Esempio n. 1
0
def fundamental3D( cot ):
    '''
    plots fundamental solution in 3D
    '''
    
    x = dic[cot.mesh_name].source
    
    V = cot.V
    mesh_obj = cot.mesh_obj
    kappa = cot.kappa
    
    y  = cot.mesh_obj.coordinates()

    x_y = x-y
    ra  = x_y * x_y
    ra  = np.sum( ra, axis = 1 )
    ra  = np.sqrt( ra ) + 1e-13
    kappara = kappa * ra

    phi_arr = cot.factor * np.power( kappara, 0.5 ) * sp.kv( 0.5, kappara )
    phi     = Function( V )
    phi.vector().set_local( phi_arr[dof_to_vertex_map(V)] )

    helper.save_plots( phi, 
                       ["Free Space", "Greens Function"], 
                       cot )
Esempio n. 2
0
def green( cot, BC ):
    '''
    plots the domain Green's function with boundary
    condition BC on the mesh for a source.
    '''
    u = cot.u
    v = cot.v
    normal = cot.normal
    kappa = cot.kappa
    f = Constant( 0.0 )
    tmp = Function( cot.V )

    loc_solver = cot.solvers( BC )
    L = f*v*dx
    b = assemble(L)
    
    # Make the RHS have delta funcitons at the sources
    helper.apply_sources( cot, b )

    sol = Function( cot.V )
    loc_solver( tmp.vector(), b )
    loc_solver( sol.vector(), assemble(tmp*v*dx) )
    
    # Create the descrition list so we keep track of files
    desc = [ BC, "Greens Function" ]
    if "ours" in BC:
        desc.append( cot.quad )
        
    helper.save_plots( sol,
                       desc,
                       cot )
Esempio n. 3
0
def variance( cot, BC ):
    '''
    plots domain pointwise variance with boundary condition BC.
    '''
    u = cot.u
    v = cot.v
    kappa = cot.kappa
    f = Constant( 0.0 )
    tmp = Function( cot.V )
    
    loc_solver = cot.solvers( BC )

    L = f*v*dx
    b = assemble(L)
    if "dirichlet" in BC:
        pass
    else:
        g = cot.gs( BC )
        helper.apply_sources( cot, b, scaling = g )

        sol_constant_var = Function( cot.V )
        loc_solver( tmp.vector(), b )
        loc_solver( sol_constant_var.vector(), assemble(tmp*v*dx) )
        sol_constant_var.vector().set_local(  
            sol_constant_var.vector().array() * g.vector().array() 
        ) 
    
    # Create the descrition list so we keep track of files
    greens_desc = [ BC, "Constant Variance", "Greens Function"]
    std_desc    = [ BC, "Standard Deviation" ]
    if "ours" in BC:
        greens_desc.append( cot.quad )
        std_desc.append( cot.quad )

    helper.save_plots( cot.stds( BC ),
                       std_desc,
                       cot )

    if not "dirichlet" in BC:
        helper.save_plots( sol_constant_var,
                           greens_desc,
                           cot )