Esempio n. 1
0
    def to_image(self):
        from hyperspy.signals.image import Image
        dic = self._get_signal_dict()
        dic['mapped_parameters']['record_by'] = 'image'
        dic['data'] = np.rollaxis(dic['data'], -1, 0)
        dic['axes'] = utils_varia.rollelem(dic['axes'],-1,0)
        i = 0
        for axis in dic['axes']:
            axis['index_in_array'] = i
            i += 1
        im = Image(dic)
        if hasattr(self, 'learning_results'):
            im.learning_results = copy.deepcopy(self.learning_results)
            im.learning_results._transpose_results()
            im.learning_results.original_shape = self.data.shape

        im.tmp_parameters = self.tmp_parameters.deepcopy()
        return im
Esempio n. 2
0
    def to_image(self, signal_to_index=0):
        """Spectrum to image

        Parameters
        ----------
        signal_to_index : integer
            Position to move the signal axis.        
            
        Examples
        --------        
        >>> s = signals.Spectrum({'data' : np.ones((3,4,5,6))})
        >>> s
        <Spectrum, title: , dimensions: (3L, 4L, 5L, 6L)>

        >>> s.to_image()
        <Image, title: , dimensions: (6L, 3L, 4L, 5L)>

        >>> s.to_image(1)
        <Image, title: , dimensions: (3L, 6L, 4L, 5L)>
        
        """
        from hyperspy.signals.image import Image
        dic = self._get_signal_dict()
        dic['mapped_parameters']['record_by'] = 'image'
        dic['data'] = np.rollaxis(dic['data'], -1, signal_to_index)
        dic['axes'] = utils_varia.rollelem(dic['axes'],-1,signal_to_index)
        i = 0
        for axis in dic['axes']:
            axis['index_in_array'] = i
            i += 1
        im = Image(dic)
        
        if hasattr(self, 'learning_results'):
            if signal_to_index != 0 and self.learning_results.loadings is not None:
                print("The learning results won't be transfered correctly")
            else :
                im.learning_results = copy.deepcopy(self.learning_results)
                im.learning_results._transpose_results()
                im.learning_results.original_shape = self.data.shape

        im.tmp_parameters = self.tmp_parameters.deepcopy()
        return im