect (self.stereo_carrier_generator, (self.stereo_basebander,0))

            # send the demphasized audio to the DSBSC pick off filter,  the complex
            # DSBSC signal at +38000 Hz is sent to the other side of the mixer/multiplier
            # the result is BASEBANDED DSBSC with phase zero!
            self.connect (self.fm_demod,self.stereo_dsbsc_filter, (self.stereo_basebander,1))

            # Pick off the real part since the imaginary is
            # theoretically zero and then to one side of a summer
            self.connect (self.stereo_basebander, self.LmR_real, (self.Make_Left,0))

            #take the same real part of the DSBSC baseband signal and
            #send it to negative side of a subtracter
            self.connect (self.LmR_real,(self.Make_Right,1))

	    # Make rds carrier by taking the squared pilot tone and
	    # multiplying by pilot tone
	    self.connect (self.stereo_basebander,(self.rds_carrier_generator,0))
            self.connect (self.stereo_carrier_pll_recovery,(self.rds_carrier_generator,1))

	    # take signal, filter off rds, send into mixer 0 channel
	    self.connect (self.fm_demod,self.rds_signal_filter,(self.rds_signal_generator,0))

            # take rds_carrier_generator output and send into mixer 1
            # channel
	    self.connect (self.rds_carrier_generator,(self.rds_signal_generator,1))

	    # send basebanded rds signal and send into "processor"
	    # which for now is a null sink
	    self.connect (self.rds_signal_generator,self_rds_signal_processor)


        if 1:
            # pick off the audio, L+R that is what we used to have and
            # send it to the summer
            self.connect(self.fm_demod, self.audio_filter, (self.Make_Left, 1))

            # take the picked off L+R audio and send it to the PLUS
            # side of the subtractor
            self.connect(self.audio_filter,(self.Make_Right, 0))

            # The result of  Make_Left  gets    (L+R) +  (L-R) and results in 2*L
            # The result of Make_Right gets  (L+R) - (L-R) and results in 2*R
            self.connect(self.Make_Left , self.deemph_Left, (self, 0))
            self.connect(self.Make_Right, self.deemph_Right, (self, 1))
Esempio n. 29
0
    def __init__(self):
        grc_wxgui.top_block_gui.__init__(self, title="Communication System Graphical Analyzer (LAPS/UFCG)")
        
        ##################################################
        # Default Variables
        ##################################################
        self.sps = 2
        self.snr = 20
        self.symbol_rate = 140000
        self.mod_type = "DBPSK"
        self.view = 1
        self.band= 200
        self.excess_bw=0.35
        self.fading_flag = False 
        self.fdts = -8
        self.fading_state_rx = False
        
        ##################################################
        # Blocks Definition
        ##################################################
        
        #A bit stream of 1's is generated at the source, scrambled,
        #modulated and sent to the input of an AWGN channel.
        #random.seed(42)
        #self.source = gr.vector_source_b([random.randint(0, 2) for i in range(0,10^8)], True)
        self.source = gr.vector_source_b((1,), True, 1)
        self.thottle = gr.throttle(gr.sizeof_char,10e5)
        self.scrambler = gr.scrambler_bb(0x40801, 0x92F72, 20) #Taxa de simbolos constante
        self.pack = gr.unpacked_to_packed_bb(1, gr.GR_MSB_FIRST)
        self.modulator = utils.mods[self.mod_type](self.sps,excess_bw=self.excess_bw)
        self.channel = utils.channel(1/10.0**(self.snr/10.0),self.band,self.symbol_rate,self.sps)
        
        #The noisy signal is demodulated, descrambled and the BER
        #is estimated by the ber_estim block using the receiver
        #density of 0 bits.
        self.demodulator = utils.demods[self.mod_type](self.sps,excess_bw=self.excess_bw)     
        self.descrambler = gr.descrambler_bb(0x40801, 0x92F72, 20)
        self.char2float = gr.char_to_float()
        self.mov_average = gr.moving_average_ff(524288, 1/524288., 10000)
        self.ber = utils.ber_estim()
        #self.ber = utils.ber_estim_simple(3)

        
        ##################################################
        # GUI Elements Definition
        ##################################################
        
        #Defines an adds FFT Window to GUI
        self.fft = fftsink.fft_sink_c(self.GetWin(), sample_rate=self.symbol_rate*self.sps, baseband_freq=5e6)
        self.GridAdd(self.fft.win, 0,3,4,3)
        self.ctr= gr.complex_to_real(1)
        
        #Defines and adds SNR slider to GUI
        _snr_sizer = wx.BoxSizer(wx.HORIZONTAL)
        self._snr_text_box = forms.text_box(parent=self.GetWin(),
            sizer=_snr_sizer, value=self.snr, callback=self.callback_snr,
            label=" SNR (dB)", converter=forms.float_converter(),
            proportion=0)
        self._snr_slider = forms.slider(parent=self.GetWin(),
            sizer=_snr_sizer, value=self.snr, callback=self.callback_snr,
            minimum=0, maximum=20, style=wx.RA_HORIZONTAL, proportion=1)
        self.GridAdd(_snr_sizer, 4, 3, 1, 3)
        
        #Defines and adds bandwidth slider to GUI
        band_sizer = wx.BoxSizer(wx.HORIZONTAL)
        self.band_text_box = forms.text_box(parent=self.GetWin(),
            sizer=band_sizer, value=self.band, callback=self.callback_band,
            label="Bandwidth (kHz)", converter=forms.float_converter(),
            proportion=0)
        self.band_slider = forms.slider(parent=self.GetWin(),
            sizer=band_sizer, value=self.band, callback=self.callback_band,
            minimum=30, maximum=200, style=wx.RA_HORIZONTAL, proportion=1)
        self.GridAdd(band_sizer, 5, 3, 1, 3)
        
        #Defines and adds Rayleigh GUI elements
        
        fading_sizer = wx.BoxSizer(wx.HORIZONTAL)
        self.fading_text_box = forms.text_box(parent=self.GetWin(),
            sizer=fading_sizer, value=self.fdts, callback=self.callback_fading,
            label='Fading/log(FdTs)', converter=forms.float_converter(),
            proportion=0)
        self.fading_slider = forms.slider(parent=self.GetWin(),
            sizer=fading_sizer, value=self.fdts, callback=self.callback_fading,
            minimum=-8, maximum=-2, style=wx.RA_HORIZONTAL, proportion=1)
        self.GridAdd(fading_sizer, 6, 3, 1, 3)
        
        #Defines and adds modulation type chooser to GUI
        self._mod_type_chooser = forms.radio_buttons(parent=self.GetWin(),
            value=self.mod_type, callback=self.set_mod_type,
            label="Modulation", choices=["DBPSK", "DQPSK", "D8PSK"],
            labels=["DBPSK", "DQPSK", "D8PSK"], style=wx.RA_HORIZONTAL)
        self.GridAdd(self._mod_type_chooser, 7, 4, 1, 2)

        
        #Defines and adds signal source chooser
        self.sig_src_chooser = forms.radio_buttons(parent=self.GetWin(),
            value=self.view, callback=self.callback_view,
            label="Signal Source", choices=[0,1],
            labels=["Transmitter","Receiver"], style=wx.RA_VERTICAL)
        self.GridAdd(self.sig_src_chooser, 7,3,1,1)
        
        
        #Definition of the of constellation window and attachment to the GUI
        self.constel = constsink.const_sink_c(self.GetWin(),
            title="RX Constellation Plot",  sample_rate=self.symbol_rate,
            const_size=256, mod=self.mod_type)
        self.GridAdd(self.constel.win,0,0,8,3)
        
        
        #Definition of the constellation sink window and attachment to the GUI
        self.number_sink = bersink.number_sink_f(self.GetWin(),
            sample_rate=self.symbol_rate)
        self.GridAdd(self.number_sink.win,8,0,1,6)
        
        ##################################################
        # Blocks Connections
        ##################################################
        
        #The necessary block connections to the system work as described above.
        self.connect(self.source, self.scrambler , self.thottle, self.pack)
        #self.connect(self.source , self.thottle, self.pack)
        self.connect(self.pack, self.modulator, self.channel, self.demodulator)
        self.connect(self.channel, self.fft)
        self.connect(self.demodulator.diffdec, self.constel)
        self.connect(self.demodulator, self.descrambler, self.char2float, self.mov_average)
        self.connect(self.mov_average, self.ber, self.number_sink)
Esempio n. 30
0
    def __init__(self, options, payload='', msgq_limit=2, pad_for_usrp=False):
        """
	Hierarchical block for sending packets

        Packets to be sent are enqueued by calling send_pkt.
        The output is the complex modulated signal at baseband.

        @param options: pass modulation options from higher layers (fft length, occupied tones, etc.)
        @param msgq_limit: maximum number of messages in message queue
        @type msgq_limit: int
        @param pad_for_usrp: If true, packets are padded such that they end up a multiple of 128 samples
        """

        gr.hier_block2.__init__(
            self,
            "ofdm_mod",
            gr.io_signature(0, 0, 0),  # Input signature
            gr.io_signature(1, 1, gr.sizeof_gr_complex))  # Output signature

        self._fft_length = 64
        self._total_sub_carriers = 53
        self._data_subcarriers = 48
        self._cp_length = 16
        self._regime = options.regime
        self._symbol_length = self._fft_length + self._cp_length
        self._role = options.role

        # assuming we have 100Ms/s going to the USRP2 and 80 samples per symbol
        # we can calculate the OFDM symboltime (in microseconds)
        # depending on the interpolation factor
        self._symbol_time = options.interp * (self._fft_length +
                                              self._cp_length) / 100

        win = []

        if (self._regime == "1" or self._regime == "2"):
            rotated_const = ofdm_packet_utils.bpsk(self)

        elif (self._regime == "3" or self._regime == "4"):
            rotated_const = ofdm_packet_utils.qpsk(self)

        elif (self._regime == "5" or self._regime == "6"):
            rotated_const = ofdm_packet_utils.qam16(self)

        elif (self._regime == "7" or self._regime == "8"):
            rotated_const = ofdm_packet_utils.qam64(self)

        # map groups of bits to complex symbols
        self._pkt_input = ftw.ofdm_mapper(rotated_const, msgq_limit,
                                          self._data_subcarriers,
                                          self._fft_length)

        # insert pilot symbols (use pnc block * by lzyou)
        if self._role == 'A':
            print " >>> [FPNC]: *A* Insert Pilot"
            self.pilot = ftw.pnc_ofdm_pilot_cc(self._data_subcarriers, 1)
        elif self._role == 'B':
            print " >>> [FPNC]: *B* Insert Pilot"
            self.pilot = ftw.pnc_ofdm_pilot_cc(self._data_subcarriers, 2)
        else:
            print " >>> [FTW ]: Insert Pilot"
            self.pilot = ftw.ofdm_pilot_cc(self._data_subcarriers)
        # just for test
        #self.pilot = ftw.pnc_ofdm_pilot_cc(self._data_subcarriers, 1)
        #self.pilot = ftw.pnc_ofdm_pilot_cc(self._data_subcarriers, 2)

        # move subcarriers to their designated place and insert DC
        self.cmap = ftw.ofdm_cmap_cc(self._fft_length,
                                     self._total_sub_carriers)

        # inverse fast fourier transform
        self.ifft = gr.fft_vcc(self._fft_length, False, win, False)

        # add cyclic prefix
        from gnuradio import digital
        self.cp_adder = digital.ofdm_cyclic_prefixer(self._fft_length,
                                                     self._symbol_length)
        self.connect(
            gr.null_source(gr.sizeof_char),
            (self.cp_adder,
             1))  # Note: dirty modification to accomdate the API change

        # scale accordingly
        self.scale = gr.multiply_const_cc(1.0 / math.sqrt(self._fft_length))

        # we need to know the number of OFDM data symbols for preamble and zerogap
        info = ofdm_packet_utils.get_info(payload, options.regime,
                                          self._symbol_time)
        N_sym = info["N_sym"]

        # add training sequence (modify by lzyou)
        if self._role == 'A':
            print " >>> [FPNC]: *A* Insert Preamble"
            self.preamble = ofdm_packet_utils.insert_preamble(
                self._symbol_length, N_sym, 'A')
        elif self._role == 'B':
            print " >>> [FPNC]: *B* Insert Preamble"
            self.preamble = ofdm_packet_utils.insert_preamble(
                self._symbol_length, N_sym, 'B')
        else:
            print " >>> [FTW ]: Insert Preamble"
            self.preamble = ofdm_packet_utils.insert_preamble(
                self._symbol_length, N_sym)

        # append zero samples at the end (receiver needs that to decode)
        if self._role == None:
            print " >>> [FTW ]: Insert Zerogap"
            self.zerogap = ofdm_packet_utils.insert_zerogap(
                self._symbol_length, N_sym)
        else:
            print " >>> [FPNC]: Insert Zerogap"
            self.zerogap = ofdm_packet_utils.insert_zerogap(
                self._symbol_length, N_sym, 'FPNC')

        self.s2v = gr.stream_to_vector(gr.sizeof_gr_complex,
                                       self._symbol_length)
        self.v2s = gr.vector_to_stream(gr.sizeof_gr_complex,
                                       self._symbol_length)

        # swap real and immaginary component before sending (GNURadio/USRP2 bug!)
        if options.swapIQ == True:
            self.gr_complex_to_imag_0 = gr.complex_to_imag(1)
            self.gr_complex_to_real_0 = gr.complex_to_real(1)
            self.gr_float_to_complex_0 = gr.float_to_complex(1)
            self.connect((self.v2s, 0), (self.gr_complex_to_imag_0, 0))
            self.connect((self.v2s, 0), (self.gr_complex_to_real_0, 0))
            self.connect((self.gr_complex_to_real_0, 0),
                         (self.gr_float_to_complex_0, 1))
            self.connect((self.gr_complex_to_imag_0, 0),
                         (self.gr_float_to_complex_0, 0))
            self.connect((self.gr_float_to_complex_0, 0), (self))
        elif options.swapIQ == False:
            self.gr_complex_to_imag_0 = gr.complex_to_imag(1)
            self.gr_complex_to_real_0 = gr.complex_to_real(1)
            self.gr_float_to_complex_0 = gr.float_to_complex(1)
            self.connect((self.v2s, 0), (self.gr_complex_to_imag_0, 0))
            self.connect((self.v2s, 0), (self.gr_complex_to_real_0, 0))
            self.connect((self.gr_complex_to_imag_0, 0),
                         (self.gr_float_to_complex_0, 1))
            self.connect((self.gr_complex_to_real_0, 0),
                         (self.gr_float_to_complex_0, 0))
            self.connect((self.gr_float_to_complex_0, 0), (self))

        # connect the blocks
        self.connect((self._pkt_input, 0), (self.pilot, 0))
        self.connect((self._pkt_input, 1), (self.preamble, 1))
        self.connect((self.preamble, 1), (self.zerogap, 1))

        self.connect(self.pilot, self.cmap, self.ifft, self.cp_adder,
                     self.scale, self.s2v, self.preamble, self.zerogap,
                     self.v2s)

        if options.log:
            self.connect(
                (self._pkt_input),
                gr.file_sink(gr.sizeof_gr_complex * self._data_subcarriers,
                             "ofdm_mapper.dat"))
            self.connect(
                self.pilot,
                gr.file_sink(
                    gr.sizeof_gr_complex * (5 + self._data_subcarriers),
                    "ofdm_pilot.dat"))
            self.connect(
                self.cmap,
                gr.file_sink(gr.sizeof_gr_complex * self._fft_length,
                             "ofdm_cmap.dat"))
            self.connect(
                self.ifft,
                gr.file_sink(gr.sizeof_gr_complex * self._fft_length,
                             "ofdm_ifft.dat"))
            self.connect(
                self.cp_adder,
                gr.file_sink(gr.sizeof_gr_complex, "ofdm_cp_adder.dat"))
            self.connect(self.scale,
                         gr.file_sink(gr.sizeof_gr_complex, "ofdm_scale.dat"))
            self.connect(
                self.preamble,
                gr.file_sink(gr.sizeof_gr_complex * self._symbol_length,
                             "ofdm_preamble.dat"))
            self.connect(
                self.zerogap,
                gr.file_sink(gr.sizeof_gr_complex * self._symbol_length,
                             "ofdm_zerogap.dat"))
Esempio n. 31
0
    def __init__(self, options, payload='', msgq_limit=2, pad_for_usrp=False):
        """
	Hierarchical block for sending packets

        Packets to be sent are enqueued by calling send_pkt.
        The output is the complex modulated signal at baseband.

        @param options: pass modulation options from higher layers (fft length, occupied tones, etc.)
        @param msgq_limit: maximum number of messages in message queue
        @type msgq_limit: int
        @param pad_for_usrp: If true, packets are padded such that they end up a multiple of 128 samples
        """

	gr.hier_block2.__init__(self, "ofdm_mod",
				gr.io_signature(0, 0, 0),       # Input signature
				gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature
	
    
        self._fft_length          = 64
        self._total_sub_carriers  = 53
	self._data_subcarriers    = 48
	self._cp_length           = 16
 	self._regime              = options.regime
	self._symbol_length       = self._fft_length + self._cp_length
        self._role                = options.role
	
	# assuming we have 100Ms/s going to the USRP2 and 80 samples per symbol
	# we can calculate the OFDM symboltime (in microseconds) 
	# depending on the interpolation factor 
	self._symbol_time	  = options.interp*(self._fft_length+self._cp_length)/100
	
        win = []

	if(self._regime == "1" or self._regime == "2"):
	    rotated_const = ofdm_packet_utils.bpsk(self)
        
        elif (self._regime == "3" or self._regime == "4"):	
	    rotated_const = ofdm_packet_utils.qpsk(self)

        elif(self._regime == "5" or self._regime == "6"):
            rotated_const = ofdm_packet_utils.qam16(self) 

        elif(self._regime == "7" or self._regime == "8"):
            rotated_const = ofdm_packet_utils.qam64(self)
	
        # map groups of bits to complex symbols
        self._pkt_input = ftw.ofdm_mapper(rotated_const, msgq_limit, self._data_subcarriers, self._fft_length)
        
        # insert pilot symbols (use pnc block * by lzyou)
        if self._role == 'A':
            print " >>> [FPNC]: *A* Insert Pilot"
            self.pilot = ftw.pnc_ofdm_pilot_cc(self._data_subcarriers, 1)
        elif self._role == 'B':
            print " >>> [FPNC]: *B* Insert Pilot"
            self.pilot = ftw.pnc_ofdm_pilot_cc(self._data_subcarriers, 2)
        else:
            print " >>> [FTW ]: Insert Pilot"
            self.pilot = ftw.ofdm_pilot_cc(self._data_subcarriers)
        # just for test
        #self.pilot = ftw.pnc_ofdm_pilot_cc(self._data_subcarriers, 1)
        #self.pilot = ftw.pnc_ofdm_pilot_cc(self._data_subcarriers, 2)
	
        # move subcarriers to their designated place and insert DC  
        self.cmap  = ftw.ofdm_cmap_cc(self._fft_length, self._total_sub_carriers)        

	# inverse fast fourier transform
        self.ifft = gr.fft_vcc(self._fft_length, False, win, False)

        # add cyclic prefix
	from gnuradio import digital
        self.cp_adder = digital.ofdm_cyclic_prefixer(self._fft_length, self._symbol_length)
        self.connect(gr.null_source(gr.sizeof_char), (self.cp_adder, 1))  # Note: dirty modification to accomdate the API change
        
        # scale accordingly
        self.scale = gr.multiply_const_cc(1.0 / math.sqrt(self._fft_length))
        
	# we need to know the number of OFDM data symbols for preamble and zerogap
	info = ofdm_packet_utils.get_info(payload, options.regime, self._symbol_time)	
	N_sym             = info["N_sym"]
	
	# add training sequence (modify by lzyou)
        if self._role == 'A':
            print " >>> [FPNC]: *A* Insert Preamble"
            self.preamble= ofdm_packet_utils.insert_preamble(self._symbol_length, N_sym, 'A')
        elif self._role == 'B':
            print " >>> [FPNC]: *B* Insert Preamble"
            self.preamble= ofdm_packet_utils.insert_preamble(self._symbol_length, N_sym, 'B')
        else:
            print " >>> [FTW ]: Insert Preamble"
            self.preamble= ofdm_packet_utils.insert_preamble(self._symbol_length, N_sym)        

        # append zero samples at the end (receiver needs that to decode)
        if self._role == None:
            print " >>> [FTW ]: Insert Zerogap"
	    self.zerogap    = ofdm_packet_utils.insert_zerogap(self._symbol_length, N_sym)
        else:
            print " >>> [FPNC]: Insert Zerogap"
            self.zerogap    = ofdm_packet_utils.insert_zerogap(self._symbol_length, N_sym, 'FPNC')

	self.s2v = gr.stream_to_vector(gr.sizeof_gr_complex , self._symbol_length)
	self.v2s = gr.vector_to_stream(gr.sizeof_gr_complex , self._symbol_length)
	
	# swap real and immaginary component before sending (GNURadio/USRP2 bug!)
	if options.swapIQ == True:
		self.gr_complex_to_imag_0 = gr.complex_to_imag(1)
		self.gr_complex_to_real_0 = gr.complex_to_real(1)
		self.gr_float_to_complex_0 = gr.float_to_complex(1)
		self.connect((self.v2s, 0), (self.gr_complex_to_imag_0, 0))
		self.connect((self.v2s, 0), (self.gr_complex_to_real_0, 0))
		self.connect((self.gr_complex_to_real_0, 0), (self.gr_float_to_complex_0, 1))
		self.connect((self.gr_complex_to_imag_0, 0), (self.gr_float_to_complex_0, 0))
		self.connect((self.gr_float_to_complex_0, 0), (self))
	elif options.swapIQ == False:
		self.gr_complex_to_imag_0 = gr.complex_to_imag(1)
		self.gr_complex_to_real_0 = gr.complex_to_real(1)
		self.gr_float_to_complex_0 = gr.float_to_complex(1)
		self.connect((self.v2s, 0), (self.gr_complex_to_imag_0, 0))
		self.connect((self.v2s, 0), (self.gr_complex_to_real_0, 0))
		self.connect((self.gr_complex_to_imag_0, 0), (self.gr_float_to_complex_0, 1))
		self.connect((self.gr_complex_to_real_0, 0), (self.gr_float_to_complex_0, 0))
		self.connect((self.gr_float_to_complex_0, 0), (self))
		
        # connect the blocks
	self.connect((self._pkt_input, 0), (self.pilot, 0))
	self.connect((self._pkt_input,1), (self.preamble, 1))
	self.connect((self.preamble,1), (self.zerogap, 1))
	
	self.connect(self.pilot, self.cmap, self.ifft, self.cp_adder, self.scale, self.s2v, self.preamble, self.zerogap, self.v2s)

        if options.log:
            self.connect((self._pkt_input), gr.file_sink(gr.sizeof_gr_complex * self._data_subcarriers, "ofdm_mapper.dat"))
	    self.connect(self.pilot, gr.file_sink(gr.sizeof_gr_complex * (5 + self._data_subcarriers), "ofdm_pilot.dat"))
	    self.connect(self.cmap, gr.file_sink(gr.sizeof_gr_complex * self._fft_length, "ofdm_cmap.dat"))	
            self.connect(self.ifft, gr.file_sink(gr.sizeof_gr_complex * self._fft_length, "ofdm_ifft.dat"))
            self.connect(self.cp_adder, gr.file_sink(gr.sizeof_gr_complex, "ofdm_cp_adder.dat"))	   
	    self.connect(self.scale, gr.file_sink(gr.sizeof_gr_complex, "ofdm_scale.dat"))
            self.connect(self.preamble, gr.file_sink(gr.sizeof_gr_complex * self._symbol_length, "ofdm_preamble.dat"))
            self.connect(self.zerogap, gr.file_sink(gr.sizeof_gr_complex * self._symbol_length, "ofdm_zerogap.dat"))
Esempio n. 32
0
    def __init__(
            self,
            satellite='NOAAxx',
            decim=50,
            baseband_file="/home/martin/GNURadioData/hrpt/baseband/HRPT_NOAA19_2010-09-10_12-35-34_UTC_U2_d50.sam",
            frames_file=os.environ['HOME'] + '/noaa_hrpt_frames.hmf',
            deframer_outsync_frames=5,
            deframer_insync_frames=2,
            clock_alpha=0.005,
            gain_mu=0.005,
            pll_alpha=0.005,
            pll_beta=0.00001,
            deframer_sync_check=True,
            symb_rate=600 * 1109):
        grc_wxgui.top_block_gui.__init__(
            self, title="NOAA HRPT Receiver from baseband file")
        _icon_path = "/usr/share/icons/hicolor/32x32/apps/gnuradio-grc.png"
        self.SetIcon(wx.Icon(_icon_path, wx.BITMAP_TYPE_ANY))

        ##################################################
        # Parameters
        ##################################################
        self.satellite = satellite
        self.decim = decim
        self.baseband_file = baseband_file
        self.frames_file = frames_file
        self.deframer_outsync_frames = deframer_outsync_frames
        self.deframer_insync_frames = deframer_insync_frames
        self.clock_alpha = clock_alpha
        self.gain_mu = gain_mu
        self.pll_alpha = pll_alpha
        self.pll_beta = pll_beta
        self.deframer_sync_check = deframer_sync_check
        self.symb_rate = symb_rate

        ##################################################
        # Variables
        ##################################################
        self.decim_tb = decim_tb = decim
        self.symb_rate_tb = symb_rate_tb = symb_rate
        self.samp_rate = samp_rate = 100e6 / decim_tb
        self.sps = sps = samp_rate / symb_rate_tb
        self.satellite_text = satellite_text = satellite
        self.samp_rate_st = samp_rate_st = samp_rate
        self.pll_beta_sl = pll_beta_sl = pll_beta
        self.pll_alpha_sl = pll_alpha_sl = pll_alpha
        self.max_clock_offset = max_clock_offset = 0.1
        self.max_carrier_offset = max_carrier_offset = 2 * math.pi * 100e3 / samp_rate
        self.hs = hs = int(sps / 2.0)
        self.gain_mu_sl = gain_mu_sl = gain_mu
        self.frames_file_text_inf = frames_file_text_inf = frames_file
        self.deframer_sync_after_text = deframer_sync_after_text = deframer_insync_frames
        self.deframer_nosync_after_text = deframer_nosync_after_text = deframer_outsync_frames
        self.deframer_check_sync_text = deframer_check_sync_text = deframer_sync_check
        self.datetime_text = datetime_text = strftime("%A, %B %d %Y %H:%M:%S",
                                                      localtime())
        self.clock_alpha_sl = clock_alpha_sl = clock_alpha
        self.baseband_file_text_inf = baseband_file_text_inf = baseband_file

        ##################################################
        # Notebooks
        ##################################################
        self.rx_ntb = wx.Notebook(self.GetWin(), style=wx.NB_TOP)
        self.rx_ntb.AddPage(grc_wxgui.Panel(self.rx_ntb), "Input baseband")
        self.rx_ntb.AddPage(grc_wxgui.Panel(self.rx_ntb),
                            "PLL demodulator and Clock sync")
        self.rx_ntb.AddPage(grc_wxgui.Panel(self.rx_ntb), "Deframer")
        self.rx_ntb.AddPage(grc_wxgui.Panel(self.rx_ntb), "Output")
        self.Add(self.rx_ntb)

        ##################################################
        # Controls
        ##################################################
        self._decim_tb_text_box = forms.text_box(
            parent=self.rx_ntb.GetPage(0).GetWin(),
            value=self.decim_tb,
            callback=self.set_decim_tb,
            label="Decimation",
            converter=forms.int_converter(),
        )
        self.rx_ntb.GetPage(0).GridAdd(self._decim_tb_text_box, 1, 3, 1, 1)
        self._symb_rate_tb_text_box = forms.text_box(
            parent=self.rx_ntb.GetPage(1).GetWin(),
            value=self.symb_rate_tb,
            callback=self.set_symb_rate_tb,
            label="Symbol rate",
            converter=forms.int_converter(),
        )
        self.rx_ntb.GetPage(1).GridAdd(self._symb_rate_tb_text_box, 2, 1, 1, 1)
        self._satellite_text_static_text = forms.static_text(
            parent=self.rx_ntb.GetPage(0).GetWin(),
            value=self.satellite_text,
            callback=self.set_satellite_text,
            label="Sat ",
            converter=forms.str_converter(),
        )
        self.rx_ntb.GetPage(0).GridAdd(self._satellite_text_static_text, 1, 0,
                                       1, 1)
        self._samp_rate_st_static_text = forms.static_text(
            parent=self.rx_ntb.GetPage(0).GetWin(),
            value=self.samp_rate_st,
            callback=self.set_samp_rate_st,
            label="Sample rate",
            converter=forms.float_converter(),
        )
        self.rx_ntb.GetPage(0).GridAdd(self._samp_rate_st_static_text, 1, 4, 1,
                                       1)
        _pll_beta_sl_sizer = wx.BoxSizer(wx.VERTICAL)
        self._pll_beta_sl_text_box = forms.text_box(
            parent=self.rx_ntb.GetPage(1).GetWin(),
            sizer=_pll_beta_sl_sizer,
            value=self.pll_beta_sl,
            callback=self.set_pll_beta_sl,
            label="PLL Beta",
            converter=forms.float_converter(),
            proportion=0,
        )
        self._pll_beta_sl_slider = forms.slider(
            parent=self.rx_ntb.GetPage(1).GetWin(),
            sizer=_pll_beta_sl_sizer,
            value=self.pll_beta_sl,
            callback=self.set_pll_beta_sl,
            minimum=0.000001,
            maximum=0.001,
            num_steps=1000,
            style=wx.SL_HORIZONTAL,
            cast=float,
            proportion=1,
        )
        self.rx_ntb.GetPage(1).GridAdd(_pll_beta_sl_sizer, 2, 0, 1, 1)
        _pll_alpha_sl_sizer = wx.BoxSizer(wx.VERTICAL)
        self._pll_alpha_sl_text_box = forms.text_box(
            parent=self.rx_ntb.GetPage(1).GetWin(),
            sizer=_pll_alpha_sl_sizer,
            value=self.pll_alpha_sl,
            callback=self.set_pll_alpha_sl,
            label="PLL Alpha",
            converter=forms.float_converter(),
            proportion=0,
        )
        self._pll_alpha_sl_slider = forms.slider(
            parent=self.rx_ntb.GetPage(1).GetWin(),
            sizer=_pll_alpha_sl_sizer,
            value=self.pll_alpha_sl,
            callback=self.set_pll_alpha_sl,
            minimum=0.001,
            maximum=0.1,
            num_steps=100,
            style=wx.SL_HORIZONTAL,
            cast=float,
            proportion=1,
        )
        self.rx_ntb.GetPage(1).GridAdd(_pll_alpha_sl_sizer, 1, 0, 1, 1)
        _gain_mu_sl_sizer = wx.BoxSizer(wx.VERTICAL)
        self._gain_mu_sl_text_box = forms.text_box(
            parent=self.rx_ntb.GetPage(1).GetWin(),
            sizer=_gain_mu_sl_sizer,
            value=self.gain_mu_sl,
            callback=self.set_gain_mu_sl,
            label="Gain MU",
            converter=forms.float_converter(),
            proportion=0,
        )
        self._gain_mu_sl_slider = forms.slider(
            parent=self.rx_ntb.GetPage(1).GetWin(),
            sizer=_gain_mu_sl_sizer,
            value=self.gain_mu_sl,
            callback=self.set_gain_mu_sl,
            minimum=0.0001,
            maximum=0.01,
            num_steps=100,
            style=wx.SL_HORIZONTAL,
            cast=float,
            proportion=1,
        )
        self.rx_ntb.GetPage(1).GridAdd(_gain_mu_sl_sizer, 1, 2, 1, 1)
        self._frames_file_text_inf_static_text = forms.static_text(
            parent=self.rx_ntb.GetPage(3).GetWin(),
            value=self.frames_file_text_inf,
            callback=self.set_frames_file_text_inf,
            label="Frames filename",
            converter=forms.str_converter(),
        )
        self.rx_ntb.GetPage(3).GridAdd(self._frames_file_text_inf_static_text,
                                       3, 0, 1, 1)
        self._deframer_sync_after_text_static_text = forms.static_text(
            parent=self.rx_ntb.GetPage(2).GetWin(),
            value=self.deframer_sync_after_text,
            callback=self.set_deframer_sync_after_text,
            label="Deframe sync after",
            converter=forms.float_converter(),
        )
        self.rx_ntb.GetPage(2).GridAdd(
            self._deframer_sync_after_text_static_text, 3, 0, 1, 1)
        self._deframer_nosync_after_text_static_text = forms.static_text(
            parent=self.rx_ntb.GetPage(2).GetWin(),
            value=self.deframer_nosync_after_text,
            callback=self.set_deframer_nosync_after_text,
            label="Deframer out of sync after",
            converter=forms.float_converter(),
        )
        self.rx_ntb.GetPage(2).GridAdd(
            self._deframer_nosync_after_text_static_text, 4, 0, 1, 1)
        self._deframer_check_sync_text_static_text = forms.static_text(
            parent=self.rx_ntb.GetPage(2).GetWin(),
            value=self.deframer_check_sync_text,
            callback=self.set_deframer_check_sync_text,
            label="Deframer check sync enable",
            converter=forms.str_converter(),
        )
        self.rx_ntb.GetPage(2).GridAdd(
            self._deframer_check_sync_text_static_text, 2, 0, 1, 1)
        self._datetime_text_static_text = forms.static_text(
            parent=self.rx_ntb.GetPage(3).GetWin(),
            value=self.datetime_text,
            callback=self.set_datetime_text,
            label="Local time of aquisition start",
            converter=forms.str_converter(),
        )
        self.rx_ntb.GetPage(3).GridAdd(self._datetime_text_static_text, 1, 0,
                                       1, 1)
        _clock_alpha_sl_sizer = wx.BoxSizer(wx.VERTICAL)
        self._clock_alpha_sl_text_box = forms.text_box(
            parent=self.rx_ntb.GetPage(1).GetWin(),
            sizer=_clock_alpha_sl_sizer,
            value=self.clock_alpha_sl,
            callback=self.set_clock_alpha_sl,
            label="Clock alpha",
            converter=forms.float_converter(),
            proportion=0,
        )
        self._clock_alpha_sl_slider = forms.slider(
            parent=self.rx_ntb.GetPage(1).GetWin(),
            sizer=_clock_alpha_sl_sizer,
            value=self.clock_alpha_sl,
            callback=self.set_clock_alpha_sl,
            minimum=0.001,
            maximum=0.1,
            num_steps=100,
            style=wx.SL_HORIZONTAL,
            cast=float,
            proportion=1,
        )
        self.rx_ntb.GetPage(1).GridAdd(_clock_alpha_sl_sizer, 1, 1, 1, 1)
        self._baseband_file_text_inf_static_text = forms.static_text(
            parent=self.rx_ntb.GetPage(3).GetWin(),
            value=self.baseband_file_text_inf,
            callback=self.set_baseband_file_text_inf,
            label="Baseband filename",
            converter=forms.str_converter(),
        )
        self.rx_ntb.GetPage(3).GridAdd(
            self._baseband_file_text_inf_static_text, 4, 0, 1, 1)

        ##################################################
        # Blocks
        ##################################################
        self.cs2cf = gr.interleaved_short_to_complex()
        self.gr_agc_xx_0_0 = gr.agc_cc(10e-6, 1, 1.0 / 32767.0, 1.0)
        self.gr_binary_slicer_fb_0 = gr.binary_slicer_fb()
        self.gr_clock_recovery_mm_xx_0 = gr.clock_recovery_mm_cc(
            sps / 2.0, clock_alpha**2 / 4.0, 0.5, gain_mu_sl, max_clock_offset)
        self.gr_complex_to_real_0 = gr.complex_to_real(1)
        self.gr_costas_loop_cc_0 = gr.costas_loop_cc(pll_alpha_sl, pll_beta_sl,
                                                     0.07, -0.07, 2)
        self.gr_file_sink_0_0 = gr.file_sink(gr.sizeof_short * 1, frames_file)
        self.gr_file_sink_0_0.set_unbuffered(False)
        self.gr_file_source_0 = gr.file_source(gr.sizeof_short * 1,
                                               baseband_file, False)
        self.gr_moving_average_xx_0 = gr.moving_average_cc(hs, 1.0 / hs, 4000)
        self.gr_throttle_0 = gr.throttle(gr.sizeof_short * 1, samp_rate * 2)
        self.noaa_hrpt_decoder_0 = noaa.hrpt_decoder(True, False)
        self.poesweather_univ_hrpt_deframer_0 = poesweather.univ_hrpt_deframer(
            deframer_sync_check, 11090, deframer_insync_frames,
            deframer_outsync_frames)
        self.wxgui_fftsink1 = fftsink2.fft_sink_c(
            self.rx_ntb.GetPage(0).GetWin(),
            baseband_freq=0,
            y_per_div=5,
            y_divs=10,
            ref_level=50,
            ref_scale=2.0,
            sample_rate=samp_rate,
            fft_size=1024,
            fft_rate=30,
            average=True,
            avg_alpha=0.1,
            title="Not filtered spectrum",
            peak_hold=False,
        )
        self.rx_ntb.GetPage(0).Add(self.wxgui_fftsink1.win)
        self.wxgui_scopesink2_1 = scopesink2.scope_sink_c(
            self.rx_ntb.GetPage(1).GetWin(),
            title="PSK constellation diagram",
            sample_rate=symb_rate,
            v_scale=0.4,
            v_offset=0,
            t_scale=1 / samp_rate,
            ac_couple=False,
            xy_mode=True,
            num_inputs=1,
            trig_mode=gr.gr_TRIG_MODE_AUTO,
        )
        self.rx_ntb.GetPage(1).Add(self.wxgui_scopesink2_1.win)

        ##################################################
        # Connections
        ##################################################
        self.connect((self.gr_file_source_0, 0), (self.gr_throttle_0, 0))
        self.connect((self.gr_throttle_0, 0), (self.cs2cf, 0))
        self.connect((self.cs2cf, 0), (self.gr_agc_xx_0_0, 0))
        self.connect((self.cs2cf, 0), (self.wxgui_fftsink1, 0))
        self.connect((self.gr_complex_to_real_0, 0),
                     (self.gr_binary_slicer_fb_0, 0))
        self.connect((self.poesweather_univ_hrpt_deframer_0, 0),
                     (self.gr_file_sink_0_0, 0))
        self.connect((self.gr_binary_slicer_fb_0, 0),
                     (self.poesweather_univ_hrpt_deframer_0, 0))
        self.connect((self.poesweather_univ_hrpt_deframer_0, 0),
                     (self.noaa_hrpt_decoder_0, 0))
        self.connect((self.gr_moving_average_xx_0, 0),
                     (self.gr_clock_recovery_mm_xx_0, 0))
        self.connect((self.gr_agc_xx_0_0, 0), (self.gr_costas_loop_cc_0, 0))
        self.connect((self.gr_costas_loop_cc_0, 0),
                     (self.gr_moving_average_xx_0, 0))
        self.connect((self.gr_clock_recovery_mm_xx_0, 0),
                     (self.gr_complex_to_real_0, 0))
        self.connect((self.gr_clock_recovery_mm_xx_0, 0),
                     (self.wxgui_scopesink2_1, 0))
Esempio n. 33
0
    def __init__(self, options):
        gr.hier_block2.__init__(self, "transmit_path",
                                gr.io_signature(0, 0, 0),
                                gr.io_signature(2, 2, gr.sizeof_gr_complex))

        common_options.defaults(options)

        config = self.config = station_configuration()

        config.data_subcarriers = options.subcarriers
        config.cp_length = options.cp_length
        config.frame_data_blocks = options.data_blocks
        config._verbose = options.verbose
        config.fft_length = options.fft_length
        config.training_data = default_block_header(config.data_subcarriers,
                                                    config.fft_length, options)
        config.tx_station_id = options.station_id
        config.coding = options.coding

        if config.tx_station_id is None:
            raise SystemError, "Station ID not set"

        config.frame_id_blocks = 1  # FIXME

        # digital rms amplitude sent to USRP
        rms_amp = options.rms_amplitude
        self._options = copy.copy(options)

        self.servants = []  # FIXME

        config.block_length = config.fft_length + config.cp_length
        config.frame_data_part = config.frame_data_blocks + config.frame_id_blocks
        config.frame_length = config.frame_data_part + \
                              config.training_data.no_pilotsyms
        config.subcarriers = config.data_subcarriers + \
                             config.training_data.pilot_subcarriers
        config.virtual_subcarriers = config.fft_length - config.subcarriers

        # default values if parameters not set
        if rms_amp is None:
            rms_amp = math.sqrt(config.subcarriers)
        config.rms_amplitude = rms_amp

        # check some bounds
        if config.fft_length < config.subcarriers:
            raise SystemError, "Subcarrier number must be less than FFT length"
        if config.fft_length < config.cp_length:
            raise SystemError, "Cyclic prefix length must be less than FFT length"

        ## shortcuts
        blen = config.block_length
        flen = config.frame_length
        dsubc = config.data_subcarriers
        vsubc = config.virtual_subcarriers

        # ------------------------------------------------------------------------ #
        # Adaptive Transmitter Concept

        used_id_bits = config.used_id_bits = 8  #TODO: no constant in source code
        rep_id_bits = config.rep_id_bits = config.data_subcarriers / used_id_bits  #BPSK
        if config.data_subcarriers % used_id_bits <> 0:
            raise SystemError, "Data subcarriers need to be multiple of %d" % (
                used_id_bits)

        ## Control Part
        if options.debug:
            self._control = ctrl = static_tx_control(options)
            print "Statix TX Control used"
        else:
            self._control = ctrl = corba_tx_control(options)
            print "CORBA TX Control used"

        id_src = (ctrl, 0)
        mux_src = (ctrl, 1)
        map_src = self._map_src = (ctrl, 2)
        pa_src = (ctrl, 3)

        if options.log:
            id_src_f = gr.short_to_float()
            self.connect(id_src, id_src_f)
            log_to_file(self, id_src_f, "data/id_src_out.float")

            mux_src_f = gr.short_to_float()
            self.connect(mux_src, mux_src_f)
            log_to_file(self, mux_src_f, "data/mux_src_out.float")

            map_src_s = blocks.vector_to_stream(gr.sizeof_char,
                                                config.data_subcarriers)
            map_src_f = gr.char_to_float()
            self.connect(map_src, map_src_s, map_src_f)
            ##log_to_file(self, map_src_f, "data/map_src.float")

            ##log_to_file(self, pa_src, "data/pa_src_out.float")

        ## Workaround to avoid periodic structure
        seed(1)
        whitener_pn = [
            randint(0, 1) for i in range(used_id_bits * rep_id_bits)
        ]

        ## ID Encoder
        id_enc = self._id_encoder = repetition_encoder_sb(
            used_id_bits, rep_id_bits, whitener_pn)
        self.connect(id_src, id_enc)

        if options.log:
            id_enc_f = gr.char_to_float()
            self.connect(id_enc, id_enc_f)
            log_to_file(self, id_enc_f, "data/id_enc_out.float")

        ## Bitmap Update Trigger
        # TODO
        #bmaptrig_stream = concatenate([[1, 2],[0]*(config.frame_data_part-7)])
        bmaptrig_stream = concatenate([[1, 1],
                                       [0] * (config.frame_data_part - 2)])
        print "bmaptrig_stream = ", bmaptrig_stream
        btrig = self._bitmap_trigger = blocks.vector_source_b(
            bmaptrig_stream.tolist(), True)
        if options.log:
            log_to_file(self, btrig, "data/bitmap_trig.char")

        ## Bitmap Update Trigger for puncturing
        # TODO
        if not options.nopunct:
            #bmaptrig_stream_puncturing = concatenate([[1],[0]*(config.frame_data_part-2)])
            bmaptrig_stream_puncturing = concatenate(
                [[1], [0] * (config.frame_data_blocks / 2 - 1)])

            btrig_puncturing = self._bitmap_trigger_puncturing = blocks.vector_source_b(
                bmaptrig_stream_puncturing.tolist(), True)
            bmapsrc_stream_puncturing = concatenate([[1] * dsubc, [2] * dsubc])
            bsrc_puncturing = self._bitmap_src_puncturing = blocks.vector_source_b(
                bmapsrc_stream_puncturing.tolist(), True, dsubc)

        if options.log and options.coding and not options.nopunct:
            log_to_file(self, btrig_puncturing,
                        "data/bitmap_trig_puncturing.char")

        ## Frame Trigger
        # TODO
        ftrig_stream = concatenate([[1], [0] * (config.frame_data_part - 1)])
        ftrig = self._frame_trigger = blocks.vector_source_b(
            ftrig_stream.tolist(), True)

        ## Data Multiplexer
        # Input 0: control stream
        # Input 1: encoded ID stream
        # Inputs 2..n: data streams
        dmux = self._data_multiplexer = stream_controlled_mux_b()
        self.connect(mux_src, (dmux, 0))
        self.connect(id_enc, (dmux, 1))

        self._data_multiplexer_nextport = 2

        if options.log:
            dmux_f = gr.char_to_float()
            self.connect(dmux, dmux_f)
            log_to_file(self, dmux_f, "data/dmux_out.float")

        ## Modulator
        mod = self._modulator = generic_mapper_bcv(config.data_subcarriers,
                                                   options.coding)

        self.connect(dmux, (mod, 0))
        self.connect(map_src, (mod, 1))
        self.connect(btrig, (mod, 2))

        if options.log:
            log_to_file(self, mod, "data/mod_out.compl")
            modi = gr.complex_to_imag(config.data_subcarriers)
            modr = gr.complex_to_real(config.data_subcarriers)
            self.connect(mod, modi)
            self.connect(mod, modr)
            log_to_file(self, modi, "data/mod_imag_out.float")
            log_to_file(self, modr, "data/mod_real_out.float")

        ## Power allocator
        if options.debug:

            ## static
            pa = self._power_allocator = power_allocator(
                config.data_subcarriers)
            self.connect(mod, (pa, 0))
            self.connect(pa_src, (pa, 1))

        else:

            ## with CORBA control event channel
            ns_ip = ctrl.ns_ip
            ns_port = ctrl.ns_port
            evchan = ctrl.evchan
            pa = self._power_allocator = corba_power_allocator(dsubc, \
                evchan, ns_ip, ns_port, True)

            self.connect(mod, (pa, 0))
            self.connect(id_src, (pa, 1))
            self.connect(ftrig, (pa, 2))

        if options.log:
            log_to_file(self, pa, "data/pa_out.compl")

        ## Pilot subcarriers
        psubc = self._pilot_subcarrier_inserter = pilot_subcarrier_inserter()
        self.connect(pa, psubc)

        pilot_subc = config.training_data.shifted_pilot_tones
        print "pilot_subc", pilot_subc
        stc = stc_encoder(config.subcarriers, config.frame_data_blocks,
                          pilot_subc)

        self.connect(psubc, stc)

        if options.log:
            log_to_file(self, psubc, "data/psubc_out.compl")
            log_to_file(self, psubc_2, "data/psubc2_out.compl")
            log_to_file(self, pa, "data/pa.compl")
            log_to_file(self, (stc, 0), "data/stc_0.compl")
            log_to_file(self, (stc, 1), "data/stc_1.compl")

        ## Add virtual subcarriers
        if config.fft_length > config.subcarriers:
            vsubc = self._virtual_subcarrier_extender = \
                    vector_padding(config.subcarriers, config.fft_length)
            self.connect(stc, vsubc)
            vsubc_2 = self._virtual_subcarrier_extender_2 = \
                    vector_padding(config.subcarriers, config.fft_length)
            self.connect((stc, 1), vsubc_2)
        else:
            vsubc = self._virtual_subcarrier_extender = psubc
            vsubc_2 = self._virtual_subcarrier_extender_2 = psubc_2

        log_to_file(self, psubc, "data/psubc.compl")
        log_to_file(self, stc, "data/stc1.compl")
        log_to_file(self, (stc, 1), "data/stc2.compl")
        if options.log:
            log_to_file(self, vsubc, "data/vsubc_out.compl")
            log_to_file(self, vsubc_2, "data/vsubc2_out.compl")

        ## IFFT, no window, block shift
        ifft = self._ifft = fft_blocks.fft_vcc(config.fft_length, False, [],
                                               True)
        self.connect(vsubc, ifft)
        ifft_2 = self._ifft_2 = fft_blocks.fft_vcc(config.fft_length, False,
                                                   [], True)
        self.connect(vsubc_2, ifft_2)

        if options.log:
            log_to_file(self, ifft, "data/ifft_out.compl")
            log_to_file(self, ifft_2, "data/ifft2_out.compl")

        ## Pilot blocks (preambles)
        pblocks = self._pilot_block_inserter = pilot_block_inserter(1, False)
        self.connect(ifft, pblocks)
        pblocks_2 = self._pilot_block_inserter_2 = pilot_block_inserter(
            2, False)
        self.connect(ifft_2, pblocks_2)

        if options.log:
            log_to_file(self, pblocks, "data/pilot_block_ins_out.compl")
            log_to_file(self, pblocks_2, "data/pilot_block_ins2_out.compl")

        ## Cyclic Prefix
        cp = self._cyclic_prefixer = cyclic_prefixer(config.fft_length,
                                                     config.block_length)
        self.connect(pblocks, cp)
        cp_2 = self._cyclic_prefixer_2 = cyclic_prefixer(
            config.fft_length, config.block_length)
        self.connect(pblocks_2, cp_2)

        lastblock = cp
        lastblock_2 = cp_2

        if options.log:
            log_to_file(self, cp, "data/cp_out.compl")
            log_to_file(self, cp_2, "data/cp2_out.compl")

        if options.cheat:
            ## Artificial Channel
            # kept to compare with previous system
            achan_ir = concatenate([[1.0], [0.0] * (config.cp_length - 1)])
            achan = self._artificial_channel = gr.fir_filter_ccc(1, achan_ir)
            self.connect(lastblock, achan)
            lastblock = achan
            achan_2 = self._artificial_channel_2 = gr.fir_filter_ccc(
                1, achan_ir)
            self.connect(lastblock_2, achan_2)
            lastblock_2 = achan_2

        ## Digital Amplifier
        amp = self._amplifier = ofdm.multiply_const_ccf(1.0 / math.sqrt(2))
        self.connect(lastblock, amp)
        amp_2 = self._amplifier_2 = ofdm.multiply_const_ccf(1.0 / math.sqrt(2))
        self.connect(lastblock_2, amp_2)
        self.set_rms_amplitude(rms_amp)

        if options.log:
            log_to_file(self, amp, "data/amp_tx_out.compl")
            log_to_file(self, amp_2, "data/amp_tx2_out.compl")

        ## Setup Output
        self.connect(amp, (self, 0))
        self.connect(amp_2, (self, 1))

        # ------------------------------------------------------------------------ #

        # Display some information about the setup
        if config._verbose:
            self._print_verbage()
	def __init__(self, deframer_insync_frames=2, deframer_sync_check=True, viterbi_insync_frames=5, deframer_outsync_frames=5, viterbi_outsync_frames=20, viterbi_sync_check=True, viterbi_sync_threshold=0.1, satellite='GOES-LRIT', freq=1691.02e6, gain=23, decim=108, side="A", pll_alpha=0.005, symb_rate=293883, clock_alpha=0.005):
		grc_wxgui.top_block_gui.__init__(self, title="USRP LRIT Receiver - check signal quality")

		##################################################
		# Parameters
		##################################################
		self.deframer_insync_frames = deframer_insync_frames
		self.deframer_sync_check = deframer_sync_check
		self.viterbi_insync_frames = viterbi_insync_frames
		self.deframer_outsync_frames = deframer_outsync_frames
		self.viterbi_outsync_frames = viterbi_outsync_frames
		self.viterbi_sync_check = viterbi_sync_check
		self.viterbi_sync_threshold = viterbi_sync_threshold
		self.satellite = satellite
		self.freq = freq
		self.gain = gain
		self.decim = decim
		self.side = side
		self.pll_alpha = pll_alpha
		self.symb_rate = symb_rate
		self.clock_alpha = clock_alpha

		##################################################
		# Variables
		##################################################
		self.decim_tb = decim_tb = decim
		self.symb_rate_tb = symb_rate_tb = symb_rate
		self.samp_rate = samp_rate = 64e6/decim_tb
		self.viterbi_sync_threshold_text = viterbi_sync_threshold_text = viterbi_sync_threshold
		self.viterbi_sync_after_text = viterbi_sync_after_text = viterbi_insync_frames
		self.viterbi_outofsync_after_text = viterbi_outofsync_after_text = viterbi_outsync_frames
		self.viterbi_node_sync_text = viterbi_node_sync_text = viterbi_sync_check
		self.sps = sps = samp_rate/symb_rate_tb
		self.satellite_text = satellite_text = satellite
		self.samp_rate_st = samp_rate_st = samp_rate
		self.pll_alpha_sl = pll_alpha_sl = pll_alpha
		self.gain_tb = gain_tb = gain
		self.freq_tb = freq_tb = freq
		self.frames_file_text_inf = frames_file_text_inf = 'no output file'
		self.deframer_sync_after_text = deframer_sync_after_text = deframer_insync_frames
		self.deframer_nosync_after_text = deframer_nosync_after_text = deframer_outsync_frames
		self.deframer_check_sync_text = deframer_check_sync_text = deframer_sync_check
		self.datetime_text = datetime_text = strftime("%A, %B %d %Y %H:%M:%S", localtime())
		self.clock_alpha_sl = clock_alpha_sl = clock_alpha
		self.baseband_file_text_inf = baseband_file_text_inf = 'no output file'

		##################################################
		# Notebooks
		##################################################
		self.rx_ntb = wx.Notebook(self.GetWin(), style=wx.NB_TOP)
		self.rx_ntb.AddPage(grc_wxgui.Panel(self.rx_ntb), "USRP Receiver")
		self.rx_ntb.AddPage(grc_wxgui.Panel(self.rx_ntb), "PLL demodulator and Clock sync")
		self.rx_ntb.AddPage(grc_wxgui.Panel(self.rx_ntb), "Viterbi decoder")
		self.rx_ntb.AddPage(grc_wxgui.Panel(self.rx_ntb), "Deframer")
		self.rx_ntb.AddPage(grc_wxgui.Panel(self.rx_ntb), "Output")
		self.Add(self.rx_ntb)

		##################################################
		# Controls
		##################################################
		self._decim_tb_text_box = forms.text_box(
			parent=self.rx_ntb.GetPage(0).GetWin(),
			value=self.decim_tb,
			callback=self.set_decim_tb,
			label="Decimation",
			converter=forms.int_converter(),
		)
		self.rx_ntb.GetPage(0).GridAdd(self._decim_tb_text_box, 1, 3, 1, 1)
		self._symb_rate_tb_text_box = forms.text_box(
			parent=self.rx_ntb.GetPage(1).GetWin(),
			value=self.symb_rate_tb,
			callback=self.set_symb_rate_tb,
			label="Symbol rate",
			converter=forms.int_converter(),
		)
		self.rx_ntb.GetPage(1).GridAdd(self._symb_rate_tb_text_box, 2, 1, 1, 1)
		self._viterbi_sync_threshold_text_static_text = forms.static_text(
			parent=self.rx_ntb.GetPage(2).GetWin(),
			value=self.viterbi_sync_threshold_text,
			callback=self.set_viterbi_sync_threshold_text,
			label="Viterbi node sync threshold [BER]",
			converter=forms.float_converter(),
		)
		self.rx_ntb.GetPage(2).GridAdd(self._viterbi_sync_threshold_text_static_text, 3, 0, 1, 1)
		self._viterbi_sync_after_text_static_text = forms.static_text(
			parent=self.rx_ntb.GetPage(2).GetWin(),
			value=self.viterbi_sync_after_text,
			callback=self.set_viterbi_sync_after_text,
			label="Valid frames for Viterbi decoder sync",
			converter=forms.float_converter(),
		)
		self.rx_ntb.GetPage(2).GridAdd(self._viterbi_sync_after_text_static_text, 4, 0, 1, 1)
		self._viterbi_outofsync_after_text_static_text = forms.static_text(
			parent=self.rx_ntb.GetPage(2).GetWin(),
			value=self.viterbi_outofsync_after_text,
			callback=self.set_viterbi_outofsync_after_text,
			label="Invalid frames for Viterbi decoder out of sync",
			converter=forms.float_converter(),
		)
		self.rx_ntb.GetPage(2).GridAdd(self._viterbi_outofsync_after_text_static_text, 5, 0, 1, 1)
		self._viterbi_node_sync_text_static_text = forms.static_text(
			parent=self.rx_ntb.GetPage(2).GetWin(),
			value=self.viterbi_node_sync_text,
			callback=self.set_viterbi_node_sync_text,
			label="Viterbi node sync enable",
			converter=forms.str_converter(),
		)
		self.rx_ntb.GetPage(2).GridAdd(self._viterbi_node_sync_text_static_text, 2, 0, 1, 1)
		self._satellite_text_static_text = forms.static_text(
			parent=self.rx_ntb.GetPage(0).GetWin(),
			value=self.satellite_text,
			callback=self.set_satellite_text,
			label="Sat ",
			converter=forms.str_converter(),
		)
		self.rx_ntb.GetPage(0).GridAdd(self._satellite_text_static_text, 1, 0, 1, 1)
		self._samp_rate_st_static_text = forms.static_text(
			parent=self.rx_ntb.GetPage(0).GetWin(),
			value=self.samp_rate_st,
			callback=self.set_samp_rate_st,
			label="Sample rate",
			converter=forms.float_converter(),
		)
		self.rx_ntb.GetPage(0).GridAdd(self._samp_rate_st_static_text, 1, 4, 1, 1)
		_pll_alpha_sl_sizer = wx.BoxSizer(wx.VERTICAL)
		self._pll_alpha_sl_text_box = forms.text_box(
			parent=self.rx_ntb.GetPage(1).GetWin(),
			sizer=_pll_alpha_sl_sizer,
			value=self.pll_alpha_sl,
			callback=self.set_pll_alpha_sl,
			label="PLL Alpha",
			converter=forms.float_converter(),
			proportion=0,
		)
		self._pll_alpha_sl_slider = forms.slider(
			parent=self.rx_ntb.GetPage(1).GetWin(),
			sizer=_pll_alpha_sl_sizer,
			value=self.pll_alpha_sl,
			callback=self.set_pll_alpha_sl,
			minimum=0.001,
			maximum=0.1,
			num_steps=100,
			style=wx.SL_HORIZONTAL,
			cast=float,
			proportion=1,
		)
		self.rx_ntb.GetPage(1).GridAdd(_pll_alpha_sl_sizer, 1, 0, 1, 1)
		self._gain_tb_text_box = forms.text_box(
			parent=self.rx_ntb.GetPage(0).GetWin(),
			value=self.gain_tb,
			callback=self.set_gain_tb,
			label="RX gain [dB]",
			converter=forms.int_converter(),
		)
		self.rx_ntb.GetPage(0).GridAdd(self._gain_tb_text_box, 1, 2, 1, 1)
		self._freq_tb_text_box = forms.text_box(
			parent=self.rx_ntb.GetPage(0).GetWin(),
			value=self.freq_tb,
			callback=self.set_freq_tb,
			label="Frequency",
			converter=forms.float_converter(),
		)
		self.rx_ntb.GetPage(0).GridAdd(self._freq_tb_text_box, 1, 1, 1, 1)
		self._frames_file_text_inf_static_text = forms.static_text(
			parent=self.rx_ntb.GetPage(4).GetWin(),
			value=self.frames_file_text_inf,
			callback=self.set_frames_file_text_inf,
			label="Frames filename",
			converter=forms.str_converter(),
		)
		self.rx_ntb.GetPage(4).GridAdd(self._frames_file_text_inf_static_text, 3, 0, 1, 1)
		self._deframer_sync_after_text_static_text = forms.static_text(
			parent=self.rx_ntb.GetPage(3).GetWin(),
			value=self.deframer_sync_after_text,
			callback=self.set_deframer_sync_after_text,
			label="Deframe sync after",
			converter=forms.float_converter(),
		)
		self.rx_ntb.GetPage(3).GridAdd(self._deframer_sync_after_text_static_text, 3, 0, 1, 1)
		self._deframer_nosync_after_text_static_text = forms.static_text(
			parent=self.rx_ntb.GetPage(3).GetWin(),
			value=self.deframer_nosync_after_text,
			callback=self.set_deframer_nosync_after_text,
			label="Deframer out of sync after",
			converter=forms.float_converter(),
		)
		self.rx_ntb.GetPage(3).GridAdd(self._deframer_nosync_after_text_static_text, 4, 0, 1, 1)
		self._deframer_check_sync_text_static_text = forms.static_text(
			parent=self.rx_ntb.GetPage(3).GetWin(),
			value=self.deframer_check_sync_text,
			callback=self.set_deframer_check_sync_text,
			label="Deframer check sync enable",
			converter=forms.str_converter(),
		)
		self.rx_ntb.GetPage(3).GridAdd(self._deframer_check_sync_text_static_text, 2, 0, 1, 1)
		self._datetime_text_static_text = forms.static_text(
			parent=self.rx_ntb.GetPage(4).GetWin(),
			value=self.datetime_text,
			callback=self.set_datetime_text,
			label="Local time of aquisition start",
			converter=forms.str_converter(),
		)
		self.rx_ntb.GetPage(4).GridAdd(self._datetime_text_static_text, 1, 0, 1, 1)
		_clock_alpha_sl_sizer = wx.BoxSizer(wx.VERTICAL)
		self._clock_alpha_sl_text_box = forms.text_box(
			parent=self.rx_ntb.GetPage(1).GetWin(),
			sizer=_clock_alpha_sl_sizer,
			value=self.clock_alpha_sl,
			callback=self.set_clock_alpha_sl,
			label="Clock alpha",
			converter=forms.float_converter(),
			proportion=0,
		)
		self._clock_alpha_sl_slider = forms.slider(
			parent=self.rx_ntb.GetPage(1).GetWin(),
			sizer=_clock_alpha_sl_sizer,
			value=self.clock_alpha_sl,
			callback=self.set_clock_alpha_sl,
			minimum=0.001,
			maximum=0.1,
			num_steps=100,
			style=wx.SL_HORIZONTAL,
			cast=float,
			proportion=1,
		)
		self.rx_ntb.GetPage(1).GridAdd(_clock_alpha_sl_sizer, 1, 1, 1, 1)
		self._baseband_file_text_inf_static_text = forms.static_text(
			parent=self.rx_ntb.GetPage(4).GetWin(),
			value=self.baseband_file_text_inf,
			callback=self.set_baseband_file_text_inf,
			label="Baseband filename",
			converter=forms.str_converter(),
		)
		self.rx_ntb.GetPage(4).GridAdd(self._baseband_file_text_inf_static_text, 4, 0, 1, 1)

		##################################################
		# Blocks
		##################################################
		self.fec_decode_viterbi_bpsk_fb_0 = fec.decode_viterbi_bpsk_fb(viterbi_sync_check, viterbi_sync_threshold, viterbi_insync_frames, viterbi_outsync_frames, viterbi_outsync_frames*3)
		self.gr_agc_xx_0 = gr.agc_cc(10e-6, 1, 1.0/32767.0, 1.0)
		self.gr_clock_recovery_mm_xx_0 = gr.clock_recovery_mm_cc(sps, clock_alpha_sl*clock_alpha_sl/4.0, 0.5, clock_alpha_sl, 0.05)
		self.gr_complex_to_real_0 = gr.complex_to_real(1)
		self.gr_costas_loop_cc_0 = gr.costas_loop_cc(pll_alpha_sl, pll_alpha_sl*pll_alpha_sl/4.0, 0.07, -0.07, 2)
		self.gr_multiply_const_vxx_0 = gr.multiply_const_vcc((1, ))
		self.gr_null_sink_0 = gr.null_sink(gr.sizeof_char*1)
		self.gr_packed_to_unpacked_xx_0 = gr.packed_to_unpacked_bb(1, gr.GR_MSB_FIRST)
		self.poesweather_metop_cadu_deframer_0 = poesweather.metop_cadu_deframer(True, 1024, deframer_insync_frames, deframer_outsync_frames)
		self.root_raised_cosine_filter_0 = gr.fir_filter_ccf(1, firdes.root_raised_cosine(
			1, samp_rate, symb_rate, 0.25, int(11*samp_rate/symb_rate)))
		self.usrp_simple_source = grc_usrp.simple_source_c(which=0, side=side, rx_ant="RXA")
		self.usrp_simple_source.set_decim_rate(decim_tb)
		self.usrp_simple_source.set_frequency(freq_tb, verbose=True)
		self.usrp_simple_source.set_gain(gain_tb)
		self.wxgui_fftsink1 = fftsink2.fft_sink_c(
			self.rx_ntb.GetPage(0).GetWin(),
			baseband_freq=freq,
			y_per_div=2,
			y_divs=10,
			ref_level=12,
			ref_scale=2.0,
			sample_rate=samp_rate,
			fft_size=1024,
			fft_rate=30,
			average=True,
			avg_alpha=0.1,
			title="Not filtered spectrum",
			peak_hold=False,
		)
		self.rx_ntb.GetPage(0).Add(self.wxgui_fftsink1.win)
		self.wxgui_fftsink2 = fftsink2.fft_sink_c(
			self.rx_ntb.GetPage(0).GetWin(),
			baseband_freq=0,
			y_per_div=2,
			y_divs=10,
			ref_level=12,
			ref_scale=2.0,
			sample_rate=samp_rate,
			fft_size=1024,
			fft_rate=30,
			average=True,
			avg_alpha=0.1,
			title="RRC filtered spectrum",
			peak_hold=False,
		)
		self.rx_ntb.GetPage(0).Add(self.wxgui_fftsink2.win)
		self.wxgui_scopesink2_1 = scopesink2.scope_sink_c(
			self.rx_ntb.GetPage(1).GetWin(),
			title="BPSK constellation diagram",
			sample_rate=symb_rate,
			v_scale=0.4,
			v_offset=0,
			t_scale=1/samp_rate,
			ac_couple=False,
			xy_mode=True,
			num_inputs=1,
		)
		self.rx_ntb.GetPage(1).Add(self.wxgui_scopesink2_1.win)

		##################################################
		# Connections
		##################################################
		self.connect((self.usrp_simple_source, 0), (self.gr_agc_xx_0, 0))
		self.connect((self.gr_agc_xx_0, 0), (self.root_raised_cosine_filter_0, 0))
		self.connect((self.gr_multiply_const_vxx_0, 0), (self.gr_complex_to_real_0, 0))
		self.connect((self.fec_decode_viterbi_bpsk_fb_0, 0), (self.gr_packed_to_unpacked_xx_0, 0))
		self.connect((self.gr_packed_to_unpacked_xx_0, 0), (self.poesweather_metop_cadu_deframer_0, 0))
		self.connect((self.gr_complex_to_real_0, 0), (self.fec_decode_viterbi_bpsk_fb_0, 0))
		self.connect((self.gr_clock_recovery_mm_xx_0, 0), (self.gr_multiply_const_vxx_0, 0))
		self.connect((self.gr_costas_loop_cc_0, 0), (self.gr_clock_recovery_mm_xx_0, 0))
		self.connect((self.root_raised_cosine_filter_0, 0), (self.gr_costas_loop_cc_0, 0))
		self.connect((self.gr_multiply_const_vxx_0, 0), (self.wxgui_scopesink2_1, 0))
		self.connect((self.root_raised_cosine_filter_0, 0), (self.wxgui_fftsink2, 0))
		self.connect((self.gr_agc_xx_0, 0), (self.wxgui_fftsink1, 0))
		self.connect((self.poesweather_metop_cadu_deframer_0, 0), (self.gr_null_sink_0, 0))
Esempio n. 35
0
    def __init__(self,frame,panel,vbox,argv):
        stdgui2.std_top_block.__init__ (self,frame,panel,vbox,argv)

        usage="%prog: [options] [input_filename]. \n If you don't specify an input filename the usrp will be used as source\n " \
              "Make sure your input capture file containes interleaved shorts not complex floats"
        parser=OptionParser(option_class=eng_option)
        parser.add_option("-R", "--rx-subdev-spec", type="subdev", default=None,
                          help="select USRP Rx side A or B (default=A)")
        parser.add_option("-d", "--decim", type="int", default=64,
                          help="set fgpa decimation rate to DECIM [default=%default]")
        parser.add_option("-f", "--freq", type="eng_float", default=519.25e6,
                          help="set frequency to FREQ", metavar="FREQ")
        parser.add_option("-g", "--gain", type="eng_float", default=None,
                          help="set gain in dB (default is midpoint)")
        parser.add_option("-c", "--contrast", type="eng_float", default=1.0,
                          help="set contrast (default is 1.0)")
        parser.add_option("-b", "--brightness", type="eng_float", default=0.0,
                          help="set brightness (default is 0)")
        parser.add_option("-8", "--width-8", action="store_true", default=False,
                          help="Enable 8-bit samples across USB")
        parser.add_option("-p", "--pal", action="store_true", default=False,
                          help="PAL video format (this is the default)")
        parser.add_option("-n", "--ntsc", action="store_true", default=False,
                          help="NTSC video format")
        parser.add_option("-o", "--out-filename", type="string", default="sdl",
                          help="For example out_raw_uchar.gray. If you don't specify an output filename you will get a video_sink_sdl realtime output window. You then need to have gr-video-sdl installed)")
        parser.add_option("-r", "--repeat", action="store_false", default=True,
                          help="repeat file in a loop")
        parser.add_option("-N", "--no-hb", action="store_true", default=False,
                          help="don't use halfband filter in usrp")

        (options, args) = parser.parse_args()
        if not ((len(args) == 1) or (len(args) == 0)):
            parser.print_help()
            sys.exit(1)
        
        if len(args) == 1:
          filename = args[0]
        else:
          filename = None

        self.frame = frame
        self.panel = panel
        
        self.contrast = options.contrast
        self.brightness = options.brightness
        self.state = "FREQ"
        self.freq = 0

        # build graph

        self.u=None

        usrp_decim = options.decim # 32

        if not (options.out_filename=="sdl"):
          options.repeat=False

        if not ((filename is None) or (filename=="usrp")):
          self.filesource = gr.file_source(gr.sizeof_short,filename,options.repeat) # file is data source
          self.istoc = gr.interleaved_short_to_complex()
          self.connect(self.filesource,self.istoc)
          adc_rate=64e6
          self.src=self.istoc
          options.gain=0.0
          self.gain=0.0
        else:
          if options.no_hb or (options.decim<8):
            self.fpga_filename="std_4rx_0tx.rbf" #contains 4 Rx paths without halfbands and 0 tx paths
          else:
            self.fpga_filename="std_2rxhb_2tx.rbf" # contains 2 Rx paths with halfband filters and 2 tx paths (the default)
          self.u = usrp.source_c(0,fpga_filename=self.fpga_filename)                    # usrp is data source
          if options.width_8:
              sample_width = 8
              sample_shift = 8
              format = self.u.make_format(sample_width, sample_shift)
              r = self.u.set_format(format)
          adc_rate = self.u.adc_rate()                # 64 MS/s
          self.u.set_decim_rate(usrp_decim)
          if options.rx_subdev_spec is None:
            options.rx_subdev_spec = pick_subdevice(self.u)
          self.u.set_mux(usrp.determine_rx_mux_value(self.u, options.rx_subdev_spec))
          self.subdev = usrp.selected_subdev(self.u, options.rx_subdev_spec)
          print "Using RX d'board %s" % (self.subdev.side_and_name(),)
          if options.gain is None:
            # if no gain was specified, use the mid-point in dB
            g = self.subdev.gain_range()
            options.gain = float(g[0]+g[1])/2
          self.src=self.u

        usrp_rate = adc_rate / usrp_decim           # 320 kS/s

        f2uc=gr.float_to_uchar()
        # sdl window as final sink
        if not (options.pal or options.ntsc):
          options.pal=True #set default to PAL
        if options.pal:
          lines_per_frame=625.0
          frames_per_sec=25.0
          show_width=768
        elif options.ntsc:
          lines_per_frame=525.0
          frames_per_sec=29.97002997
          show_width=640
        width=int(usrp_rate/(lines_per_frame*frames_per_sec))
        height=int(lines_per_frame)

        if (options.out_filename=="sdl"):
          #Here comes the tv screen, you have to build and install gr-video-sdl for this (subproject of gnuradio, only in cvs for now)
          try:
            video_sink = video_sdl.sink_uc ( frames_per_sec, width, height,0,show_width,height)
          except:
            print "gr-video-sdl is not installed"
            print "realtime \"sdl\" video output window is not available"
            raise SystemExit, 1
          self.dst=video_sink
        else:
          print "You can use the imagemagick display tool to show the resulting imagesequence"
          print "use the following line to show the demodulated TV-signal:"
          print "display -depth 8 -size " +str(width)+ "x" + str(height) + " gray:" + options.out_filename
          print "(Use the spacebar to advance to next frames)" 
          options.repeat=False
          file_sink=gr.file_sink(gr.sizeof_char, options.out_filename)
          self.dst =file_sink 

        self.agc=gr.agc_cc(1e-7,1.0,1.0) #1e-7
        self.am_demod = gr.complex_to_mag ()
        self.set_blacklevel=gr.add_const_ff(0.0)
        self.invert_and_scale = gr.multiply_const_ff (0.0) #-self.contrast *128.0*255.0/(200.0)

        # now wire it all together
        #sample_rate=options.width*options.height*options.framerate

        process_type='do_no_sync'
        if process_type=='do_no_sync':
          self.connect (self.src, self.agc,self.am_demod,self.invert_and_scale, self.set_blacklevel,f2uc,self.dst)
        elif process_type=='do_tv_sync_adv':
          #defaults: gr.tv_sync_adv (double sampling_freq, unsigned int tv_format,bool output_active_video_only=false, bool do_invert=false, double wanted_black_level=0.0, double wanted_white_level=255.0, double avg_alpha=0.1, double initial_gain=1.0, double initial_offset=0.0,bool debug=false)
          self.tv_sync_adv=gr.tv_sync_adv(usrp_rate,0,False,False,0.0,255.0,0.01,1.0,0.0,False) #note, this block is not yet in cvs
          self.connect (self.src, self.am_demod,self.invert_and_scale,self.tv_sync_adv,s2f,f2uc,self.dst) 
        elif process_type=='do_nullsink':
          #self.connect (self.src, self.am_demod,self.invert_and_scale,f2uc,video_sink)
          c2r=gr.complex_to_real()
          nullsink=gr.null_sink(gr.sizeof_float)
          self.connect (self.src, c2r,nullsink) #video_sink)
        elif process_type=='do_tv_sync_corr':
          frame_size=width*height #int(usrp_rate/25.0)
          nframes=10# 32
          search_window=20*nframes 
          debug=False
          video_alpha=0.3 #0.1
          corr_alpha=0.3
          tv_corr=gr.tv_correlator_ff(frame_size,nframes, search_window, video_alpha, corr_alpha,debug) #Note: this block is not yet in cvs
          shift=gr.add_const_ff(-0.7)
          self.connect (self.src, self.agc,self.am_demod,tv_corr,self.invert_and_scale, self.set_blacklevel,f2uc,self.dst) #self.agc,
        else: # process_type=='do_test_image':
          src_vertical_bars = gr.sig_source_f (usrp_rate, gr.GR_SIN_WAVE, 10.0 *usrp_rate/320, 255,128)
          self.connect(src_vertical_bars,f2uc,self.dst)

        self._build_gui(vbox, usrp_rate, usrp_rate, usrp_rate)

   
        if abs(options.freq) < 1e6:
            options.freq *= 1e6

        # set initial values
        self.set_gain(options.gain)
        self.set_contrast(self.contrast)
        self.set_brightness(options.brightness)
        if not(self.set_freq(options.freq)):
            self._set_status_msg("Failed to set initial frequency")
Esempio n. 36
0
    def __init__(self,frame,panel,vbox,argv):
        stdgui2.std_top_block.__init__ (self,frame,panel,vbox,argv)

        usage="%prog: [options] [input_filename]. \n If you don't specify an input filename the usrp will be used as source\n " \
              "Make sure your input capture file containes interleaved shorts not complex floats"
        parser=OptionParser(option_class=eng_option, usage=usage)
        parser.add_option("-a", "--args", type="string", default="",
                          help="UHD device address args [default=%default]")
        parser.add_option("", "--spec", type="string", default=None,
	                  help="Subdevice of UHD device where appropriate")
        parser.add_option("-A", "--antenna", type="string", default=None,
                          help="select Rx Antenna where appropriate")
        parser.add_option("-s", "--samp-rate", type="eng_float", default=1e6,
                          help="set sample rate")
        parser.add_option("-f", "--freq", type="eng_float", default=519.25e6,
                          help="set frequency to FREQ", metavar="FREQ")
        parser.add_option("-g", "--gain", type="eng_float", default=None,
                          help="set gain in dB (default is midpoint)")
        parser.add_option("-c", "--contrast", type="eng_float", default=1.0,
                          help="set contrast (default is 1.0)")
        parser.add_option("-b", "--brightness", type="eng_float", default=0.0,
                          help="set brightness (default is 0)")
        parser.add_option("-p", "--pal", action="store_true", default=False,
                          help="PAL video format (this is the default)")
        parser.add_option("-n", "--ntsc", action="store_true", default=False,
                          help="NTSC video format")
        parser.add_option("-o", "--out-filename", type="string", default="sdl",
                          help="For example out_raw_uchar.gray. If you don't specify an output filename you will get a video_sink_sdl realtime output window. You then need to have gr-video-sdl installed)")
        parser.add_option("-r", "--repeat", action="store_false", default=True,
                          help="repeat file in a loop")
        parser.add_option("", "--freq-min", type="eng_float", default=50.25e6,
                          help="Set a minimum frequency [default=%default]")
        parser.add_option("", "--freq-max", type="eng_float", default=900.25e6,
                          help="Set a maximum frequency [default=%default]")

        (options, args) = parser.parse_args()
        if not ((len(args) == 1) or (len(args) == 0)):
            parser.print_help()
            sys.exit(1)

        if len(args) == 1:
          filename = args[0]
        else:
          filename = None

        self.frame = frame
        self.panel = panel

        self.contrast = options.contrast
        self.brightness = options.brightness
        self.state = "FREQ"
        self.freq = 0

        self.tv_freq_min = options.freq_min
        self.tv_freq_max = options.freq_max

        # build graph
        self.u=None

        if not (options.out_filename=="sdl"):
          options.repeat=False

        usrp_rate = options.samp_rate

        if not ((filename is None) or (filename=="usrp")):
          # file is data source
          self.filesource = gr.file_source(gr.sizeof_short,filename,options.repeat)
          self.istoc = gr.interleaved_short_to_complex()
          self.connect(self.filesource,self.istoc)
          self.src=self.istoc

          options.gain=0.0
          self.gain=0.0

        else: # use a UHD device
          self.u = uhd.usrp_source(device_addr=options.args, stream_args=uhd.stream_args('fc32'))

          # Set the subdevice spec
          if(options.spec):
            self.u.set_subdev_spec(options.spec, 0)

          # Set the antenna
          if(options.antenna):
            self.u.set_antenna(options.antenna, 0)

          self.u.set_samp_rate(usrp_rate)
          dev_rate = self.u.get_samp_rate()

          if options.gain is None:
            # if no gain was specified, use the mid-point in dB
            g = self.u.get_gain_range()
            options.gain = float(g.start()+g.stop())/2.0

          self.src=self.u

        self.gain = options.gain

        f2uc=gr.float_to_uchar()

        # sdl window as final sink
        if not (options.pal or options.ntsc):
          options.pal=True #set default to PAL

        if options.pal:
          lines_per_frame=625.0
          frames_per_sec=25.0
          show_width=768

        elif options.ntsc:
          lines_per_frame=525.0
          frames_per_sec=29.97002997
          show_width=640

        width=int(usrp_rate/(lines_per_frame*frames_per_sec))
        height=int(lines_per_frame)

        if (options.out_filename=="sdl"):
          #Here comes the tv screen, you have to build and install
          #gr-video-sdl for this (subproject of gnuradio, only in cvs
          #for now)
          try:
            video_sink = video_sdl.sink_uc ( frames_per_sec, width, height, 0,
                                             show_width, height)
          except:
            print "gr-video-sdl is not installed"
            print "realtime \"sdl\" video output window is not available"
            raise SystemExit, 1
          self.dst=video_sink
        else:
          print "You can use the imagemagick display tool to show the resulting imagesequence"
          print "use the following line to show the demodulated TV-signal:"
          print "display -depth 8 -size " +str(width)+ "x" + str(height) \
              + " gray:" + options.out_filename
          print "(Use the spacebar to advance to next frames)"
          options.repeat=False
          file_sink=gr.file_sink(gr.sizeof_char, options.out_filename)
          self.dst =file_sink

        self.agc=gr.agc_cc(1e-7,1.0,1.0) #1e-7
        self.am_demod = gr.complex_to_mag ()
        self.set_blacklevel=gr.add_const_ff(0.0)
        self.invert_and_scale = gr.multiply_const_ff (0.0) #-self.contrast *128.0*255.0/(200.0)

        # now wire it all together
        #sample_rate=options.width*options.height*options.framerate

        process_type='do_no_sync'
        if process_type=='do_no_sync':
          self.connect (self.src, self.agc,self.am_demod,
                        self.invert_and_scale, self.set_blacklevel,
                        f2uc,self.dst)
        elif process_type=='do_tv_sync_adv':
          #defaults: gr.tv_sync_adv (double sampling_freq, unsigned
          #int tv_format,bool output_active_video_only=false, bool
          #do_invert=false, double wanted_black_level=0.0, double
          #wanted_white_level=255.0, double avg_alpha=0.1, double
          #initial_gain=1.0, double initial_offset=0.0,bool
          #debug=false)

          #note, this block is not yet in cvs
          self.tv_sync_adv=gr.tv_sync_adv(usrp_rate, 0, False, False,
                                          0.0, 255.0, 0.01, 1.0, 0.0, False)
          self.connect (self.src, self.am_demod, self.invert_and_scale,
                        self.tv_sync_adv, s2f, f2uc, self.dst)

        elif process_type=='do_nullsink':
          #self.connect (self.src, self.am_demod,self.invert_and_scale,f2uc,video_sink)
          c2r=gr.complex_to_real()
          nullsink=gr.null_sink(gr.sizeof_float)
          self.connect (self.src, c2r,nullsink) #video_sink)
        elif process_type=='do_tv_sync_corr':
          frame_size=width*height #int(usrp_rate/25.0)
          nframes=10# 32
          search_window=20*nframes
          debug=False
          video_alpha=0.3 #0.1
          corr_alpha=0.3

          #Note: this block is not yet in cvs
          tv_corr=gr.tv_correlator_ff(frame_size,nframes, search_window,
                                      video_alpha, corr_alpha,debug)
          shift=gr.add_const_ff(-0.7)

          self.connect (self.src, self.agc, self.am_demod, tv_corr,
                        self.invert_and_scale, self.set_blacklevel,
                        f2uc, self.dst)
        else: # process_type=='do_test_image':
          src_vertical_bars = gr.sig_source_f (usrp_rate, gr.GR_SIN_WAVE,
                                               10.0 *usrp_rate/320, 255,128)
          self.connect(src_vertical_bars, f2uc, self.dst)

        self._build_gui(vbox, usrp_rate, usrp_rate, usrp_rate)


        frange = self.u.get_freq_range()
        if(frange.start() > self.tv_freq_max or frange.stop() <  self.tv_freq_min):
            sys.stderr.write("Radio does not support required frequency range.\n")
            sys.exit(1)
        if(options.freq < self.tv_freq_min or options.freq > self.tv_freq_max):
            sys.stderr.write("Requested frequency is outside of required frequency range.\n")
            sys.exit(1)

        # set initial values
        self.set_gain(options.gain)
        self.set_contrast(self.contrast)
        self.set_brightness(options.brightness)
        if not(self.set_freq(options.freq)):
            self._set_status_msg("Failed to set initial frequency")
Esempio n. 37
0
    def __init__(self,
                 if_rate,        # Incoming sample rate
                 symbol_rate,    # Original symbol rate
                 excess_bw,      # RRC excess bandwidth, typically 0.35-0.5
                 costas_alpha,   # Costas loop 1st order gain, typically 0.01-0.2
                 costas_beta,    # Costas loop 2nd order gain, typically alpha^2/4.0
                 costas_max,     # Costas loop max frequency offset in radians/sample
                 mm_gain_mu,     # M&M loop 1st order gain, typically 0.001-0.2
                 mm_gain_omega,  # M&M loop 2nd order gain, typically alpha^2/4.0
                 mm_omega_limit, # M&M loop max timing error
                 ):
        
        gr.hier_block2.__init__(self, "receive_path",
                                gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature
                                gr.io_signature(0, 0, 0))                    # Output signature

        self._if_rate = if_rate
        self._sps = int(self._if_rate/symbol_rate)
        print "IF sample rate:", n2s(self._if_rate)
        print "Symbol rate:", n2s(symbol_rate)
        print "Samples/symbol:", self._sps
        print "RRC bandwidth:", excess_bw
        
        # Create AGC to scale input to unity
        self._agc = gr.agc_cc(1e-5, 1.0, 1.0, 1.0)

	# Create RRC with specified excess bandwidth
	taps = gr.firdes.root_raised_cosine(1.0,          # Gain
					    self._sps,    # Sampling rate
					    1.0,          # Symbol rate
					    excess_bw,    # Roll-off factor
					    11*self._sps) # Number of taps

	self._rrc = gr.fir_filter_ccf(1, taps)
        
        # Create a Costas loop frequency/phase recovery block

        print "Costas alpha:", costas_alpha
        print "Costas beta:", costas_beta
        print "Costas max:", costas_max
        
        self._costas = gr.costas_loop_cc(costas_alpha,  # PLL first order gain
                                         costas_beta,   # PLL second order gain
                                         costas_max,    # Max frequency offset rad/sample
                                         -costas_max,   # Min frequency offset rad/sample
                                         2)             # BPSK

        # Create a M&M bit synchronization retiming block
        mm_mu = 0.5
        mm_omega = self._sps

        print "MM gain mu:", mm_gain_mu
        print "MM gain omega:", mm_gain_omega
        print "MM omega limit:", mm_omega_limit
        
        self._mm = gr.clock_recovery_mm_cc(mm_omega,       # Initial samples/symbol
                                           mm_gain_omega,  # Second order gain
                                           mm_mu,          # Initial symbol phase
                                           mm_gain_mu,     # First order gain
                                           mm_omega_limit) # Maximum timing offset

        # Add an SNR probe on the demodulated constellation
        self._snr_probe = gr.probe_mpsk_snr_c(10.0/symbol_rate)
        self.connect(self._mm, self._snr_probe)
        
        # Slice the resulting constellation into bits.
        # Get inphase channel and make decision about 0
        self._c2r = gr.complex_to_real()
        self._slicer = gr.binary_slicer_fb() 
        
        # Descramble BERT sequence.  A channel error will create 3 incorrect bits
        self._descrambler = gr.descrambler_bb(0x8A, 0x7F, 7) # CCSDS 7-bit descrambler

        # Measure BER by the density of 0s in the stream
        self._ber = gr.probe_density_b(1.0/symbol_rate)

        self.connect(self, self._agc, self._rrc, self._costas, self._mm, 
                     self._c2r, self._slicer, self._descrambler, self._ber)
Esempio n. 38
0
    def __init__(self,
                 deframer_insync_frames=2,
                 viterbi_insync_frames=5,
                 deframer_outsync_frames=5,
                 viterbi_outsync_frames=20,
                 viterbi_sync_check=True,
                 viterbi_sync_threshold=0.1,
                 deframer_sync_check=True,
                 clock_alpha=0.005,
                 symb_rate=293883,
                 pll_alpha=0.005,
                 satellite='GOES-LRIT',
                 freq=1691.02e6,
                 gain=23,
                 decim=108,
                 side="A",
                 frames_file=os.environ['HOME'] +
                 '/GOES-LRIT_cadu_frames.cadu',
                 baseband_file=os.environ['HOME'] + '/GOES-LRIT_baseband.dat'):
        grc_wxgui.top_block_gui.__init__(
            self, title="LRIT Receiver from baseband file")

        ##################################################
        # Parameters
        ##################################################
        self.deframer_insync_frames = deframer_insync_frames
        self.viterbi_insync_frames = viterbi_insync_frames
        self.deframer_outsync_frames = deframer_outsync_frames
        self.viterbi_outsync_frames = viterbi_outsync_frames
        self.viterbi_sync_check = viterbi_sync_check
        self.viterbi_sync_threshold = viterbi_sync_threshold
        self.deframer_sync_check = deframer_sync_check
        self.clock_alpha = clock_alpha
        self.symb_rate = symb_rate
        self.pll_alpha = pll_alpha
        self.satellite = satellite
        self.freq = freq
        self.gain = gain
        self.decim = decim
        self.side = side
        self.frames_file = frames_file
        self.baseband_file = baseband_file

        ##################################################
        # Variables
        ##################################################
        self.decim_tb = decim_tb = decim
        self.symb_rate_tb = symb_rate_tb = symb_rate
        self.samp_rate = samp_rate = 64e6 / decim_tb
        self.viterbi_sync_threshold_text = viterbi_sync_threshold_text = viterbi_sync_threshold
        self.viterbi_sync_after_text = viterbi_sync_after_text = viterbi_insync_frames
        self.viterbi_outofsync_after_text = viterbi_outofsync_after_text = viterbi_outsync_frames
        self.viterbi_node_sync_text = viterbi_node_sync_text = viterbi_sync_check
        self.sps = sps = samp_rate / symb_rate_tb
        self.satellite_text = satellite_text = satellite
        self.samp_rate_st = samp_rate_st = samp_rate
        self.pll_alpha_sl = pll_alpha_sl = pll_alpha
        self.gain_tb = gain_tb = gain
        self.freq_tb = freq_tb = freq
        self.frames_file_text_inf = frames_file_text_inf = frames_file
        self.deframer_sync_after_text = deframer_sync_after_text = deframer_insync_frames
        self.deframer_nosync_after_text = deframer_nosync_after_text = deframer_outsync_frames
        self.deframer_check_sync_text = deframer_check_sync_text = deframer_sync_check
        self.datetime_text = datetime_text = strftime("%A, %B %d %Y %H:%M:%S",
                                                      localtime())
        self.clock_alpha_sl = clock_alpha_sl = clock_alpha
        self.baseband_file_text_inf = baseband_file_text_inf = 'no output file'

        ##################################################
        # Notebooks
        ##################################################
        self.rx_ntb = wx.Notebook(self.GetWin(), style=wx.NB_TOP)
        self.rx_ntb.AddPage(grc_wxgui.Panel(self.rx_ntb), "USRP Receiver")
        self.rx_ntb.AddPage(grc_wxgui.Panel(self.rx_ntb),
                            "PLL demodulator and Clock sync")
        self.rx_ntb.AddPage(grc_wxgui.Panel(self.rx_ntb), "Viterbi decoder")
        self.rx_ntb.AddPage(grc_wxgui.Panel(self.rx_ntb), "Deframer")
        self.rx_ntb.AddPage(grc_wxgui.Panel(self.rx_ntb), "Output")
        self.Add(self.rx_ntb)

        ##################################################
        # Controls
        ##################################################
        self._decim_tb_text_box = forms.text_box(
            parent=self.rx_ntb.GetPage(0).GetWin(),
            value=self.decim_tb,
            callback=self.set_decim_tb,
            label="Decimation",
            converter=forms.int_converter(),
        )
        self.rx_ntb.GetPage(0).GridAdd(self._decim_tb_text_box, 1, 3, 1, 1)
        self._symb_rate_tb_text_box = forms.text_box(
            parent=self.rx_ntb.GetPage(1).GetWin(),
            value=self.symb_rate_tb,
            callback=self.set_symb_rate_tb,
            label="Symbol rate",
            converter=forms.int_converter(),
        )
        self.rx_ntb.GetPage(1).GridAdd(self._symb_rate_tb_text_box, 2, 1, 1, 1)
        self._viterbi_sync_threshold_text_static_text = forms.static_text(
            parent=self.rx_ntb.GetPage(2).GetWin(),
            value=self.viterbi_sync_threshold_text,
            callback=self.set_viterbi_sync_threshold_text,
            label="Viterbi node sync threshold [BER]",
            converter=forms.float_converter(),
        )
        self.rx_ntb.GetPage(2).GridAdd(
            self._viterbi_sync_threshold_text_static_text, 3, 0, 1, 1)
        self._viterbi_sync_after_text_static_text = forms.static_text(
            parent=self.rx_ntb.GetPage(2).GetWin(),
            value=self.viterbi_sync_after_text,
            callback=self.set_viterbi_sync_after_text,
            label="Valid frames for Viterbi decoder sync",
            converter=forms.float_converter(),
        )
        self.rx_ntb.GetPage(2).GridAdd(
            self._viterbi_sync_after_text_static_text, 4, 0, 1, 1)
        self._viterbi_outofsync_after_text_static_text = forms.static_text(
            parent=self.rx_ntb.GetPage(2).GetWin(),
            value=self.viterbi_outofsync_after_text,
            callback=self.set_viterbi_outofsync_after_text,
            label="Invalid frames for Viterbi decoder out of sync",
            converter=forms.float_converter(),
        )
        self.rx_ntb.GetPage(2).GridAdd(
            self._viterbi_outofsync_after_text_static_text, 5, 0, 1, 1)
        self._viterbi_node_sync_text_static_text = forms.static_text(
            parent=self.rx_ntb.GetPage(2).GetWin(),
            value=self.viterbi_node_sync_text,
            callback=self.set_viterbi_node_sync_text,
            label="Viterbi node sync enable",
            converter=forms.str_converter(),
        )
        self.rx_ntb.GetPage(2).GridAdd(
            self._viterbi_node_sync_text_static_text, 2, 0, 1, 1)
        self._satellite_text_static_text = forms.static_text(
            parent=self.rx_ntb.GetPage(0).GetWin(),
            value=self.satellite_text,
            callback=self.set_satellite_text,
            label="Sat ",
            converter=forms.str_converter(),
        )
        self.rx_ntb.GetPage(0).GridAdd(self._satellite_text_static_text, 1, 0,
                                       1, 1)
        self._samp_rate_st_static_text = forms.static_text(
            parent=self.rx_ntb.GetPage(0).GetWin(),
            value=self.samp_rate_st,
            callback=self.set_samp_rate_st,
            label="Sample rate",
            converter=forms.float_converter(),
        )
        self.rx_ntb.GetPage(0).GridAdd(self._samp_rate_st_static_text, 1, 4, 1,
                                       1)
        _pll_alpha_sl_sizer = wx.BoxSizer(wx.VERTICAL)
        self._pll_alpha_sl_text_box = forms.text_box(
            parent=self.rx_ntb.GetPage(1).GetWin(),
            sizer=_pll_alpha_sl_sizer,
            value=self.pll_alpha_sl,
            callback=self.set_pll_alpha_sl,
            label="PLL Alpha",
            converter=forms.float_converter(),
            proportion=0,
        )
        self._pll_alpha_sl_slider = forms.slider(
            parent=self.rx_ntb.GetPage(1).GetWin(),
            sizer=_pll_alpha_sl_sizer,
            value=self.pll_alpha_sl,
            callback=self.set_pll_alpha_sl,
            minimum=0.001,
            maximum=0.1,
            num_steps=100,
            style=wx.SL_HORIZONTAL,
            cast=float,
            proportion=1,
        )
        self.rx_ntb.GetPage(1).GridAdd(_pll_alpha_sl_sizer, 1, 0, 1, 1)
        self._gain_tb_text_box = forms.text_box(
            parent=self.rx_ntb.GetPage(0).GetWin(),
            value=self.gain_tb,
            callback=self.set_gain_tb,
            label="RX gain [dB]",
            converter=forms.int_converter(),
        )
        self.rx_ntb.GetPage(0).GridAdd(self._gain_tb_text_box, 1, 2, 1, 1)
        self._freq_tb_text_box = forms.text_box(
            parent=self.rx_ntb.GetPage(0).GetWin(),
            value=self.freq_tb,
            callback=self.set_freq_tb,
            label="Frequency",
            converter=forms.float_converter(),
        )
        self.rx_ntb.GetPage(0).GridAdd(self._freq_tb_text_box, 1, 1, 1, 1)
        self._frames_file_text_inf_static_text = forms.static_text(
            parent=self.rx_ntb.GetPage(4).GetWin(),
            value=self.frames_file_text_inf,
            callback=self.set_frames_file_text_inf,
            label="Frames filename",
            converter=forms.str_converter(),
        )
        self.rx_ntb.GetPage(4).GridAdd(self._frames_file_text_inf_static_text,
                                       3, 0, 1, 1)
        self._deframer_sync_after_text_static_text = forms.static_text(
            parent=self.rx_ntb.GetPage(3).GetWin(),
            value=self.deframer_sync_after_text,
            callback=self.set_deframer_sync_after_text,
            label="Deframe sync after",
            converter=forms.float_converter(),
        )
        self.rx_ntb.GetPage(3).GridAdd(
            self._deframer_sync_after_text_static_text, 3, 0, 1, 1)
        self._deframer_nosync_after_text_static_text = forms.static_text(
            parent=self.rx_ntb.GetPage(3).GetWin(),
            value=self.deframer_nosync_after_text,
            callback=self.set_deframer_nosync_after_text,
            label="Deframer out of sync after",
            converter=forms.float_converter(),
        )
        self.rx_ntb.GetPage(3).GridAdd(
            self._deframer_nosync_after_text_static_text, 4, 0, 1, 1)
        self._deframer_check_sync_text_static_text = forms.static_text(
            parent=self.rx_ntb.GetPage(3).GetWin(),
            value=self.deframer_check_sync_text,
            callback=self.set_deframer_check_sync_text,
            label="Deframer check sync enable",
            converter=forms.str_converter(),
        )
        self.rx_ntb.GetPage(3).GridAdd(
            self._deframer_check_sync_text_static_text, 2, 0, 1, 1)
        self._datetime_text_static_text = forms.static_text(
            parent=self.rx_ntb.GetPage(4).GetWin(),
            value=self.datetime_text,
            callback=self.set_datetime_text,
            label="Local time of aquisition start",
            converter=forms.str_converter(),
        )
        self.rx_ntb.GetPage(4).GridAdd(self._datetime_text_static_text, 1, 0,
                                       1, 1)
        _clock_alpha_sl_sizer = wx.BoxSizer(wx.VERTICAL)
        self._clock_alpha_sl_text_box = forms.text_box(
            parent=self.rx_ntb.GetPage(1).GetWin(),
            sizer=_clock_alpha_sl_sizer,
            value=self.clock_alpha_sl,
            callback=self.set_clock_alpha_sl,
            label="Clock alpha",
            converter=forms.float_converter(),
            proportion=0,
        )
        self._clock_alpha_sl_slider = forms.slider(
            parent=self.rx_ntb.GetPage(1).GetWin(),
            sizer=_clock_alpha_sl_sizer,
            value=self.clock_alpha_sl,
            callback=self.set_clock_alpha_sl,
            minimum=0.001,
            maximum=0.1,
            num_steps=100,
            style=wx.SL_HORIZONTAL,
            cast=float,
            proportion=1,
        )
        self.rx_ntb.GetPage(1).GridAdd(_clock_alpha_sl_sizer, 1, 1, 1, 1)
        self._baseband_file_text_inf_static_text = forms.static_text(
            parent=self.rx_ntb.GetPage(4).GetWin(),
            value=self.baseband_file_text_inf,
            callback=self.set_baseband_file_text_inf,
            label="Baseband filename",
            converter=forms.str_converter(),
        )
        self.rx_ntb.GetPage(4).GridAdd(
            self._baseband_file_text_inf_static_text, 4, 0, 1, 1)

        ##################################################
        # Blocks
        ##################################################
        self.fec_decode_viterbi_bpsk_fb_0 = fec.decode_viterbi_bpsk_fb(
            viterbi_sync_check, viterbi_sync_threshold, viterbi_insync_frames,
            viterbi_outsync_frames, viterbi_outsync_frames * 3)
        self.gr_agc_xx_0 = gr.agc_cc(10e-6, 1, 1.0 / 32767.0, 1.0)
        self.gr_clock_recovery_mm_xx_0 = gr.clock_recovery_mm_cc(
            sps, clock_alpha_sl * clock_alpha_sl / 4.0, 0.5, clock_alpha_sl,
            0.05)
        self.gr_complex_to_real_0 = gr.complex_to_real(1)
        self.gr_costas_loop_cc_0 = gr.costas_loop_cc(
            pll_alpha_sl, pll_alpha_sl * pll_alpha_sl / 4.0, 0.07, -0.07, 2)
        self.gr_file_source_0 = gr.file_source(
            gr.sizeof_gr_complex * 1,
            "/home/martin/GNURadioData/lrit/goes_lrit_D108AD64MHz.sam", True)
        self.gr_multiply_const_vxx_0 = gr.multiply_const_vcc((1, ))
        self.gr_null_sink_0 = gr.null_sink(gr.sizeof_char * 1)
        self.gr_packed_to_unpacked_xx_0 = gr.packed_to_unpacked_bb(
            1, gr.GR_MSB_FIRST)
        self.gr_throttle_0 = gr.throttle(gr.sizeof_gr_complex * 1, samp_rate)
        self.poesweather_metop_cadu_deframer_0 = poesweather.metop_cadu_deframer(
            True, 1024, deframer_insync_frames, deframer_outsync_frames)
        self.root_raised_cosine_filter_0 = gr.fir_filter_ccf(
            1,
            firdes.root_raised_cosine(1, samp_rate, symb_rate, 0.25,
                                      int(11 * samp_rate / symb_rate)))
        self.wxgui_fftsink1 = fftsink2.fft_sink_c(
            self.rx_ntb.GetPage(0).GetWin(),
            baseband_freq=freq,
            y_per_div=2,
            y_divs=10,
            ref_level=12,
            ref_scale=2.0,
            sample_rate=samp_rate,
            fft_size=1024,
            fft_rate=30,
            average=True,
            avg_alpha=0.1,
            title="Not filtered spectrum",
            peak_hold=False,
        )
        self.rx_ntb.GetPage(0).Add(self.wxgui_fftsink1.win)
        self.wxgui_fftsink2 = fftsink2.fft_sink_c(
            self.rx_ntb.GetPage(0).GetWin(),
            baseband_freq=0,
            y_per_div=2,
            y_divs=10,
            ref_level=12,
            ref_scale=2.0,
            sample_rate=samp_rate,
            fft_size=1024,
            fft_rate=30,
            average=True,
            avg_alpha=0.1,
            title="RRC filtered spectrum",
            peak_hold=False,
        )
        self.rx_ntb.GetPage(0).Add(self.wxgui_fftsink2.win)
        self.wxgui_scopesink2_1 = scopesink2.scope_sink_c(
            self.rx_ntb.GetPage(1).GetWin(),
            title="BPSK constellation diagram",
            sample_rate=symb_rate,
            v_scale=0.4,
            v_offset=0,
            t_scale=1 / samp_rate,
            ac_couple=False,
            xy_mode=True,
            num_inputs=1,
        )
        self.rx_ntb.GetPage(1).Add(self.wxgui_scopesink2_1.win)

        ##################################################
        # Connections
        ##################################################
        self.connect((self.gr_agc_xx_0, 0),
                     (self.root_raised_cosine_filter_0, 0))
        self.connect((self.gr_multiply_const_vxx_0, 0),
                     (self.gr_complex_to_real_0, 0))
        self.connect((self.fec_decode_viterbi_bpsk_fb_0, 0),
                     (self.gr_packed_to_unpacked_xx_0, 0))
        self.connect((self.gr_packed_to_unpacked_xx_0, 0),
                     (self.poesweather_metop_cadu_deframer_0, 0))
        self.connect((self.gr_complex_to_real_0, 0),
                     (self.fec_decode_viterbi_bpsk_fb_0, 0))
        self.connect((self.gr_clock_recovery_mm_xx_0, 0),
                     (self.gr_multiply_const_vxx_0, 0))
        self.connect((self.gr_costas_loop_cc_0, 0),
                     (self.gr_clock_recovery_mm_xx_0, 0))
        self.connect((self.root_raised_cosine_filter_0, 0),
                     (self.gr_costas_loop_cc_0, 0))
        self.connect((self.gr_multiply_const_vxx_0, 0),
                     (self.wxgui_scopesink2_1, 0))
        self.connect((self.root_raised_cosine_filter_0, 0),
                     (self.wxgui_fftsink2, 0))
        self.connect((self.gr_agc_xx_0, 0), (self.wxgui_fftsink1, 0))
        self.connect((self.poesweather_metop_cadu_deframer_0, 0),
                     (self.gr_null_sink_0, 0))
        self.connect((self.gr_throttle_0, 0), (self.gr_agc_xx_0, 0))
        self.connect((self.gr_file_source_0, 0), (self.gr_throttle_0, 0))
Esempio n. 39
0
	def __init__(self, ahw="default", freq=150.0e6, ppm=0.0, vol=1.0, ftune=0.0, xftune=0.0, srate=1.0e6, upclo=0.0, devinfo="rtl=0", agc=0, arate=48.0e3, upce=0, mthresh=-10.0, offs=50.e3, flist="", dfifo="multimode_fifo", mbw=2.0e3, deemph=75.0e-6, dmode="NFM1"):
		grc_wxgui.top_block_gui.__init__(self, title="Multimode Radio Receiver")
		_icon_path = "/usr/share/icons/hicolor/32x32/apps/gnuradio-grc.png"
		self.SetIcon(wx.Icon(_icon_path, wx.BITMAP_TYPE_ANY))

		##################################################
		# Parameters
		##################################################
		self.ahw = ahw
		self.freq = freq
		self.ppm = ppm
		self.vol = vol
		self.ftune = ftune
		self.xftune = xftune
		self.srate = srate
		self.upclo = upclo
		self.devinfo = devinfo
		self.agc = agc
		self.arate = arate
		self.upce = upce
		self.mthresh = mthresh
		self.offs = offs
		self.flist = flist
		self.dfifo = dfifo
		self.mbw = mbw
		self.deemph = deemph
		self.dmode = dmode

		##################################################
		# Variables
		##################################################
		self.sc_list_str = sc_list_str = flist
		self.zoom = zoom = 1
		self.thresh = thresh = mthresh
		self.scan_rate = scan_rate = 15
		self.scan_power = scan_power = 0
		self.sc_low = sc_low = 150e6
		self.sc_listm = sc_listm = False
		self.sc_list = sc_list = eval("["+sc_list_str+"]")
		self.sc_incr = sc_incr = 12.5e3
		self.sc_high = sc_high = 300e6
		self.sc_ena = sc_ena = False
		self.samp_rate = samp_rate = int(mh.get_good_rate(devinfo,srate))
		self.rf_power = rf_power = 0
		self.ifreq = ifreq = freq
		self.zoomed_lp = zoomed_lp = (samp_rate/2.1)/zoom
		self.wbfm = wbfm = 200e3
		self.rf_d_power = rf_d_power = 0
		self.mode = mode = dmode
		self.logpower = logpower = math.log10(rf_power+1.0e-14)*10.0
		self.cur_freq = cur_freq = mh.scan_freq_out(sc_ena,sc_low,sc_high,freq,ifreq,scan_power+1.0e-14,thresh,sc_incr,scan_rate,sc_listm,sc_list)
		self.bw = bw = mbw
		self.audio_int_rate = audio_int_rate = 40e3
		self.zoom_taps = zoom_taps = firdes.low_pass(1.0,samp_rate,zoomed_lp,zoomed_lp/3,firdes.WIN_HAMMING,6.76)
		self.xfine = xfine = xftune
		self.volume = volume = vol
		self.variable_static_text_1 = variable_static_text_1 = cur_freq
		self.variable_static_text_0_0 = variable_static_text_0_0 = samp_rate
		self.variable_static_text_0 = variable_static_text_0 = float(int(math.log10(rf_d_power+1.0e-14)*100.0)/10.0)
		self.upc_offset = upc_offset = upclo
		self.upc = upc = upce
		self.ssbo = ssbo = -bw/2 if mode == "LSB" else 0.0
		self.sc_list_len = sc_list_len = len(sc_list)
		self.rfgain = rfgain = 25
		self.record_file = record_file = "recording.wav"
		self.record = record = False
		self.offset = offset = offs
		self.muted = muted = 0.0 if logpower >= thresh else 1
		self.main_taps = main_taps = firdes.low_pass(1.0,wbfm,mh.get_mode_deviation(mode,bw)*1.05,mh.get_mode_deviation(mode,bw)/2.0,firdes.WIN_HAMMING,6.76)
		self.k = k = wbfm/(2*math.pi*mh.get_mode_deviation(mode,bw))
		self.iagc = iagc = agc
		self.freq_update = freq_update = 0
		self.fine = fine = ftune
		self.digi_rate = digi_rate = 50e3
		self.aratio = aratio = int(wbfm/audio_int_rate)

		##################################################
		# Blocks
		##################################################
		self.rf_probe = gr.probe_avg_mag_sqrd_c(0, 0.015)
		self.Main = self.Main = wx.Notebook(self.GetWin(), style=wx.NB_TOP)
		self.Main.AddPage(grc_wxgui.Panel(self.Main), "Main Controls")
		self.Main.AddPage(grc_wxgui.Panel(self.Main), "Scan/Upconv Controls")
		self.Add(self.Main)
		self._zoom_chooser = forms.drop_down(
			parent=self.Main.GetPage(0).GetWin(),
			value=self.zoom,
			callback=self.set_zoom,
			label="Spectral Zoom Ratio",
			choices=[1, 2, 5, 10, 20, 50, 100],
			labels=[],
		)
		self.Main.GetPage(0).GridAdd(self._zoom_chooser, 1, 4, 1, 1)
		_xfine_sizer = wx.BoxSizer(wx.VERTICAL)
		self._xfine_text_box = forms.text_box(
			parent=self.Main.GetPage(0).GetWin(),
			sizer=_xfine_sizer,
			value=self.xfine,
			callback=self.set_xfine,
			label="Extra Fine Tuning",
			converter=forms.float_converter(),
			proportion=0,
		)
		self._xfine_slider = forms.slider(
			parent=self.Main.GetPage(0).GetWin(),
			sizer=_xfine_sizer,
			value=self.xfine,
			callback=self.set_xfine,
			minimum=-1.0e3,
			maximum=1.0e3,
			num_steps=200,
			style=wx.SL_HORIZONTAL,
			cast=float,
			proportion=1,
		)
		self.Main.GetPage(0).GridAdd(_xfine_sizer, 0, 3, 1, 1)
		_volume_sizer = wx.BoxSizer(wx.VERTICAL)
		self._volume_text_box = forms.text_box(
			parent=self.Main.GetPage(0).GetWin(),
			sizer=_volume_sizer,
			value=self.volume,
			callback=self.set_volume,
			label="Volume",
			converter=forms.float_converter(),
			proportion=0,
		)
		self._volume_slider = forms.slider(
			parent=self.Main.GetPage(0).GetWin(),
			sizer=_volume_sizer,
			value=self.volume,
			callback=self.set_volume,
			minimum=1.0,
			maximum=10.0,
			num_steps=100,
			style=wx.SL_HORIZONTAL,
			cast=float,
			proportion=1,
		)
		self.Main.GetPage(0).GridAdd(_volume_sizer, 0, 0, 1, 1)
		self._upc_offset_text_box = forms.text_box(
			parent=self.Main.GetPage(1).GetWin(),
			value=self.upc_offset,
			callback=self.set_upc_offset,
			label="Upconv. LO Freq",
			converter=forms.float_converter(),
		)
		self.Main.GetPage(1).GridAdd(self._upc_offset_text_box, 3, 2, 1, 2)
		self._upc_check_box = forms.check_box(
			parent=self.Main.GetPage(1).GetWin(),
			value=self.upc,
			callback=self.set_upc,
			label="Ext. Upconv.",
			true=1,
			false=0,
		)
		self.Main.GetPage(1).GridAdd(self._upc_check_box, 3, 0, 1, 1)
		_rfgain_sizer = wx.BoxSizer(wx.VERTICAL)
		self._rfgain_text_box = forms.text_box(
			parent=self.Main.GetPage(0).GetWin(),
			sizer=_rfgain_sizer,
			value=self.rfgain,
			callback=self.set_rfgain,
			label="RF Gain",
			converter=forms.float_converter(),
			proportion=0,
		)
		self._rfgain_slider = forms.slider(
			parent=self.Main.GetPage(0).GetWin(),
			sizer=_rfgain_sizer,
			value=self.rfgain,
			callback=self.set_rfgain,
			minimum=0,
			maximum=50,
			num_steps=200,
			style=wx.SL_HORIZONTAL,
			cast=float,
			proportion=1,
		)
		self.Main.GetPage(0).GridAdd(_rfgain_sizer, 2, 1, 1, 1)
		self._record_file_text_box = forms.text_box(
			parent=self.Main.GetPage(0).GetWin(),
			value=self.record_file,
			callback=self.set_record_file,
			label="Recording Filename",
			converter=forms.str_converter(),
		)
		self.Main.GetPage(0).GridAdd(self._record_file_text_box, 2, 3, 1, 3)
		self._record_check_box = forms.check_box(
			parent=self.Main.GetPage(0).GetWin(),
			value=self.record,
			callback=self.set_record,
			label="Record",
			true=True,
			false=False,
		)
		self.Main.GetPage(0).GridAdd(self._record_check_box, 2, 2, 1, 1)
		_offset_sizer = wx.BoxSizer(wx.VERTICAL)
		self._offset_text_box = forms.text_box(
			parent=self.Main.GetPage(0).GetWin(),
			sizer=_offset_sizer,
			value=self.offset,
			callback=self.set_offset,
			label="LO Offset",
			converter=forms.float_converter(),
			proportion=0,
		)
		self._offset_slider = forms.slider(
			parent=self.Main.GetPage(0).GetWin(),
			sizer=_offset_sizer,
			value=self.offset,
			callback=self.set_offset,
			minimum=25e3,
			maximum=500e3,
			num_steps=200,
			style=wx.SL_HORIZONTAL,
			cast=float,
			proportion=1,
		)
		self.Main.GetPage(0).GridAdd(_offset_sizer, 1, 3, 1, 1)
		self._mode_chooser = forms.drop_down(
			parent=self.Main.GetPage(0).GetWin(),
			value=self.mode,
			callback=self.set_mode,
			label="Mode",
			choices=mh.get_modes_values(),
			labels=mh.get_modes_names(),
		)
		self.Main.GetPage(0).GridAdd(self._mode_chooser, 0, 4, 1, 1)
		self._iagc_check_box = forms.check_box(
			parent=self.Main.GetPage(0).GetWin(),
			value=self.iagc,
			callback=self.set_iagc,
			label="AGC",
			true=1,
			false=0,
		)
		self.Main.GetPage(0).GridAdd(self._iagc_check_box, 2, 0, 1, 1)
		def _freq_update_probe():
			while True:
				val = self.rf_probe.level()
				try: self.set_freq_update(val)
				except AttributeError, e: pass
				time.sleep(1.0/(1.0/(2.5)))
		_freq_update_thread = threading.Thread(target=_freq_update_probe)
		_freq_update_thread.daemon = True
		_freq_update_thread.start()
		_fine_sizer = wx.BoxSizer(wx.VERTICAL)
		self._fine_text_box = forms.text_box(
			parent=self.Main.GetPage(0).GetWin(),
			sizer=_fine_sizer,
			value=self.fine,
			callback=self.set_fine,
			label="Fine Tuning",
			converter=forms.float_converter(),
			proportion=0,
		)
		self._fine_slider = forms.slider(
			parent=self.Main.GetPage(0).GetWin(),
			sizer=_fine_sizer,
			value=self.fine,
			callback=self.set_fine,
			minimum=-35e3,
			maximum=35e3,
			num_steps=100,
			style=wx.SL_HORIZONTAL,
			cast=float,
			proportion=1,
		)
		self.Main.GetPage(0).GridAdd(_fine_sizer, 0, 2, 1, 1)
		self.display_probe = gr.probe_avg_mag_sqrd_c(0, 0.002)
		_bw_sizer = wx.BoxSizer(wx.VERTICAL)
		self._bw_text_box = forms.text_box(
			parent=self.Main.GetPage(0).GetWin(),
			sizer=_bw_sizer,
			value=self.bw,
			callback=self.set_bw,
			label="AM/SSB Bandwidth",
			converter=forms.float_converter(),
			proportion=0,
		)
		self._bw_slider = forms.slider(
			parent=self.Main.GetPage(0).GetWin(),
			sizer=_bw_sizer,
			value=self.bw,
			callback=self.set_bw,
			minimum=1.0e3,
			maximum=audio_int_rate/2,
			num_steps=100,
			style=wx.SL_HORIZONTAL,
			cast=float,
			proportion=1,
		)
		self.Main.GetPage(0).GridAdd(_bw_sizer, 1, 2, 1, 1)
		self.wxgui_waterfallsink2_0 = waterfallsink2.waterfall_sink_c(
			self.Main.GetPage(0).GetWin(),
			baseband_freq=mh.get_last_returned(freq_update),
			dynamic_range=40,
			ref_level=0,
			ref_scale=2.0,
			sample_rate=samp_rate/zoom,
			fft_size=1024,
			fft_rate=4,
			average=True,
			avg_alpha=None,
			title="Spectrogram",
			win=window.hamming,
		)
		self.Main.GetPage(0).Add(self.wxgui_waterfallsink2_0.win)
		def wxgui_waterfallsink2_0_callback(x, y):
			self.set_freq(x)
		
		self.wxgui_waterfallsink2_0.set_callback(wxgui_waterfallsink2_0_callback)
		self.wxgui_fftsink2_0 = fftsink2.fft_sink_c(
			self.Main.GetPage(0).GetWin(),
			baseband_freq=mh.get_last_returned(freq_update),
			y_per_div=10,
			y_divs=10,
			ref_level=0,
			ref_scale=2.0,
			sample_rate=samp_rate/zoom,
			fft_size=1024,
			fft_rate=4,
			average=True,
			avg_alpha=0.1,
			title="Panorama",
			peak_hold=False,
			win=window.hamming,
		)
		self.Main.GetPage(0).Add(self.wxgui_fftsink2_0.win)
		def wxgui_fftsink2_0_callback(x, y):
			self.set_freq(x)
		
		self.wxgui_fftsink2_0.set_callback(wxgui_fftsink2_0_callback)
		self._variable_static_text_1_static_text = forms.static_text(
			parent=self.Main.GetPage(1).GetWin(),
			value=self.variable_static_text_1,
			callback=self.set_variable_static_text_1,
			label="Current Scan Freq",
			converter=forms.float_converter(),
		)
		self.Main.GetPage(1).GridAdd(self._variable_static_text_1_static_text, 0, 5, 1, 2)
		self._variable_static_text_0_0_static_text = forms.static_text(
			parent=self.Main.GetPage(0).GetWin(),
			value=self.variable_static_text_0_0,
			callback=self.set_variable_static_text_0_0,
			label="Actual srate",
			converter=forms.float_converter(),
		)
		self.Main.GetPage(0).GridAdd(self._variable_static_text_0_0_static_text, 1, 5, 1, 1)
		self._variable_static_text_0_static_text = forms.static_text(
			parent=self.Main.GetPage(0).GetWin(),
			value=self.variable_static_text_0,
			callback=self.set_variable_static_text_0,
			label="RF Level",
			converter=forms.float_converter(),
		)
		self.Main.GetPage(0).GridAdd(self._variable_static_text_0_static_text, 1, 0, 1, 1)
		_thresh_sizer = wx.BoxSizer(wx.VERTICAL)
		self._thresh_text_box = forms.text_box(
			parent=self.Main.GetPage(0).GetWin(),
			sizer=_thresh_sizer,
			value=self.thresh,
			callback=self.set_thresh,
			label="Mute Threshold",
			converter=forms.float_converter(),
			proportion=0,
		)
		self._thresh_slider = forms.slider(
			parent=self.Main.GetPage(0).GetWin(),
			sizer=_thresh_sizer,
			value=self.thresh,
			callback=self.set_thresh,
			minimum=-50,
			maximum=10,
			num_steps=100,
			style=wx.SL_HORIZONTAL,
			cast=float,
			proportion=1,
		)
		self.Main.GetPage(0).GridAdd(_thresh_sizer, 1, 1, 1, 1)
		def _scan_power_probe():
			while True:
				val = self.rf_probe.level()
				try: self.set_scan_power(val)
				except AttributeError, e: pass
				time.sleep(1.0/(scan_rate))
		_scan_power_thread = threading.Thread(target=_scan_power_probe)
		_scan_power_thread.daemon = True
		_scan_power_thread.start()
		self._sc_low_text_box = forms.text_box(
			parent=self.Main.GetPage(1).GetWin(),
			value=self.sc_low,
			callback=self.set_sc_low,
			label="Scan Low",
			converter=forms.float_converter(),
		)
		self.Main.GetPage(1).GridAdd(self._sc_low_text_box, 0, 1, 1, 1)
		self._sc_listm_check_box = forms.check_box(
			parent=self.Main.GetPage(1).GetWin(),
			value=self.sc_listm,
			callback=self.set_sc_listm,
			label="Scan List Mode",
			true=True,
			false=False,
		)
		self.Main.GetPage(1).GridAdd(self._sc_listm_check_box, 2, 0, 1, 1)
		self._sc_list_str_text_box = forms.text_box(
			parent=self.Main.GetPage(1).GetWin(),
			value=self.sc_list_str,
			callback=self.set_sc_list_str,
			label="Scan List",
			converter=forms.str_converter(),
		)
		self.Main.GetPage(1).GridAdd(self._sc_list_str_text_box, 2, 1, 1, 5)
		self._sc_incr_chooser = forms.drop_down(
			parent=self.Main.GetPage(1).GetWin(),
			value=self.sc_incr,
			callback=self.set_sc_incr,
			label="Scan Increment (Hz)",
			choices=[5.0e3,6.25e3,10.0e3,12.5e3,15e3,25e3],
			labels=[],
		)
		self.Main.GetPage(1).GridAdd(self._sc_incr_chooser, 0, 0, 1, 1)
		self._sc_high_text_box = forms.text_box(
			parent=self.Main.GetPage(1).GetWin(),
			value=self.sc_high,
			callback=self.set_sc_high,
			label="Scan High",
			converter=forms.float_converter(),
		)
		self.Main.GetPage(1).GridAdd(self._sc_high_text_box, 0, 2, 1, 1)
		self._sc_ena_check_box = forms.check_box(
			parent=self.Main.GetPage(1).GetWin(),
			value=self.sc_ena,
			callback=self.set_sc_ena,
			label="Scan Enable",
			true=True,
			false=False,
		)
		self.Main.GetPage(1).GridAdd(self._sc_ena_check_box, 0, 3, 1, 1)
		def _rf_power_probe():
			while True:
				val = self.rf_probe.level()
				try: self.set_rf_power(val)
				except AttributeError, e: pass
				time.sleep(1.0/(10))
		_rf_power_thread = threading.Thread(target=_rf_power_probe)
		_rf_power_thread.daemon = True
		_rf_power_thread.start()
		def _rf_d_power_probe():
			while True:
				val = self.display_probe.level()
				try: self.set_rf_d_power(val)
				except AttributeError, e: pass
				time.sleep(1.0/(5))
		_rf_d_power_thread = threading.Thread(target=_rf_d_power_probe)
		_rf_d_power_thread.daemon = True
		_rf_d_power_thread.start()
		self.osmosdr_source_c_0 = osmosdr.source_c( args="nchan=" + str(1) + " " + devinfo )
		self.osmosdr_source_c_0.set_sample_rate(samp_rate)
		self.osmosdr_source_c_0.set_center_freq(cur_freq+offset+(upc_offset*float(upc)), 0)
		self.osmosdr_source_c_0.set_freq_corr(ppm, 0)
		self.osmosdr_source_c_0.set_gain_mode(iagc, 0)
		self.osmosdr_source_c_0.set_gain(25 if iagc == 1 else rfgain, 0)
		self.osmosdr_source_c_0.set_if_gain(20, 0)
			
		self._ifreq_text_box = forms.text_box(
			parent=self.Main.GetPage(0).GetWin(),
			value=self.ifreq,
			callback=self.set_ifreq,
			label="Frequency",
			converter=forms.float_converter(),
		)
		self.Main.GetPage(0).GridAdd(self._ifreq_text_box, 0, 1, 1, 1)
		self.gr_wavfile_sink_0 = gr.wavfile_sink("/dev/null" if record == False else record_file, 1, int(audio_int_rate), 8)
		self.gr_quadrature_demod_cf_0 = gr.quadrature_demod_cf(k)
		self.gr_multiply_const_vxx_2 = gr.multiply_const_vff((1.0 if mh.get_mode_type(mode) == "FM" else 0.0, ))
		self.gr_multiply_const_vxx_1 = gr.multiply_const_vff((0.0 if muted else volume/4.5, ))
		self.gr_multiply_const_vxx_0_0_0 = gr.multiply_const_vff((0.85 if mh.get_mode_type(mode) == "AM" else 0.0, ))
		self.gr_multiply_const_vxx_0_0 = gr.multiply_const_vff((0.85 if mh.get_mode_type(mode) == "SSB" else 0.0, ))
		self.gr_multiply_const_vxx_0 = gr.multiply_const_vcc(((1.0/math.sqrt(mh.get_mode_deviation(mode,bw))*250), ))
		self.gr_keep_one_in_n_1 = gr.keep_one_in_n(gr.sizeof_gr_complex*1, aratio)
		self.gr_keep_one_in_n_0_0 = gr.keep_one_in_n(gr.sizeof_gr_complex*1, zoom)
		self.gr_keep_one_in_n_0 = gr.keep_one_in_n(gr.sizeof_gr_complex*1, int(wbfm/digi_rate))
		self.gr_freq_xlating_fir_filter_xxx_0_1 = gr.freq_xlating_fir_filter_ccc(1, (1.0, ), (offset+fine+xfine)/(samp_rate/1.0e6), samp_rate)
		self.gr_fractional_interpolator_xx_0 = gr.fractional_interpolator_ff(0, audio_int_rate/arate)
		self.gr_file_sink_0 = gr.file_sink(gr.sizeof_gr_complex*1, "/dev/null" if mh.get_mode_type(mode) != "DIG" else dfifo)
		self.gr_file_sink_0.set_unbuffered(True)
		self.gr_fft_filter_xxx_3 = gr.fft_filter_ccc(1, (zoom_taps), 1)
		self.gr_fft_filter_xxx_2_0 = gr.fft_filter_fff(5, (firdes.low_pass(1.0,wbfm,14.5e3,8.5e3,firdes.WIN_HAMMING,6.76)), 1)
		self.gr_fft_filter_xxx_2 = gr.fft_filter_ccc(1, (main_taps), 1)
		self.gr_fft_filter_xxx_0 = gr.fft_filter_ccc(int(samp_rate/wbfm), (firdes.low_pass(1.0,samp_rate,98.5e3,66e3,firdes.WIN_HAMMING,6.76)), 1)
		self.gr_feedforward_agc_cc_0 = gr.feedforward_agc_cc(1024, 0.75)
		self.gr_complex_to_real_0 = gr.complex_to_real(1)
		self.gr_complex_to_mag_squared_0 = gr.complex_to_mag_squared(1)
		self.gr_add_xx_0 = gr.add_vff(1)
		self.blks2_fm_deemph_0 = blks2.fm_deemph(fs=audio_int_rate, tau=deemph)
		self.audio_sink_0 = audio.sink(int(arate), ahw, True)

		##################################################
		# Connections
		##################################################
		self.connect((self.gr_multiply_const_vxx_0_0, 0), (self.gr_add_xx_0, 1))
		self.connect((self.gr_fractional_interpolator_xx_0, 0), (self.gr_multiply_const_vxx_1, 0))
		self.connect((self.gr_multiply_const_vxx_1, 0), (self.audio_sink_0, 0))
		self.connect((self.gr_multiply_const_vxx_1, 0), (self.audio_sink_0, 1))
		self.connect((self.gr_feedforward_agc_cc_0, 0), (self.gr_complex_to_mag_squared_0, 0))
		self.connect((self.osmosdr_source_c_0, 0), (self.gr_freq_xlating_fir_filter_xxx_0_1, 0))
		self.connect((self.gr_multiply_const_vxx_0_0_0, 0), (self.gr_add_xx_0, 2))
		self.connect((self.gr_feedforward_agc_cc_0, 0), (self.gr_complex_to_real_0, 0))
		self.connect((self.gr_complex_to_real_0, 0), (self.gr_multiply_const_vxx_0_0, 0))
		self.connect((self.gr_multiply_const_vxx_2, 0), (self.gr_add_xx_0, 0))
		self.connect((self.gr_complex_to_mag_squared_0, 0), (self.gr_multiply_const_vxx_0_0_0, 0))
		self.connect((self.gr_multiply_const_vxx_0, 0), (self.display_probe, 0))
		self.connect((self.gr_multiply_const_vxx_0, 0), (self.rf_probe, 0))
		self.connect((self.gr_add_xx_0, 0), (self.gr_fractional_interpolator_xx_0, 0))
		self.connect((self.gr_add_xx_0, 0), (self.gr_wavfile_sink_0, 0))
		self.connect((self.gr_freq_xlating_fir_filter_xxx_0_1, 0), (self.gr_fft_filter_xxx_0, 0))
		self.connect((self.gr_keep_one_in_n_0, 0), (self.gr_file_sink_0, 0))
		self.connect((self.gr_freq_xlating_fir_filter_xxx_0_1, 0), (self.gr_fft_filter_xxx_3, 0))
		self.connect((self.gr_fft_filter_xxx_3, 0), (self.gr_keep_one_in_n_0_0, 0))
		self.connect((self.gr_keep_one_in_n_0_0, 0), (self.wxgui_fftsink2_0, 0))
		self.connect((self.gr_keep_one_in_n_0_0, 0), (self.wxgui_waterfallsink2_0, 0))
		self.connect((self.blks2_fm_deemph_0, 0), (self.gr_multiply_const_vxx_2, 0))
		self.connect((self.gr_quadrature_demod_cf_0, 0), (self.gr_fft_filter_xxx_2_0, 0))
		self.connect((self.gr_fft_filter_xxx_2, 0), (self.gr_keep_one_in_n_0, 0))
		self.connect((self.gr_fft_filter_xxx_2, 0), (self.gr_multiply_const_vxx_0, 0))
		self.connect((self.gr_fft_filter_xxx_0, 0), (self.gr_fft_filter_xxx_2, 0))
		self.connect((self.gr_keep_one_in_n_1, 0), (self.gr_feedforward_agc_cc_0, 0))
		self.connect((self.gr_fft_filter_xxx_2, 0), (self.gr_keep_one_in_n_1, 0))
		self.connect((self.gr_fft_filter_xxx_2, 0), (self.gr_quadrature_demod_cf_0, 0))
		self.connect((self.gr_fft_filter_xxx_2_0, 0), (self.blks2_fm_deemph_0, 0))
Esempio n. 40
0
  def __init__(self, options):
    gr.hier_block2.__init__(self, "transmit_path",
        gr.io_signature(0,0,0),
        gr.io_signature(2,2,gr.sizeof_gr_complex))

    common_options.defaults(options)

    config = self.config = station_configuration()

    config.data_subcarriers    = options.subcarriers
    config.cp_length           = options.cp_length
    config.frame_data_blocks   = options.data_blocks
    config._verbose            = options.verbose
    config.fft_length          = options.fft_length
    config.training_data       = default_block_header(config.data_subcarriers,
                                          config.fft_length,options)
    config.tx_station_id       = options.station_id
    config.coding              = options.coding
    

    if config.tx_station_id is None:
      raise SystemError, "Station ID not set"

    config.frame_id_blocks     = 1 # FIXME

    # digital rms amplitude sent to USRP
    rms_amp                    = options.rms_amplitude
    self._options              = copy.copy(options)

    self.servants = [] # FIXME

    config.block_length = config.fft_length + config.cp_length
    config.frame_data_part = config.frame_data_blocks + config.frame_id_blocks
    config.frame_length = config.frame_data_part + \
                          config.training_data.no_pilotsyms
    config.subcarriers = config.data_subcarriers + \
                         config.training_data.pilot_subcarriers
    config.virtual_subcarriers = config.fft_length - config.subcarriers

    # default values if parameters not set
    if rms_amp is None:
      rms_amp = math.sqrt(config.subcarriers)
    config.rms_amplitude = rms_amp

    # check some bounds
    if config.fft_length < config.subcarriers:
      raise SystemError, "Subcarrier number must be less than FFT length"
    if config.fft_length < config.cp_length:
      raise SystemError, "Cyclic prefix length must be less than FFT length"

    ## shortcuts
    blen = config.block_length
    flen = config.frame_length
    dsubc = config.data_subcarriers
    vsubc = config.virtual_subcarriers


    # ------------------------------------------------------------------------ #
    # Adaptive Transmitter Concept

    used_id_bits = config.used_id_bits = 8 #TODO: no constant in source code
    rep_id_bits = config.rep_id_bits = config.data_subcarriers/used_id_bits #BPSK
    if config.data_subcarriers % used_id_bits <> 0:
      raise SystemError,"Data subcarriers need to be multiple of %d" % (used_id_bits)


    ## Control Part
    if options.debug:
      self._control = ctrl = static_tx_control(options)
      print "Statix TX Control used"
    else:
      self._control = ctrl = corba_tx_control(options)
      print "CORBA TX Control used"

    id_src = (ctrl,0)
    mux_src = (ctrl,1)
    map_src = self._map_src = (ctrl,2)
    pa_src = (ctrl,3)


    if options.log:
      id_src_f = gr.short_to_float()
      self.connect(id_src,id_src_f)
      log_to_file(self, id_src_f, "data/id_src_out.float")

      mux_src_f = gr.short_to_float()
      self.connect(mux_src,mux_src_f)
      log_to_file(self, mux_src_f, "data/mux_src_out.float")

      map_src_s = blocks.vector_to_stream(gr.sizeof_char,config.data_subcarriers)
      map_src_f = gr.char_to_float()
      self.connect(map_src,map_src_s,map_src_f)
      ##log_to_file(self, map_src_f, "data/map_src.float")

      ##log_to_file(self, pa_src, "data/pa_src_out.float")

    ## Workaround to avoid periodic structure
    seed(1)
    whitener_pn = [randint(0,1) for i in range(used_id_bits*rep_id_bits)]

    ## ID Encoder
    id_enc = self._id_encoder = repetition_encoder_sb(used_id_bits,rep_id_bits,whitener_pn)
    self.connect(id_src,id_enc)

    if options.log:
      id_enc_f = gr.char_to_float()
      self.connect(id_enc,id_enc_f)
      log_to_file(self, id_enc_f, "data/id_enc_out.float")

    ## Bitmap Update Trigger
    # TODO
    #bmaptrig_stream = concatenate([[1, 2],[0]*(config.frame_data_part-7)])
    bmaptrig_stream = concatenate([[1, 1],[0]*(config.frame_data_part-2)])
    print"bmaptrig_stream = ",bmaptrig_stream
    btrig = self._bitmap_trigger = blocks.vector_source_b(bmaptrig_stream.tolist(), True)
    if options.log:
      log_to_file(self, btrig, "data/bitmap_trig.char")
      
    ## Bitmap Update Trigger for puncturing
    # TODO
    if not options.nopunct:
        #bmaptrig_stream_puncturing = concatenate([[1],[0]*(config.frame_data_part-2)])
        bmaptrig_stream_puncturing = concatenate([[1],[0]*(config.frame_data_blocks/2-1)])
        
        btrig_puncturing = self._bitmap_trigger_puncturing = blocks.vector_source_b(bmaptrig_stream_puncturing.tolist(), True)
        bmapsrc_stream_puncturing = concatenate([[1]*dsubc,[2]*dsubc])
        bsrc_puncturing = self._bitmap_src_puncturing = blocks.vector_source_b(bmapsrc_stream_puncturing.tolist(), True, dsubc)
        
    if options.log and options.coding and not options.nopunct:
      log_to_file(self, btrig_puncturing, "data/bitmap_trig_puncturing.char")

    ## Frame Trigger
    # TODO
    ftrig_stream = concatenate([[1],[0]*(config.frame_data_part-1)])
    ftrig = self._frame_trigger = blocks.vector_source_b(ftrig_stream.tolist(),True)

    ## Data Multiplexer
    # Input 0: control stream
    # Input 1: encoded ID stream
    # Inputs 2..n: data streams
    dmux = self._data_multiplexer = stream_controlled_mux_b()
    self.connect(mux_src,(dmux,0))
    self.connect(id_enc,(dmux,1))
                      
    self._data_multiplexer_nextport = 2

    if options.log:
      dmux_f = gr.char_to_float()
      self.connect(dmux,dmux_f)
      log_to_file(self, dmux_f, "data/dmux_out.float")
      
    ## Modulator
    mod = self._modulator = generic_mapper_bcv(config.data_subcarriers,options.coding)



    self.connect(dmux,(mod,0))
    self.connect(map_src,(mod,1))
    self.connect(btrig,(mod,2))
    
    if options.log:
      log_to_file(self, mod, "data/mod_out.compl")
      modi = gr.complex_to_imag(config.data_subcarriers)
      modr = gr.complex_to_real(config.data_subcarriers)
      self.connect(mod,modi)
      self.connect(mod,modr)
      log_to_file(self, modi, "data/mod_imag_out.float")
      log_to_file(self, modr, "data/mod_real_out.float")



    ## Power allocator
    if options.debug:

      ## static
      pa = self._power_allocator = power_allocator(config.data_subcarriers)
      self.connect(mod,(pa,0))
      self.connect(pa_src,(pa,1))

    else:

      ## with CORBA control event channel
      ns_ip = ctrl.ns_ip
      ns_port = ctrl.ns_port
      evchan = ctrl.evchan
      pa = self._power_allocator = corba_power_allocator(dsubc, \
          evchan, ns_ip, ns_port, True)

      self.connect(mod,(pa,0))
      self.connect(id_src,(pa,1))
      self.connect(ftrig,(pa,2))

    if options.log:
      log_to_file(self, pa, "data/pa_out.compl")



    ## Pilot subcarriers
    psubc = self._pilot_subcarrier_inserter = pilot_subcarrier_inserter()
    self.connect( pa ,psubc )
        
    pilot_subc = config.training_data.shifted_pilot_tones;
    print "pilot_subc", pilot_subc
    stc = stc_encoder( config.subcarriers, config.frame_data_blocks,  pilot_subc )
    
    self.connect(psubc, stc)
    
    if options.log:
      log_to_file(self, psubc, "data/psubc_out.compl")
      log_to_file(self, psubc_2, "data/psubc2_out.compl")
      log_to_file(self, pa, "data/pa.compl")
      log_to_file(self, ( stc, 0 ), "data/stc_0.compl")
      log_to_file(self, ( stc, 1 ), "data/stc_1.compl")

    ## Add virtual subcarriers
    if config.fft_length > config.subcarriers:
      vsubc = self._virtual_subcarrier_extender = \
              vector_padding(config.subcarriers, config.fft_length)
      self.connect(stc,vsubc)
      vsubc_2 = self._virtual_subcarrier_extender_2 = \
              vector_padding(config.subcarriers, config.fft_length)
      self.connect((stc,1),vsubc_2)
    else:
      vsubc = self._virtual_subcarrier_extender = psubc
      vsubc_2 = self._virtual_subcarrier_extender_2 = psubc_2
      
    log_to_file(self, psubc, "data/psubc.compl")
    log_to_file(self, stc, "data/stc1.compl")
    log_to_file(self, (stc,1), "data/stc2.compl")
    if options.log:
      log_to_file(self, vsubc, "data/vsubc_out.compl")
      log_to_file(self, vsubc_2, "data/vsubc2_out.compl")

    
    ## IFFT, no window, block shift
    ifft = self._ifft = fft_blocks.fft_vcc(config.fft_length,False,[],True)
    self.connect(vsubc,ifft)
    ifft_2 = self._ifft_2 = fft_blocks.fft_vcc(config.fft_length,False,[],True)
    self.connect(vsubc_2,ifft_2)

    if options.log:
      log_to_file(self, ifft, "data/ifft_out.compl")
      log_to_file(self, ifft_2, "data/ifft2_out.compl")


    ## Pilot blocks (preambles)
    pblocks = self._pilot_block_inserter = pilot_block_inserter(1, False)
    self.connect( ifft, pblocks )
    pblocks_2 = self._pilot_block_inserter_2 = pilot_block_inserter( 2, False)
    self.connect( ifft_2, pblocks_2 )
    
    if options.log:
      log_to_file(self, pblocks, "data/pilot_block_ins_out.compl")
      log_to_file(self, pblocks_2, "data/pilot_block_ins2_out.compl")
    
    ## Cyclic Prefix
    cp = self._cyclic_prefixer = cyclic_prefixer(config.fft_length,
                                                 config.block_length)
    self.connect( pblocks, cp )
    cp_2 = self._cyclic_prefixer_2 = cyclic_prefixer(config.fft_length,
                                                 config.block_length)
    self.connect( pblocks_2, cp_2 )
    
    lastblock = cp
    lastblock_2 = cp_2

    
    if options.log:
      log_to_file(self, cp, "data/cp_out.compl")
      log_to_file(self, cp_2, "data/cp2_out.compl")


    if options.cheat:
      ## Artificial Channel
      # kept to compare with previous system
      achan_ir = concatenate([[1.0],[0.0]*(config.cp_length-1)])
      achan = self._artificial_channel = gr.fir_filter_ccc(1,achan_ir)
      self.connect( lastblock, achan )
      lastblock = achan
      achan_2 = self._artificial_channel_2 = gr.fir_filter_ccc(1,achan_ir)
      self.connect( lastblock_2, achan_2 )
      lastblock_2 = achan_2


    ## Digital Amplifier
    amp = self._amplifier = ofdm.multiply_const_ccf( 1.0/math.sqrt(2) )
    self.connect( lastblock, amp )
    amp_2 = self._amplifier_2 = ofdm.multiply_const_ccf( 1.0/math.sqrt(2) )
    self.connect( lastblock_2, amp_2 )
    self.set_rms_amplitude(rms_amp)
    
    if options.log:
      log_to_file(self, amp, "data/amp_tx_out.compl")
      log_to_file(self, amp_2, "data/amp_tx2_out.compl")

    ## Setup Output
    self.connect(amp,(self,0))
    self.connect(amp_2,(self,1))

    # ------------------------------------------------------------------------ #

    # Display some information about the setup
    if config._verbose:
      self._print_verbage()
Esempio n. 41
0
    def __init__(self, options, msgq_limit=2, pad_for_usrp=False):
        """
	Hierarchical block for sending packets

        Packets to be sent are enqueued by calling send_pkt.
        The output is the complex modulated signal at baseband.

        @param options: pass modulation options from higher layers (fft length, occupied tones, etc.)
        @param msgq_limit: maximum number of messages in message queue
        @type msgq_limit: int
        @param pad_for_usrp: If true, packets are padded such that they end up a multiple of 128 samples
        """

	gr.hier_block2.__init__(self, "ofdm_mod",
				gr.io_signature(0, 0, 0),       # Input signature
				gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature
	
    
        self._fft_length          = 64
        self._total_sub_carriers  = 53
	self._data_subcarriers    = 48
	self._cp_length           = 16
 	self._regime              = options.regime
	self._symbol_length       = self._fft_length + self._cp_length
	
	# assuming we have 100Ms/s going to the USRP2 and 80 samples per symbol
	# we can calculate the OFDM symboltime (in microseconds) 
	# depending on the interpolation factor 
	self._symbol_time      = 100000000*(self._symbol_length )/(100*options.bandwidth)
        self._n_sym = options.nsym
	
        win = []
        self._modulation = options.modulation
        if self._modulation == "bpsk":
            rotated_const = ofdm_packet_utils.bpsk(self)
        elif self._modulation == "qpsk":
            rotated_const = ofdm_packet_utils.qpsk(self)
        elif self._modulation == "qam16":
            rotated_const = ofdm_packet_utils.qam16(self)
        elif self._modulation == "qam64":
            rotated_const = ofdm_packet_utils.qam64(self)

#	if(self._regime == "1" or self._regime == "2"):
#	    rotated_const = ofdm_packet_utils.bpsk(self)
 #       
  #      elif (self._regime == "3" or self._regime == "4"):	
	#    rotated_const = ofdm_packet_utils.qpsk(self)
#
 #       elif(self._regime == "5" or self._regime == "6"):
  #          rotated_const = ofdm_packet_utils.qam16(self) 
#
 #       elif(self._regime == "7" or self._regime == "8"):
 #           rotated_const = ofdm_packet_utils.qam64(self)
	
        # map groups of bits to complex symbols
        self._pkt_input = gr_ieee802_11.ofdm_symbol_mapper(rotated_const, msgq_limit, self._data_subcarriers, self._fft_length)
        
        # insert pilot symbols
        self.pilot = gr_ieee802_11.ofdm_pilot_insert(self._data_subcarriers)
	
        # move subcarriers to their designated place and insert DC  
        self.cmap  = gr_ieee802_11.ofdm_carrier_mapper(self._fft_length, self._total_sub_carriers)        

	# inverse fast fourier transform
        self.ifft = gr.fft_vcc(self._fft_length, False, win, False)

        # add cyclic prefix
        self.cp_adder = digital_swig.ofdm_cyclic_prefixer(self._fft_length, self._symbol_length)
        
        # scale accordingly
        self.scale = gr.multiply_const_cc(1.0 / math.sqrt(self._fft_length))
      
	# we need to know the number of OFDM data symbols for preamble and zerogap
    
    # MODIFIED FROM ORIGINAL
    # Instead of having the OFDM data symbols recorded in a python dictionary, the value of N_sym is updated when the class ofdm_mod invoked. 
	N_sym             = self._n_sym
    
	
	# add training sequence
        self.preamble= ofdm_packet_utils.insert_preamble(self._symbol_length, N_sym)

        # append zero samples at the end (receiver needs that to decode)
	self.zerogap    = ofdm_packet_utils.insert_zerogap(self._symbol_length, N_sym)
        
        # repeat the frame a number of times 
        self.repeat = gr_ieee802_11.ofdm_symbol_repeater(self._symbol_length, options.repetition, N_sym)

	self.s2v = gr.stream_to_vector(gr.sizeof_gr_complex , self._symbol_length)
	self.v2s = gr.vector_to_stream(gr.sizeof_gr_complex , self._symbol_length)
	
	# swap real and immaginary component before sending (GNURadio/USRP2 bug!)
	self.gr_complex_to_imag_0 = gr.complex_to_imag(1)
	self.gr_complex_to_real_0 = gr.complex_to_real(1)
	self.gr_float_to_complex_0 = gr.float_to_complex(1)
	self.connect((self.v2s, 0), (self.gr_complex_to_imag_0, 0))
	self.connect((self.v2s, 0), (self.gr_complex_to_real_0, 0))
	self.connect((self.gr_complex_to_imag_0, 0), (self.gr_float_to_complex_0, 1))
	self.connect((self.gr_complex_to_real_0, 0), (self.gr_float_to_complex_0, 0))
	self.connect((self.gr_float_to_complex_0, 0), (self))
		
        # connect the blocks
	self.connect((self._pkt_input, 0), (self.pilot, 0))
	self.connect((self._pkt_input,1), (self.preamble, 1))
	self.connect((self.preamble,1), (self.zerogap, 1))
	
	#if options.repetition == 1:
	self.connect(self.pilot, self.cmap, self.ifft, self.cp_adder, self.scale, self.s2v, \
        self.preamble, self.zerogap, self.v2s)
                
	#elif options.repetition > 1:
	#self.connect(self.pilot, self.cmap, self.ifft, self.cp_adder, self.scale, self.s2v, self.preamble, self.zerogap, self.repeat, self.v2s)
    
	#else:
	#	print"Error: repetiton must be a integer number >= 1 \n"
	#	sys.exit(1)

        if options.log:
            self.connect((self._pkt_input), gr.file_sink(gr.sizeof_gr_complex * self._data_subcarriers, "ofdm_mapper.dat"))
	    self.connect(self.pilot, gr.file_sink(gr.sizeof_gr_complex * (5 + self._data_subcarriers), "ofdm_pilot.dat"))
	    self.connect(self.cmap, gr.file_sink(gr.sizeof_gr_complex * self._fft_length, "ofdm_cmap.dat"))	
            self.connect(self.ifft, gr.file_sink(gr.sizeof_gr_complex * self._fft_length, "ofdm_ifft.dat"))
            self.connect(self.cp_adder, gr.file_sink(gr.sizeof_gr_complex, "ofdm_cp_adder.dat"))	   
	    self.connect(self.scale, gr.file_sink(gr.sizeof_gr_complex, "ofdm_scale.dat"))
            self.connect(self.preamble, gr.file_sink(gr.sizeof_gr_complex * self._symbol_length, "ofdm_preamble.dat"))
            self.connect(self.zerogap, gr.file_sink(gr.sizeof_gr_complex * self._symbol_length, "ofdm_zerogap.dat"))