Esempio n. 1
0
 def get_orientation(self, si, sj):
     """
     si, sj are two number series. To compute whether these two series have
     same orientation or not. We combine them in the two orientation
     configurations and compute length of the longest monotonic series.
     """
     if not si or not sj:
         return 0
     # Same orientation configuration
     a = lms(si + sj)
     b = lms(sj + si)
     # Opposite orientation configuration
     c = lms(si + sj[::-1])
     d = lms(sj[::-1] + si)
     return max(a, b)[0] - max(c, d)[0]
Esempio n. 2
0
 def get_orientation(self, si, sj):
     """
     si, sj are two number series. To compute whether these two series have
     same orientation or not. We combine them in the two orientation
     configurations and compute length of the longest monotonic series.
     """
     if not si or not sj:
         return 0
     # Same orientation configuration
     a = lms(si + sj)
     b = lms(sj + si)
     # Opposite orientation configuration
     c = lms(si + sj[::-1])
     d = lms(sj[::-1] + si)
     return max(a, b)[0] - max(c, d)[0]
Esempio n. 3
0
def colinear_evaluate_multi(tour, scfs, weights):
    weighted_score = 0
    for scf, w in zip(scfs, weights):
        subtour = [x for x in tour if x in scf]
        series = []
        for t in subtour:
            series.extend(scf[t])
        score, diff = lms(series)
        weighted_score += score * w
    return (weighted_score, )
Esempio n. 4
0
def colinear_evaluate_multi(tour, scfs, weights):
    weighted_score = 0
    for scf, w in zip(scfs, weights):
        subtour = [x for x in tour if x in scf]
        series = []
        for t in subtour:
            series.extend(scf[t])
        score, diff = lms(series)
        weighted_score += score * w
    return (weighted_score,)
Esempio n. 5
0
    def fix_orientation(self, tour):
        """
        Test each scaffold if flipping will increass longest monotonic chain
        length.
        """
        orientations = dict(tour)  # old configuration here
        scaffold_oo = defaultdict(list)
        scaffolds, oos = zip(*tour)
        for mlg in self.linkage_groups:
            lg = mlg.lg
            mapname = mlg.mapname
            for s, o in tour:
                i = scaffolds.index(s)
                L = [self.get_series(lg, x, xo) for x, xo in tour[:i]]
                U = [self.get_series(lg, x, xo) for x, xo in tour[i + 1:]]
                L, U = list(flatten(L)), list(flatten(U))
                M = self.get_series(lg, s)
                plus = lms(L + M + U)
                minus = lms(L + M[::-1] + U)
                d = plus[0] - minus[0]
                if not d:
                    continue
                scaffold_oo[s].append((d, mapname))  # reset orientation

        fixed = 0
        for s, v in scaffold_oo.items():
            d = self.weighted_mean(v)
            old_d = orientations[s]
            new_d = np.sign(d)
            if new_d != old_d:
                orientations[s] = new_d
                fixed += 1

        tour = [(x, orientations[x]) for x in scaffolds]
        logging.debug("Fixed orientations for {0} scaffolds.".format(fixed))
        return tour
Esempio n. 6
0
    def fix_orientation(self, tour):
        """
        Test each scaffold if flipping will increass longest monotonic chain
        length.
        """
        orientations = dict(tour)  # old configuration here
        scaffold_oo = defaultdict(list)
        scaffolds, oos = zip(*tour)
        for mlg in self.linkage_groups:
            lg = mlg.lg
            mapname = mlg.mapname
            for s, o in tour:
                i = scaffolds.index(s)
                L = [self.get_series(lg, x, xo) for x, xo in tour[:i]]
                U = [self.get_series(lg, x, xo) for x, xo in tour[i + 1:]]
                L, U = list(flatten(L)), list(flatten(U))
                M = self.get_series(lg, s)
                plus = lms(L + M + U)
                minus = lms(L + M[::-1] + U)
                d = plus[0] - minus[0]
                if not d:
                    continue
                scaffold_oo[s].append((d, mapname))  # reset orientation

        fixed = 0
        for s, v in scaffold_oo.items():
            d = self.weighted_mean(v)
            old_d = orientations[s]
            new_d = np.sign(d)
            if new_d != old_d:
                orientations[s] = new_d
                fixed += 1

        tour = [(x, orientations[x]) for x in scaffolds]
        logging.debug("Fixed orientations for {0} scaffolds.".format(fixed))
        return tour