Esempio n. 1
0
def kepdraw(infile,outfile,datacol,ploterr,errcol,quality,
	    lcolor,lwidth,fcolor,falpha,labelsize,ticksize,
	    xsize,ysize,fullrange,chooserange,y1,y2,plotgrid,
            ylabel,plottype,verbose,logfile,status,cmdLine=False): 

# log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPDRAW -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'datacol='+datacol+' '
    perr = 'n'
    if (ploterr): perr = 'y'
    call += 'ploterr='+perr+ ' '
    call += 'errcol='+errcol+' '
    qual = 'n'
    if (quality): qual = 'y'
    call += 'quality='+qual+ ' '
    call += 'lcolor='+str(lcolor)+' '
    call += 'lwidth='+str(lwidth)+' '
    call += 'fcolor='+str(fcolor)+' '
    call += 'falpha='+str(falpha)+' '
    call += 'labelsize='+str(labelsize)+' '
    call += 'ticksize='+str(ticksize)+' '
    call += 'xsize='+str(xsize)+' '
    call += 'ysize='+str(ysize)+' '
    frange = 'n'
    if (fullrange): frange = 'y'
    call += 'fullrange='+frange+ ' '
    crange = 'n'
    if (chooserange): crange = 'y'
    call += 'chooserange='+crange+ ' '
    call += 'ymin='+str(y1)+' '
    call += 'ymax='+str(y2)+' '
    pgrid = 'n'
    if (plotgrid): pgrid = 'y'
    call += 'plotgrid='+pgrid+ ' '
    call += 'ylabel='+str(ylabel)+' '
    call += 'plottype='+plottype+' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

# start time

    kepmsg.clock('KEPDRAW started at',logfile,verbose)

# test log file

    logfile = kepmsg.test(logfile)

# open input file

    if status == 0:
        struct, status = kepio.openfits(infile,'readonly',logfile,verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(struct,infile,logfile,verbose,status)

# read table structure

    if status == 0:
	table, status = kepio.readfitstab(infile,struct[1],logfile,verbose)

# read table columns

    if status == 0:
        intime, status = kepio.readtimecol(infile,table,logfile,verbose)
        intime += bjdref
	indata, status = kepio.readfitscol(infile,table,datacol,logfile,verbose)
        indataerr, status = kepio.readfitscol(infile,table,errcol,logfile,verbose)

# read table quality column

    if status == 0 and quality:
        try:
            qualtest = table.field('SAP_QUALITY')
        except:
            message = 'ERROR -- KEPDRAW: no SAP_QUALITY column found in file ' + infile
            message += '. Use kepdraw quality=n'
            status = kepmsg.err(logfile,message,verbose)

# close infile

    if status == 0:
	status = kepio.closefits(struct,logfile,verbose)

# remove infinities and bad data

    if status == 0:
        if numpy.isnan(numpy.nansum(indataerr)):
            indataerr[:] = 1.0e-5
        work1 = numpy.array([intime, indata, indataerr],dtype='float64')
        work1 = numpy.rot90(work1,3)
        work1 = work1[~numpy.isnan(work1).any(1)]
        work1 = work1[~numpy.isinf(work1).any(1)]
        barytime = numpy.array(work1[:,2],dtype='float64')
        data = numpy.array(work1[:,1],dtype='float32')
        dataerr = numpy.array(work1[:,0],dtype='float32')
        if len(barytime) == 0:
            message = 'ERROR -- KEPDRAW: Plotting arrays are full of NaN'
            status = kepmsg.err(logfile,message,verbose)

# clean up x-axis unit

    if status == 0:
	barytime0 = float(int(tstart / 100) * 100.0)
	barytime -= barytime0
        xlab = 'BJD $-$ %d' % barytime0

# clean up y-axis units

        try:
            nrm = len(str(int(numpy.nanmax(data))))-1
        except:
            nrm = 0
	data = data / 10**nrm
        if 'e$^-$ s$^{-1}$' in ylabel or 'default' in ylabel:
            if nrm == 0:
                ylab1 = 'e$^-$ s$^{-1}$'
            else:
                ylab1 = '10$^%d$ e$^-$ s$^{-1}$' % nrm
        else:
            ylab1 = re.sub('_','-',ylabel)
            

# data limits

	xmin = numpy.nanmin(barytime)
	xmax = numpy.nanmax(barytime)
	ymin = numpy.nanmin(data)
	ymax = numpy.nanmax(data)
	xr = xmax - xmin
	yr = ymax - ymin
        barytime = insert(barytime,[0],[barytime[0]]) 
        barytime = append(barytime,[barytime[-1]])
        data = insert(data,[0],[0.0]) 
        data = append(data,0.0)

# define plot formats

        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': labelsize,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 12,
                      'legend.fontsize': 12,
                      'xtick.labelsize': ticksize,
                      'ytick.labelsize': ticksize}
            pylab.rcParams.update(params)
        except:
            pass

# define size of plot on monitor screen

	pylab.figure(figsize=[xsize,ysize])

# delete any fossil plots in the matplotlib window

        pylab.clf()

# position axes inside the plotting window

	ax = pylab.subplot(111)
	pylab.subplots_adjust(0.07,0.1,0.92,0.88)

# force tick labels to be absolute rather than relative

        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))

# rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90, fontsize=ticksize)

# if plot type is 'fast' plot data time series as points

        if plottype == 'fast':
            pylab.plot(barytime,data,'o',color=lcolor)            

# if plot type is 'pretty' plot data time series as an unbroken line, retaining data gaps

        else:
            ltime = numpy.array([],dtype='float64')
            ldata = numpy.array([],dtype='float32')
            dt = 0
            work1 = 2.0 * cadence / 86400
            for i in range(1,len(data)-1):
                dt = barytime[i] - barytime[i-1]
                if dt < work1:
                    ltime = numpy.append(ltime,barytime[i])
                    ldata = numpy.append(ldata,data[i])
                else:
                    pylab.plot(ltime,ldata,color=lcolor,linestyle='-',linewidth=lwidth)
                    ltime = numpy.array([],dtype='float64')
                    ldata = numpy.array([],dtype='float32')
            pylab.plot(ltime,ldata,color=lcolor,linestyle='-',linewidth=lwidth)

# plot the fill color below data time series, with no data gaps

	pylab.fill(barytime,data,fc=fcolor,linewidth=0.0,alpha=falpha)

# define plot x and y limits

	pylab.xlim(xmin-xr*0.01,xmax+xr*0.01)
	if ymin-yr*0.01 <= 0.0 or fullrange:
            pylab.ylim(1.0e-10,ymax+yr*0.01)
	else:
            pylab.ylim(ymin-yr*0.01,ymax+yr*0.01)
        if chooserange:
            pylab.ylim(y1,y2)

# plot labels

	pylab.xlabel(xlab, {'color' : 'k'})
        try:
            pylab.ylabel(ylab1, {'color' : 'k'})
        except:
            ylab1 = '10**%d e-/s' % nrm
            pylab.ylabel(ylab1, {'color' : 'k'})

# make grid on plot

	if plotgrid: pylab.grid()

# save plot to file

    if status == 0 and outfile.lower() != 'none':
	pylab.savefig(outfile)

# render plot

        if cmdLine: 
#            pylab.show()
            pylab.show(block=True)
        else: 
            pylab.ion()
            pylab.plot([])
            pylab.ioff()
	
# end time

    if (status == 0):
        message = 'KEPDRAW completed at'
    else:
        message = '\nKEPDRAW aborted at'
    kepmsg.clock(message,logfile,verbose)
Esempio n. 2
0
def kepbls(infile,outfile,datacol,errcol,minper,maxper,mindur,maxdur,nsearch,
           nbins,plot,clobber,verbose,logfile,status,cmdLine=False): 

# startup parameters

    numpy.seterr(all="ignore") 
    status = 0
    labelsize = 32
    ticksize = 18
    xsize = 16
    ysize = 8
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#ffff00'
    falpha = 0.2

# log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPBLS -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'datacol='+str(datacol)+' '
    call += 'errcol='+str(errcol)+' '
    call += 'minper='+str(minper)+' '
    call += 'maxper='+str(maxper)+' '
    call += 'mindur='+str(mindur)+' '
    call += 'maxdur='+str(maxdur)+' '
    call += 'nsearch='+str(nsearch)+' '
    call += 'nbins='+str(nbins)+' '
    plotit = 'n'
    if (plot): plotit = 'y'
    call += 'plot='+plotit+ ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

# start time

    kepmsg.clock('KEPBLS started at',logfile,verbose)

# is duration greater than one bin in the phased light curve?

    if float(nbins) * maxdur / 24.0 / maxper <= 1.0:
        message = 'WARNING -- KEPBLS: ' + str(maxdur) + ' hours transit duration < 1 phase bin when P = '
        message += str(maxper) + ' days'
        kepmsg.warn(logfile,message)

# test log file

    logfile = kepmsg.test(logfile)

# clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
        message = 'ERROR -- KEPBLS: ' + outfile + ' exists. Use clobber=yes'
        status = kepmsg.err(logfile,message,verbose)

# open input file

    if status == 0:
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

# read table structure

    if status == 0:
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)

# filter input data table

    if status == 0:
        work1 = numpy.array([table.field('time'), table.field(datacol), table.field(errcol)])
        work1 = numpy.rot90(work1,3)
        work1 = work1[~numpy.isnan(work1).any(1)]            
 
# read table columns

    if status == 0:
        intime = work1[:,2] + bjdref
        indata = work1[:,1]
        inerr = work1[:,0]

# test whether the period range is sensible

    if status == 0:
        tr = intime[-1] - intime[0]
        if maxper > tr:
            message = 'ERROR -- KEPBLS: maxper is larger than the time range of the input data'
            status = kepmsg.err(logfile,message,verbose)

# prepare time series

    if status == 0:
        work1 = intime - intime[0]
        work2 = indata - numpy.mean(indata)
 
# start period search

    if status == 0:
        srMax = numpy.array([],dtype='float32')
        transitDuration = numpy.array([],dtype='float32')
        transitPhase = numpy.array([],dtype='float32')
        dPeriod = (maxper - minper) / nsearch
        trialPeriods = numpy.arange(minper,maxper+dPeriod,dPeriod,dtype='float32')
        complete = 0
        print ' '
        for trialPeriod in trialPeriods:
            fracComplete = float(complete) / float(len(trialPeriods) - 1) * 100.0 
            txt  = '\r' 
            txt += 'Trial period = ' 
            txt += str(int(trialPeriod)) 
            txt += ' days [' 
            txt += str(int(fracComplete)) 
            txt += '% complete]' 
            txt += ' ' * 20
            sys.stdout.write(txt)
            sys.stdout.flush()
            complete += 1
            srMax = numpy.append(srMax,0.0)
            transitDuration = numpy.append(transitDuration,numpy.nan)
            transitPhase = numpy.append(transitPhase,numpy.nan)
            trialFrequency = 1.0 / trialPeriod

# minimum and maximum transit durations in quantized phase units

            duration1 = max(int(float(nbins) * mindur / 24.0 / trialPeriod),2)
            duration2 = max(int(float(nbins) * maxdur / 24.0 / trialPeriod) + 1,duration1 + 1)

# 30 minutes in quantized phase units

            halfHour = int(0.02083333 / trialPeriod * nbins + 1)

# compute folded time series with trial period

            work4 = numpy.zeros((nbins),dtype='float32')
            work5 = numpy.zeros((nbins),dtype='float32')
            phase = numpy.array(((work1 * trialFrequency) - numpy.floor(work1 * trialFrequency)) * float(nbins),dtype='int')
            ptuple = numpy.array([phase, work2, inerr])
            ptuple = numpy.rot90(ptuple,3)
            phsort = numpy.array(sorted(ptuple,key=lambda ph: ph[2]))
            for i in range(nbins):
                elements = numpy.nonzero(phsort[:,2] == float(i))[0]
                work4[i] = numpy.mean(phsort[elements,1])
                work5[i] = math.sqrt(numpy.sum(numpy.power(phsort[elements,0], 2)) / len(elements))

# extend the work arrays beyond nbins by wrapping

            work4 = numpy.append(work4,work4[:duration2])
            work5 = numpy.append(work5,work5[:duration2])

# calculate weights of folded light curve points

            sigmaSum = numpy.nansum(numpy.power(work5,-2))
            omega = numpy.power(work5,-2) / sigmaSum

# calculate weighted phased light curve

            s = omega * work4

# iterate through trial period phase

            for i1 in range(nbins):

# iterate through transit durations

                for duration in range(duration1,duration2+1,int(halfHour)):

# calculate maximum signal residue

                    i2 = i1 + duration
                    sr1 = numpy.sum(numpy.power(s[i1:i2],2))
                    sr2 = numpy.sum(omega[i1:i2])
                    sr = math.sqrt(sr1 / (sr2 * (1.0 - sr2)))
                    if sr > srMax[-1]:
                        srMax[-1] = sr
                        transitDuration[-1] = float(duration)
                        transitPhase[-1] = float((i1 + i2) / 2)

# normalize maximum signal residue curve

        bestSr = numpy.max(srMax)
        bestTrial = numpy.nonzero(srMax == bestSr)[0][0]
        srMax /= bestSr
        transitDuration *= trialPeriods / 24.0 
        BJD0 = numpy.array(transitPhase * trialPeriods / nbins,dtype='float64') + intime[0] - 2454833.0
        print '\n'

# clean up x-axis unit

    if status == 0:
	ptime = copy(trialPeriods)
	xlab = 'Trial Period (days)'

# clean up y-axis units

    if status == 0:
        pout = copy(srMax)
	ylab = 'Normalized Signal Residue'

# data limits

	xmin = ptime.min()
	xmax = ptime.max()
	ymin = pout.min()
	ymax = pout.max()
	xr = xmax - xmin
	yr = ymax - ymin
        ptime = insert(ptime,[0],[ptime[0]]) 
        ptime = append(ptime,[ptime[-1]])
        pout = insert(pout,[0],[0.0]) 
        pout = append(pout,0.0)

# plot light curve

    if status == 0 and plot:
        plotLatex = True
        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': labelsize,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 12,
                      'legend.fontsize': 12,
                      'xtick.labelsize': ticksize,
                      'ytick.labelsize': ticksize}
            rcParams.update(params)
        except:
            plotLatex = False
    if status == 0 and plot:
        pylab.figure(figsize=[xsize,ysize])
        pylab.clf()

# plot data

        ax = pylab.axes([0.06,0.10,0.93,0.87])

# force tick labels to be absolute rather than relative

        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))

# rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        pylab.setp(labels, 'rotation', 90)

# plot curve

    if status == 0 and plot:
        pylab.plot(ptime[1:-1],pout[1:-1],color=lcolor,linestyle='-',linewidth=lwidth)
        pylab.fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha)
	pylab.xlabel(xlab, {'color' : 'k'})
        pylab.ylabel(ylab, {'color' : 'k'})
        pylab.grid()

# plot ranges

    if status == 0 and plot:
        pylab.xlim(xmin-xr*0.01,xmax+xr*0.01)
        if ymin >= 0.0: 
            pylab.ylim(ymin-yr*0.01,ymax+yr*0.01)
        else:
            pylab.ylim(1.0e-10,ymax+yr*0.01)

# render plot

        if status == 0 and plot:
            if cmdLine: 
                pylab.show()
            else: 
                pylab.ion()
                pylab.plot([])
                pylab.ioff()
	
# append new BLS data extension to the output file

    if status == 0:
        col1 = Column(name='PERIOD',format='E',unit='days',array=trialPeriods)
        col2 = Column(name='BJD0',format='D',unit='BJD - 2454833',array=BJD0)
        col3 = Column(name='DURATION',format='E',unit='hours',array=transitDuration)
        col4 = Column(name='SIG_RES',format='E',array=srMax)
        cols = ColDefs([col1,col2,col3,col4])
        instr.append(new_table(cols))
        instr[-1].header.cards['TTYPE1'].comment = 'column title: trial period'
        instr[-1].header.cards['TTYPE2'].comment = 'column title: trial mid-transit zero-point'
        instr[-1].header.cards['TTYPE3'].comment = 'column title: trial transit duration'
        instr[-1].header.cards['TTYPE4'].comment = 'column title: normalized signal residue'
        instr[-1].header.cards['TFORM1'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM2'].comment = 'column type: float64'
        instr[-1].header.cards['TFORM3'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM4'].comment = 'column type: float32'
        instr[-1].header.cards['TUNIT1'].comment = 'column units: days'
        instr[-1].header.cards['TUNIT2'].comment = 'column units: BJD - 2454833'
        instr[-1].header.cards['TUNIT3'].comment = 'column units: hours'
        instr[-1].header.update('EXTNAME','BLS','extension name')
        instr[-1].header.update('PERIOD',trialPeriods[bestTrial],'most significant trial period [d]')
        instr[-1].header.update('BJD0',BJD0[bestTrial] + 2454833.0,'time of mid-transit [BJD]')
        instr[-1].header.update('TRANSDUR',transitDuration[bestTrial],'transit duration [hours]')
        instr[-1].header.update('SIGNRES',srMax[bestTrial] * bestSr,'maximum signal residue')
    
# history keyword in output file

    if status == 0:
        status = kepkey.history(call,instr[0],outfile,logfile,verbose)
        instr.writeto(outfile)

# close input file

    if status == 0:
        status = kepio.closefits(instr,logfile,verbose)	    


# print best trial period results

    if status == 0:
        print '      Best trial period = %.5f days' % trialPeriods[bestTrial]
        print '    Time of mid-transit = BJD %.5f' % (BJD0[bestTrial] + 2454833.0)
        print '       Transit duration = %.5f hours' % transitDuration[bestTrial]
        print ' Maximum signal residue = %.4g \n' % (srMax[bestTrial] * bestSr)

# end time

    if (status == 0):
	    message = 'KEPBLS completed at'
    else:
	    message = '\nKEPBLS aborted at'
    kepmsg.clock(message,logfile,verbose)
Esempio n. 3
0
def kepfilter(infile,outfile,datacol,function,cutoff,passband,plot,plotlab,
              clobber,verbose,logfile,status,cmdLine=False): 

## startup parameters

    status = 0
    numpy.seterr(all="ignore") 
    labelsize = 24
    ticksize = 16
    xsize = 16
    ysize = 6
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#ffff00'
    falpha = 0.2

## log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPFILTER -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'datacol='+str(datacol)+' '
    call += 'function='+str(function)+' '
    call += 'cutoff='+str(cutoff)+' '
    call += 'passband='+str(passband)+' '
    plotit = 'n'
    if (plot): plotit = 'y'
    call += 'plot='+plotit+ ' '
    call += 'plotlab='+str(plotlab)+' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

## start time

    kepmsg.clock('KEPFILTER started at',logfile,verbose)

## test log file

    logfile = kepmsg.test(logfile)

## clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
	    message = 'ERROR -- KEPFILTER: ' + outfile + ' exists. Use clobber=yes'
	    status = kepmsg.err(logfile,message,verbose)

## open input file

    if status == 0:
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

## fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

## read table structure

    if status == 0:
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)

# read time and flux columns

    if status == 0:
        barytime, status = kepio.readtimecol(infile,table,logfile,verbose)
        flux, status = kepio.readsapcol(infile,table,logfile,verbose)

# filter input data table

    if status == 0:
        try:
            nanclean = instr[1].header['NANCLEAN']
        except:
            naxis2 = 0
            for i in range(len(table.field(0))):
                if (numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i]) and flux[i] != 0.0):
                    table[naxis2] = table[i]
                    naxis2 += 1
            instr[1].data = table[:naxis2]
            comment = 'NaN cadences removed from data'
            status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose)

## read table columns

    if status == 0:
        intime, status = kepio.readtimecol(infile,instr[1].data,logfile,verbose)
    if status == 0:
	indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose)
    if status == 0:
        intime = intime + bjdref
        indata = indata / cadenom

## define data sampling

    if status == 0:
        tr = 1.0 / (cadence / 86400)
        timescale = 1.0 / (cutoff / tr)

## define convolution function

    if status == 0:
        if function == 'boxcar':
            filtfunc = numpy.ones(numpy.ceil(timescale))
        elif function == 'gauss':
            timescale /= 2
            dx = numpy.ceil(timescale * 10 + 1)
            filtfunc = kepfunc.gauss()
            filtfunc = filtfunc([1.0,dx/2-1.0,timescale],linspace(0,dx-1,dx))
        elif function == 'sinc':
            dx = numpy.ceil(timescale * 12 + 1)
            fx = linspace(0,dx-1,dx)
            fx = fx - dx / 2 + 0.5
            fx /= timescale
            filtfunc = numpy.sinc(fx)
        filtfunc /= numpy.sum(filtfunc)

## pad time series at both ends with noise model

    if status == 0:
        ave, sigma  = kepstat.stdev(indata[:len(filtfunc)])
        padded = append(kepstat.randarray(np.ones(len(filtfunc)) * ave,
                                          np.ones(len(filtfunc)) * sigma), indata)
        ave, sigma  = kepstat.stdev(indata[-len(filtfunc):])
        padded = append(padded, kepstat.randarray(np.ones(len(filtfunc)) * ave,
                                                  np.ones(len(filtfunc)) * sigma))

## convolve data

    if status == 0:
        convolved = convolve(padded,filtfunc,'same')

## remove padding from the output array

    if status == 0:
        if function == 'boxcar':
            outdata = convolved[len(filtfunc):-len(filtfunc)]
        else:
            outdata = convolved[len(filtfunc):-len(filtfunc)]
            

## subtract low frequencies

    if status == 0 and passband == 'high':
        outmedian = median(outdata)
        outdata = indata - outdata + outmedian

## comment keyword in output file

    if status == 0:
        status = kepkey.history(call,instr[0],outfile,logfile,verbose)

## clean up x-axis unit

    if status == 0:
	intime0 = float(int(tstart / 100) * 100.0)
        if intime0 < 2.4e6: intime0 += 2.4e6
	ptime = intime - intime0
	xlab = 'BJD $-$ %d' % intime0

## clean up y-axis units

    if status == 0:
        pout = indata * 1.0
        pout2 = outdata * 1.0
	nrm = len(str(int(numpy.nanmax(pout))))-1
	pout = pout / 10**nrm
	pout2 = pout2 / 10**nrm
	ylab = '10$^%d$ %s' % (nrm, plotlab)

## data limits

	xmin = ptime.min()
	xmax = ptime.max()
	ymin = numpy.nanmin(pout)
	ymax = numpy.nanmax(pout)
	xr = xmax - xmin
	yr = ymax - ymin
        ptime = insert(ptime,[0],[ptime[0]]) 
        ptime = append(ptime,[ptime[-1]])
        pout = insert(pout,[0],[0.0]) 
        pout = append(pout,0.0)
        pout2 = insert(pout2,[0],[0.0]) 
        pout2 = append(pout2,0.0)

## plot light curve

    if status == 0 and plot:
        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': labelsize,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 12,
                      'legend.fontsize': 12,
                      'xtick.labelsize': ticksize,
                      'ytick.labelsize': ticksize}
            rcParams.update(params)
        except:
            print('ERROR -- KEPFILTER: install latex for scientific plotting')
            status = 1
    if status == 0 and plot:
        pylab.figure(figsize=[xsize,ysize])
        pylab.clf()

## plot filtered data

        ax = pylab.axes([0.06,0.1,0.93,0.87])
        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90, fontsize=12)
        pylab.plot(ptime,pout,color='#ff9900',linestyle='-',linewidth=lwidth)
        fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha)
        if passband == 'low':
            pylab.plot(ptime[1:-1],pout2[1:-1],color=lcolor,linestyle='-',linewidth=lwidth)
        else:
            pylab.plot(ptime,pout2,color=lcolor,linestyle='-',linewidth=lwidth)
            fill(ptime,pout2,color=lcolor,linewidth=0.0,alpha=falpha)
	xlabel(xlab, {'color' : 'k'})
	ylabel(ylab, {'color' : 'k'})
	xlim(xmin-xr*0.01,xmax+xr*0.01)
        if ymin >= 0.0: 
            ylim(ymin-yr*0.01,ymax+yr*0.01)
        else:
            ylim(1.0e-10,ymax+yr*0.01)
        pylab.grid()
        
# render plot

        if cmdLine: 
            pylab.show()
        else: 
            pylab.ion()
            pylab.plot([])
            pylab.ioff()
	
## write output file

    if status == 0:
        for i in range(len(outdata)):
            instr[1].data.field(datacol)[i] = outdata[i]
        instr.writeto(outfile)
    
## close input file

    if status == 0:
        status = kepio.closefits(instr,logfile,verbose)	    

## end time

    if (status == 0):
	    message = 'KEPFILTER completed at'
    else:
	    message = '\nKEPFILTER aborted at'
    kepmsg.clock(message,logfile,verbose)
Esempio n. 4
0
def kepbls(infile,
           outfile,
           datacol,
           errcol,
           minper,
           maxper,
           mindur,
           maxdur,
           nsearch,
           nbins,
           plot,
           clobber,
           verbose,
           logfile,
           status,
           cmdLine=False):

    # startup parameters

    numpy.seterr(all="ignore")
    status = 0
    labelsize = 32
    ticksize = 18
    xsize = 16
    ysize = 8
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#ffff00'
    falpha = 0.2

    # log the call

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile, hashline, verbose)
    call = 'KEPBLS -- '
    call += 'infile=' + infile + ' '
    call += 'outfile=' + outfile + ' '
    call += 'datacol=' + str(datacol) + ' '
    call += 'errcol=' + str(errcol) + ' '
    call += 'minper=' + str(minper) + ' '
    call += 'maxper=' + str(maxper) + ' '
    call += 'mindur=' + str(mindur) + ' '
    call += 'maxdur=' + str(maxdur) + ' '
    call += 'nsearch=' + str(nsearch) + ' '
    call += 'nbins=' + str(nbins) + ' '
    plotit = 'n'
    if (plot): plotit = 'y'
    call += 'plot=' + plotit + ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber=' + overwrite + ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose=' + chatter + ' '
    call += 'logfile=' + logfile
    kepmsg.log(logfile, call + '\n', verbose)

    # start time

    kepmsg.clock('KEPBLS started at', logfile, verbose)

    # is duration greater than one bin in the phased light curve?

    if float(nbins) * maxdur / 24.0 / maxper <= 1.0:
        message = 'WARNING -- KEPBLS: ' + str(
            maxdur) + ' hours transit duration < 1 phase bin when P = '
        message += str(maxper) + ' days'
        kepmsg.warn(logfile, message)

# test log file

    logfile = kepmsg.test(logfile)

    # clobber output file

    if clobber: status = kepio.clobber(outfile, logfile, verbose)
    if kepio.fileexists(outfile):
        message = 'ERROR -- KEPBLS: ' + outfile + ' exists. Use clobber=yes'
        status = kepmsg.err(logfile, message, verbose)

# open input file

    if status == 0:
        instr, status = kepio.openfits(infile, 'readonly', logfile, verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(
            instr, infile, logfile, verbose, status)

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr, file, logfile, verbose)

# read table structure

    if status == 0:
        table, status = kepio.readfitstab(infile, instr[1], logfile, verbose)

# filter input data table

    if status == 0:
        work1 = numpy.array(
            [table.field('time'),
             table.field(datacol),
             table.field(errcol)])
        work1 = numpy.rot90(work1, 3)
        work1 = work1[~numpy.isnan(work1).any(1)]

# read table columns

    if status == 0:
        intime = work1[:, 2] + bjdref
        indata = work1[:, 1]
        inerr = work1[:, 0]

# test whether the period range is sensible

    if status == 0:
        tr = intime[-1] - intime[0]
        if maxper > tr:
            message = 'ERROR -- KEPBLS: maxper is larger than the time range of the input data'
            status = kepmsg.err(logfile, message, verbose)

# prepare time series

    if status == 0:
        work1 = intime - intime[0]
        work2 = indata - numpy.mean(indata)

# start period search

    if status == 0:
        srMax = numpy.array([], dtype='float32')
        transitDuration = numpy.array([], dtype='float32')
        transitPhase = numpy.array([], dtype='float32')
        dPeriod = (maxper - minper) / nsearch
        trialPeriods = numpy.arange(minper,
                                    maxper + dPeriod,
                                    dPeriod,
                                    dtype='float32')
        complete = 0
        print ' '
        for trialPeriod in trialPeriods:
            fracComplete = float(complete) / float(len(trialPeriods) -
                                                   1) * 100.0
            txt = '\r'
            txt += 'Trial period = '
            txt += str(int(trialPeriod))
            txt += ' days ['
            txt += str(int(fracComplete))
            txt += '% complete]'
            txt += ' ' * 20
            sys.stdout.write(txt)
            sys.stdout.flush()
            complete += 1
            srMax = numpy.append(srMax, 0.0)
            transitDuration = numpy.append(transitDuration, numpy.nan)
            transitPhase = numpy.append(transitPhase, numpy.nan)
            trialFrequency = 1.0 / trialPeriod

            # minimum and maximum transit durations in quantized phase units

            duration1 = max(int(float(nbins) * mindur / 24.0 / trialPeriod), 2)
            duration2 = max(
                int(float(nbins) * maxdur / 24.0 / trialPeriod) + 1,
                duration1 + 1)

            # 30 minutes in quantized phase units

            halfHour = int(0.02083333 / trialPeriod * nbins + 1)

            # compute folded time series with trial period

            work4 = numpy.zeros((nbins), dtype='float32')
            work5 = numpy.zeros((nbins), dtype='float32')
            phase = numpy.array(
                ((work1 * trialFrequency) -
                 numpy.floor(work1 * trialFrequency)) * float(nbins),
                dtype='int')
            ptuple = numpy.array([phase, work2, inerr])
            ptuple = numpy.rot90(ptuple, 3)
            phsort = numpy.array(sorted(ptuple, key=lambda ph: ph[2]))
            for i in range(nbins):
                elements = numpy.nonzero(phsort[:, 2] == float(i))[0]
                work4[i] = numpy.mean(phsort[elements, 1])
                work5[i] = math.sqrt(
                    numpy.sum(numpy.power(phsort[elements, 0], 2)) /
                    len(elements))

# extend the work arrays beyond nbins by wrapping

            work4 = numpy.append(work4, work4[:duration2])
            work5 = numpy.append(work5, work5[:duration2])

            # calculate weights of folded light curve points

            sigmaSum = numpy.nansum(numpy.power(work5, -2))
            omega = numpy.power(work5, -2) / sigmaSum

            # calculate weighted phased light curve

            s = omega * work4

            # iterate through trial period phase

            for i1 in range(nbins):

                # iterate through transit durations

                for duration in range(duration1, duration2 + 1, int(halfHour)):

                    # calculate maximum signal residue

                    i2 = i1 + duration
                    sr1 = numpy.sum(numpy.power(s[i1:i2], 2))
                    sr2 = numpy.sum(omega[i1:i2])
                    sr = math.sqrt(sr1 / (sr2 * (1.0 - sr2)))
                    if sr > srMax[-1]:
                        srMax[-1] = sr
                        transitDuration[-1] = float(duration)
                        transitPhase[-1] = float((i1 + i2) / 2)

# normalize maximum signal residue curve

        bestSr = numpy.max(srMax)
        bestTrial = numpy.nonzero(srMax == bestSr)[0][0]
        srMax /= bestSr
        transitDuration *= trialPeriods / 24.0
        BJD0 = numpy.array(transitPhase * trialPeriods / nbins,
                           dtype='float64') + intime[0] - 2454833.0
        print '\n'

# clean up x-axis unit

    if status == 0:
        ptime = copy(trialPeriods)
        xlab = 'Trial Period (days)'

# clean up y-axis units

    if status == 0:
        pout = copy(srMax)
        ylab = 'Normalized Signal Residue'

        # data limits

        xmin = ptime.min()
        xmax = ptime.max()
        ymin = pout.min()
        ymax = pout.max()
        xr = xmax - xmin
        yr = ymax - ymin
        ptime = insert(ptime, [0], [ptime[0]])
        ptime = append(ptime, [ptime[-1]])
        pout = insert(pout, [0], [0.0])
        pout = append(pout, 0.0)

# plot light curve

    if status == 0 and plot:
        plotLatex = True
        try:
            params = {
                'backend': 'png',
                'axes.linewidth': 2.5,
                'axes.labelsize': labelsize,
                'axes.font': 'sans-serif',
                'axes.fontweight': 'bold',
                'text.fontsize': 12,
                'legend.fontsize': 12,
                'xtick.labelsize': ticksize,
                'ytick.labelsize': ticksize
            }
            rcParams.update(params)
        except:
            plotLatex = False
    if status == 0 and plot:
        pylab.figure(figsize=[xsize, ysize])
        pylab.clf()

        # plot data

        ax = pylab.axes([0.06, 0.10, 0.93, 0.87])

        # force tick labels to be absolute rather than relative

        pylab.gca().xaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))

        # rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        pylab.setp(labels, 'rotation', 90)

# plot curve

    if status == 0 and plot:
        pylab.plot(ptime[1:-1],
                   pout[1:-1],
                   color=lcolor,
                   linestyle='-',
                   linewidth=lwidth)
        pylab.fill(ptime, pout, color=fcolor, linewidth=0.0, alpha=falpha)
        pylab.xlabel(xlab, {'color': 'k'})
        pylab.ylabel(ylab, {'color': 'k'})
        pylab.grid()

# plot ranges

    if status == 0 and plot:
        pylab.xlim(xmin - xr * 0.01, xmax + xr * 0.01)
        if ymin >= 0.0:
            pylab.ylim(ymin - yr * 0.01, ymax + yr * 0.01)
        else:
            pylab.ylim(1.0e-10, ymax + yr * 0.01)

# render plot

        if status == 0 and plot:
            if cmdLine:
                pylab.show()
            else:
                pylab.ion()
                pylab.plot([])
                pylab.ioff()

# append new BLS data extension to the output file

    if status == 0:
        col1 = Column(name='PERIOD',
                      format='E',
                      unit='days',
                      array=trialPeriods)
        col2 = Column(name='BJD0',
                      format='D',
                      unit='BJD - 2454833',
                      array=BJD0)
        col3 = Column(name='DURATION',
                      format='E',
                      unit='hours',
                      array=transitDuration)
        col4 = Column(name='SIG_RES', format='E', array=srMax)
        cols = ColDefs([col1, col2, col3, col4])
        instr.append(new_table(cols))
        instr[-1].header.cards['TTYPE1'].comment = 'column title: trial period'
        instr[-1].header.cards[
            'TTYPE2'].comment = 'column title: trial mid-transit zero-point'
        instr[-1].header.cards[
            'TTYPE3'].comment = 'column title: trial transit duration'
        instr[-1].header.cards[
            'TTYPE4'].comment = 'column title: normalized signal residue'
        instr[-1].header.cards['TFORM1'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM2'].comment = 'column type: float64'
        instr[-1].header.cards['TFORM3'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM4'].comment = 'column type: float32'
        instr[-1].header.cards['TUNIT1'].comment = 'column units: days'
        instr[-1].header.cards[
            'TUNIT2'].comment = 'column units: BJD - 2454833'
        instr[-1].header.cards['TUNIT3'].comment = 'column units: hours'
        instr[-1].header.update('EXTNAME', 'BLS', 'extension name')
        instr[-1].header.update('PERIOD', trialPeriods[bestTrial],
                                'most significant trial period [d]')
        instr[-1].header.update('BJD0', BJD0[bestTrial] + 2454833.0,
                                'time of mid-transit [BJD]')
        instr[-1].header.update('TRANSDUR', transitDuration[bestTrial],
                                'transit duration [hours]')
        instr[-1].header.update('SIGNRES', srMax[bestTrial] * bestSr,
                                'maximum signal residue')

# history keyword in output file

    if status == 0:
        status = kepkey.history(call, instr[0], outfile, logfile, verbose)
        instr.writeto(outfile)

# close input file

    if status == 0:
        status = kepio.closefits(instr, logfile, verbose)

# print best trial period results

    if status == 0:
        print '      Best trial period = %.5f days' % trialPeriods[bestTrial]
        print '    Time of mid-transit = BJD %.5f' % (BJD0[bestTrial] +
                                                      2454833.0)
        print '       Transit duration = %.5f hours' % transitDuration[
            bestTrial]
        print ' Maximum signal residue = %.4g \n' % (srMax[bestTrial] * bestSr)

# end time

    if (status == 0):
        message = 'KEPBLS completed at'
    else:
        message = '\nKEPBLS aborted at'
    kepmsg.clock(message, logfile, verbose)
Esempio n. 5
0
def keptransit(inputfile,outputfile,datacol,errorcol,periodini_d,rprsini,T0ini,
    Eccini,arsini,incini,omegaini,LDparams,secini,fixperiod,fixrprs,fixT0,
    fixEcc,fixars,fixinc,fixomega,fixsec,fixfluxoffset,removeflaggeddata,ftol=0.0001,fitter='nothing',norm=False,
    clobber=False, plot=True,verbose=0,logfile='logfile.dat',status=0,cmdLine=False):
    """
    tmod.lightcurve(xdata,period,rprs,T0,Ecc,ars, incl, omega, ld, sec)

    input transit parameters are
    Period in days
    T0
    rplanet / rstar
    a / rstar
    inclination

    limb darkening code number:
    0 = uniform
    1 = linear
    2 = quadratic
    3 = square root
    4 = non linear

    LDarr:
    u      -- linear limb-darkening (set NL=1)
    a, b   -- quadratic limb-darkening (set NL=2)
    c,  d  -- root-square limb-darkening (set NL= -2)
    a1, a2, a3, a4 -- nonlinear limb-darkening  (set NL=4)
    Nothing at all -- uniform limb-darkening (set NL=0)
    """

    np.seterr(all="ignore") 

    #write to a logfile
    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPTRANSIT -- '
    call += 'inputfile='+inputfile+' '
    call += 'outputfile='+outputfile+' '
    call += 'datacol='+str(datacol)+' '
    call += 'errorcol='+str(errorcol)+' '
    call += 'periodini_d='+str(periodini_d)+' '
    call += 'rprsini='+str(rprsini)+' '
    call += 'T0ini='+str(T0ini)+' '
    call += 'Eccini='+str(Eccini)+' '
    call += 'arsini='+str(arsini)+' '
    call += 'incini='+str(incini)+' '
    call += 'omegaini='+str(omegaini)+' '
    call += 'LDparams='+str(LDparams)+' '
    call += 'secini='+str(secini)+' '
    call += 'fixperiod='+str(fixperiod)+' '
    call += 'fixrprs='+str(fixrprs)+' '
    call += 'fixT0='+str(fixT0)+' '
    call += 'fixEcc='+str(fixEcc)+' '
    call += 'fixars='+str(fixars)+' '
    call += 'fixinc='+str(fixinc)+' '
    call += 'fixomega='+str(fixomega)+' '
    call += 'fixsec='+str(fixsec)+' '
    call += 'fixfluxoffset='+str(fixfluxoffset)+' '
    call += 'removeflaggeddata='+str(removeflaggeddata)+' '
    call += 'ftol='+str(ftol)+' '
    call += 'fitter='+str(fitter)+' '
    call += 'norm='+str(norm)+' '

    plotit = 'n'
    if (plot): plotit = 'y'
    call += 'plot='+plotit+ ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    #chatter = 'n'
    #if (verbose): chatter = 'y'
    #call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)


    kepmsg.clock('KEPTRANSIT started at',logfile,verbose)

    # test log file

    logfile = kepmsg.test(logfile)

# clobber output file

    if clobber: 
        status = kepio.clobber(outputfile,logfile,verbose)
    if kepio.fileexists(outputfile): 
        message = 'ERROR -- KEPTRANSIT: ' + outputfile + ' exists. Use clobber=yes'
        status = kepmsg.err(logfile,message,verbose)

# open input file

    if status == 0:
        instr, status = kepio.openfits(inputfile,'readonly',logfile,verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,
            inputfile,logfile,verbose,status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

# read table structure

    if status == 0:
        table, status = kepio.readfitstab(inputfile,instr[1],logfile,verbose)

    if status == 0:
        intime_o = table.field('time')
        influx_o = table.field(datacol)
        inerr_o = table.field(errorcol)
        try:
            qualflag = table.field('SAP_QUALITY')
        except:
            qualflag = np.zeros(len(intime_o))

    if status == 0:
        intime, indata, inerr, baddata = cutBadData(intime_o, influx_o, inerr_o,removeflaggeddata,qualflag)

    if status == 0 and norm:
        #first remove outliers before normalizing
        threesig = 3.* np.std(indata)
        mask = np.logical_and(indata< indata + threesig,indata > indata - threesig)
        #now normalize
        indata = indata / np.median(indata[mask])

    if status == 0:
        #need to check if LD params are sensible and in right format
        LDparams = [float(i) for i in LDparams.split()]

        incini = incini * np.pi / 180.

        omegaini = omegaini * np.pi / 180.

    if arsini*np.cos(incini) > 1.0 + rprsini:
        message = 'The guess inclination and a/r* values result in a non-transing planet'
        status = kepmsg.err(logfile,message,verbose)

    if status == 0:
        fixed_dict = fix_params(fixperiod,fixrprs,fixT0,
            fixEcc,fixars,fixinc,fixomega,fixsec,fixfluxoffset)

    #force flux offset to be guessed at zero
    fluxoffsetini = 0.0

    if status == 0:
        guess_params = [periodini_d,rprsini,T0ini,Eccini,arsini, incini, omegaini, 
        secini,fluxoffsetini]

        print('cleaning done: about to fit transit')

        if fitter == 'leastsq':
            fit_output = leastsq(fit_tmod,guess_params,
                args=[LDparams,intime,indata,inerr,fixed_dict,guess_params],
                full_output=True,ftol=ftol)
        elif fitter == 'fmin':

            fit_output = fmin(fit_tmod2,guess_params,
                args=[LDparams,intime,indata,inerr,fixed_dict,guess_params],
                full_output=True,ftol=ftol,xtol=ftol)

        elif fitter == 'anneal':
            fit_output = anneal(fit_tmod2,guess_params,
                args=[LDparams,intime,indata,inerr,fixed_dict,guess_params],
                full_output=True)

    if status == 0:
        if fixed_dict['period'] == True:
            newperiod = guess_params[0]
            print('Fixed period (days) = ' + str(newperiod))
        else:
            newperiod = fit_output[0][0]
            print('Fit period (days) = ' + str(newperiod))
        if fixed_dict['rprs'] == True:
            newrprs = guess_params[1]
            print('Fixed R_planet / R_star = ' + str(newrprs))
        else:
            newrprs = fit_output[0][1]
            print('Fit R_planet / R_star = ' + str(newrprs))
        if fixed_dict['T0'] == True:
            newT0 = guess_params[2]
            print('Fixed T0 (BJD) = ' + str(newT0))
        else:
            newT0 = fit_output[0][2]
            print('Fit T0 (BJD) = ' + str(newT0))
        if fixed_dict['Ecc'] == True:
            newEcc = guess_params[3]
            print('Fixed eccentricity = ' + str(newEcc))
        else:
            newEcc = fit_output[0][3]
            print('Fit eccentricity = ' + str(newEcc))
        if fixed_dict['ars'] == True:
            newars = guess_params[4]
            print('Fixed a / R_star = ' + str(newars))
        else:
            newars = fit_output[0][4]
            print('Fit a / R_star = ' + str(newars))
        if fixed_dict['inc'] == True:
            newinc = guess_params[5]
            print('Fixed inclination (deg) = ' + str(newinc* 180. / np.pi))
        else:
            newinc = fit_output[0][5]
            print('Fit inclination (deg) = ' + str(newinc* 180. / np.pi))
        if fixed_dict['omega'] == True:
            newomega = guess_params[6]
            print('Fixed omega = ' + str(newomega))
        else:
            newomega = fit_output[0][6]
            print('Fit omega = ' + str(newomega))
        if fixed_dict['sec'] == True:
            newsec = guess_params[7]
            print('Fixed seconary eclipse depth = ' + str(newsec))
        else:
            newsec = fit_output[0][7]
            print('Fit seconary eclipse depth = ' + str(newsec))
        if fixfluxoffset == False:
            newfluxoffset = fit_output[0][8]
            print('Fit flux offset = ' + str(newfluxoffset))

    

        modelfit = tmod.lightcurve(intime,newperiod,newrprs,newT0,newEcc,
            newars,newinc,newomega,LDparams,newsec)

        if fixfluxoffset == False:
            modelfit += newfluxoffset


        #output to a file
        phi, fluxfold, modelfold, errorfold, phiNotFold = fold_data(intime, 
            modelfit,indata,inerr,newperiod,newT0)


        make_outfile(instr,outputfile,phiNotFold,modelfit, baddata)


    # end time

    if (status == 0):
        message = 'KEPTRANSIT completed at'
    else:
        message = '\nKEPTRANSIT aborted at'
    kepmsg.clock(message,logfile,verbose)

    if plot and status == 0:
        do_plot(intime,modelfit,indata,inerr,newperiod,newT0,cmdLine)
Esempio n. 6
0
def kepdip(infile,outfile,datacol,dmethod,kneighb,hstd,plot,plotlab,
              clobber,verbose,logfile,status): 
    """
    Perform a k-nearest neighbor regression analysis.
    """

## startup parameters

    status = 0
    labelsize = 24
    ticksize = 16
    xsize = 16
    ysize = 6
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#9AFF9A'
    falpha = 0.3

## log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPDIP -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'datacol='+str(datacol)+' '
    call += 'dmethod='+dmethod+' '
    call += 'hstd='+str(hstd)+' '
    call += 'kneighb='+str(kneighb)+' '
    plotit = 'n'
    if (plot): plotit = 'y'
    call += 'plot='+plotit+ ' '
    call += 'plotlab='+str(plotlab)+' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

## start time

    kepmsg.clock('KEPDIP started at',logfile,verbose)

## test log file

    logfile = kepmsg.test(logfile)

## clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
	    message = 'ERROR -- KEPDIP: ' + outfile + ' exists. Use clobber=yes'
	    status = kepmsg.err(logfile,message,verbose)

## open input file

    if status == 0:
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)
        if cadence == 0.0: 
            tstart, tstop, ncad, cadence, status = kepio.cadence(instr,infile,logfile,verbose,status) 
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

## fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

## read table structure

    if status == 0:
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)

# read time and flux columns

    if status == 0:
        barytime, status = kepio.readtimecol(infile,table,logfile,verbose)
    if status == 0:
        flux, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose)

# filter input data table

    if status == 0:
        try:
            nanclean = instr[1].header['NANCLEAN']
        except:
            naxis2 = 0
            for i in range(len(table.field(0))):
                if (numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i]) and flux[i] != 0.0):
                    table[naxis2] = table[i]
                    naxis2 += 1
            instr[1].data = table[:naxis2]
            comment = 'NaN cadences removed from data'
            status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose)

## read table columns

    if status == 0:
	try:
            intime = instr[1].data.field('barytime')
	except:
            intime, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose)
	indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose)
    if status == 0:
        intime = intime + bjdref
        indata = indata / cadenom

## smooth data

    if status == 0:
        # outdata = knn_predict(intime, indata, kmethod, kneighb)
	outdata_t, outdata_l, outdata_fmt = _find_dips(intime, indata, dmethod, kneighb, hstd)

## comment keyword in output file

    if status == 0:
        status = kepkey.history(call,instr[0],outfile,logfile,verbose)

## clean up x-axis unit

    if status == 0:
	intime0 = float(int(tstart / 100) * 100.0)
        if intime0 < 2.4e6: intime0 += 2.4e6
	ptime = intime - intime0
	ptime2 = outdata_t - intime0
        # print ptime,intime,intime0
	xlab = 'BJD $-$ %d' % intime0

## clean up y-axis units

    if status == 0:
        pout = indata * 1.0
        pout2 = outdata_l * 1.0 
	nrm = len(str(int(numpy.nanmax(pout))))-1
	pout = pout / 10**nrm
	pout2 = pout2 / 10**nrm
	ylab = '10$^%d$ %s' % (nrm, plotlab)

## data limits

	xmin = numpy.nanmin(ptime)
	xmax = numpy.nanmax(ptime)
	ymin = numpy.min(pout)
	ymax = numpy.nanmax(pout)
	xr = xmax - xmin
	yr = ymax - ymin
        ptime = insert(ptime,[0],[ptime[0]]) 
        ptime = append(ptime,[ptime[-1]])
        pout = insert(pout,[0],[0.0]) 
        pout = append(pout,0.0)
	if (len(ptime2) > 0):
	        ptime2 = insert(ptime2,[0],[ptime2[0]]) 
        	ptime2 = append(ptime2,[ptime2[-1]])
	        pout2 = insert(pout2,[0],[0.0]) 
        	pout2 = append(pout2,0.0)

## plot light curve

    if status == 0 and plot:
        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': labelsize,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 12,
                      'legend.fontsize': 12,
                      'xtick.labelsize': ticksize,
                      'ytick.labelsize': ticksize}
            rcParams.update(params)
        except:
            print('ERROR -- KEPDIP: install latex for scientific plotting')
            status = 1
    if status == 0 and plot:
        pylab.figure(1,figsize=[xsize,ysize])

## plot regression data

        ax = pylab.axes([0.06,0.1,0.93,0.87])
        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
	pylab.scatter(ptime, pout, color='#214CAE', s=2)

	if (len(ptime2) > 0):
	        pylab.scatter(ptime2, pout2, color='#47AE10', s=35, marker='o', linewidths=2, alpha=0.4)
        xlabel(xlab, {'color' : 'k'})
        ylabel(ylab, {'color' : 'k'})
        xlim(xmin-xr*0.01,xmax+xr*0.01)
        if ymin >= 0.0: 
            ylim(ymin-yr*0.01,ymax+yr*0.01)
        else:
            ylim(1.0e-10,ymax+yr*0.01)
        pylab.grid()
        pylab.draw()
        pylab.savefig(re.sub('\.\S+','.png',outfile),dpi=100)

## write output file

    if status == 0:
        for i in range(len(outdata_fmt)):
            instr[1].data.field(datacol)[i] = outdata_fmt[i]
        instr.writeto(outfile)
    
## close input file

    if status == 0:
        status = kepio.closefits(instr,logfile,verbose)	    

## end time

    if (status == 0):
	    message = 'KEPDIP completed at'
    else:
	    message = '\nKEPDIP aborted at'
    kepmsg.clock(message,logfile,verbose)
Esempio n. 7
0
def kepdraw(infile,outfile,datacol,ploterr,errcol,quality,
	    lcolor,lwidth,fcolor,falpha,labelsize,ticksize,
	    xsize,ysize,fullrange,chooserange,y1,y2,plotgrid,
            ylabel,plottype,verbose,logfile,status,cmdLine=False): 

# log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPDRAW -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'datacol='+datacol+' '
    perr = 'n'
    if (ploterr): perr = 'y'
    call += 'ploterr='+perr+ ' '
    call += 'errcol='+errcol+' '
    qual = 'n'
    if (quality): qual = 'y'
    call += 'quality='+qual+ ' '
    call += 'lcolor='+str(lcolor)+' '
    call += 'lwidth='+str(lwidth)+' '
    call += 'fcolor='+str(fcolor)+' '
    call += 'falpha='+str(falpha)+' '
    call += 'labelsize='+str(labelsize)+' '
    call += 'ticksize='+str(ticksize)+' '
    call += 'xsize='+str(xsize)+' '
    call += 'ysize='+str(ysize)+' '
    frange = 'n'
    if (fullrange): frange = 'y'
    call += 'fullrange='+frange+ ' '
    crange = 'n'
    if (chooserange): crange = 'y'
    call += 'chooserange='+crange+ ' '
    call += 'ymin='+str(y1)+' '
    call += 'ymax='+str(y2)+' '
    pgrid = 'n'
    if (plotgrid): pgrid = 'y'
    call += 'plotgrid='+pgrid+ ' '
    call += 'ylabel='+str(ylabel)+' '
    call += 'plottype='+plottype+' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

# start time

    kepmsg.clock('KEPDRAW started at',logfile,verbose)

# test log file

    logfile = kepmsg.test(logfile)

# open input file

    if status == 0:
        struct, status = kepio.openfits(infile,'readonly',logfile,verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(struct,infile,logfile,verbose,status)

# read table structure

    if status == 0:
	table, status = kepio.readfitstab(infile,struct[1],logfile,verbose)

# read table columns

    if status == 0:
        intime, status = kepio.readtimecol(infile,table,logfile,verbose)
        intime += bjdref
	indata, status = kepio.readfitscol(infile,table,datacol,logfile,verbose)
        indataerr, status = kepio.readfitscol(infile,table,errcol,logfile,verbose)
        qualty, status = kepio.readfitscol(infile,table,'SAP_QUALITY',logfile,verbose)

# close infile

    if status == 0:
	status = kepio.closefits(struct,logfile,verbose)

# remove infinities and bad data

    if status == 0:
        if numpy.isnan(numpy.nansum(indataerr)):
            indataerr[:] = 1.0e-5
        work1 = numpy.array([intime, indata, indataerr, qualty],dtype='float64')
        work1 = numpy.rot90(work1,3)
        work1 = work1[~numpy.isnan(work1).any(1)]
        work1 = work1[~numpy.isinf(work1).any(1)]
        if quality:
            work1 = work1[work1[:,0] == 0.0]
        barytime = numpy.array(work1[:,3],dtype='float64')
        data = numpy.array(work1[:,2],dtype='float32')
        dataerr = numpy.array(work1[:,1],dtype='float32')
        if len(barytime) == 0:
            message = 'ERROR -- KEPDRAW: Plotting arrays are full of NaN'
            status = kepmsg.err(logfile,message,verbose)

# clean up x-axis unit

    if status == 0:
	barytime0 = float(int(tstart / 100) * 100.0)
	barytime -= barytime0
        xlab = 'BJD $-$ %d' % barytime0

# clean up y-axis units

        nrm = 0
        try:
            nrm = len(str(int(numpy.nanmax(data))))-1
        except:
            nrm = 0
	data = data / 10**nrm
        if 'e$^-$ s$^{-1}$' in ylabel or 'default' in ylabel:
            if nrm == 0:
                ylab1 = 'e$^-$ s$^{-1}$'
            else:
                ylab1 = '10$^{%d}$ e$^-$ s$^{-1}$' % nrm
        else:
            ylab1 = re.sub('_','-',ylabel)
            

# data limits

	xmin = numpy.nanmin(barytime)
	xmax = numpy.nanmax(barytime)
	ymin = numpy.nanmin(data)
	ymax = numpy.nanmax(data)
	xr = xmax - xmin
	yr = ymax - ymin
        barytime = insert(barytime,[0],[barytime[0]]) 
        barytime = append(barytime,[barytime[-1]])
        data = insert(data,[0],[-10000.0]) 
        data = append(data,-10000.0)


# define plot formats

        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': labelsize,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 12,
                      'legend.fontsize': 12,
                      'xtick.labelsize': ticksize,
                      'ytick.labelsize': ticksize}
            pylab.rcParams.update(params)
        except:
            pass

# define size of plot on monitor screen

	pylab.figure(figsize=[xsize,ysize])

# delete any fossil plots in the matplotlib window

        pylab.clf()

# position axes inside the plotting window

#        ax = pylab.axes([0.1,0.11,0.89,0.87])
	ax = pylab.subplot(111)
	pylab.subplots_adjust(0.06,0.15,0.92,0.83)

# force tick labels to be absolute rather than relative

        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        ax.yaxis.set_major_locator(MaxNLocator(5))

# rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90, fontsize=ticksize)

# if plot type is 'fast' plot data time series as points

        if plottype == 'fast':
            pylab.plot(barytime,data,'o',color=lcolor)            

# if plot type is 'pretty' plot data time series as an unbroken line, retaining data gaps

        else:
            ltime = numpy.array([],dtype='float64')
            ldata = numpy.array([],dtype='float32')
            dt = 0
            work1 = 2.0 * cadence / 86400
            for i in range(1,len(data)-1):
                dt = barytime[i] - barytime[i-1]
                if dt < work1:
                    ltime = numpy.append(ltime,barytime[i])
                    ldata = numpy.append(ldata,data[i])
                else:
                    pylab.plot(ltime,ldata,color=lcolor,linestyle='-',linewidth=lwidth)
                    ltime = numpy.array([],dtype='float64')
                    ldata = numpy.array([],dtype='float32')
            pylab.plot(ltime,ldata,color=lcolor,linestyle='-',linewidth=lwidth)

# plot the fill color below data time series, with no data gaps

	pylab.fill(barytime,data,fc=fcolor,linewidth=0.0,alpha=falpha)

# define plot x and y limits

	pylab.xlim(xmin-xr*0.01,xmax+xr*0.01)
	if ymin-yr*0.01 <= 0.0 or fullrange:
            pylab.ylim(1.0e-10,ymax+yr*0.01)
	else:
            pylab.ylim(ymin-yr*0.01,ymax+yr*0.01)
        if chooserange:
            pylab.ylim(y1,y2)

# plot labels

	pylab.xlabel(xlab, {'color' : 'k'})
        try:
            pylab.ylabel(ylab1, {'color' : 'k'})
        except:
            ylab1 = '10**%d e-/s' % nrm
            pylab.ylabel(ylab1, {'color' : 'k'})

# make grid on plot

#	if plotgrid: pylab.grid()

# TEMPORARY !!!!!!!!!!!!!!!!!!!

#        btime = numpy.arange(barytime[0],barytime[-1],0.25) + 0.125
#        bflux = numpy.zeros((len(btime)))
#        j = 0
#        work = numpy.array([])
#        for i in range(1,len(barytime)-1):
#            if barytime[i] >= btime[j] - 0.125 and barytime[i] < btime[j] + 0.125:
#                work = numpy.append(work,data[i])
#            else:
#                bflux[j] = numpy.mean(work)
#                work = numpy.array([])
#                j += 1
#        bflux[j] = numpy.mean(work)
#                
#        pylab.plot(btime,bflux,color='r',linestyle='',marker='D',markersize=20)
#	print numpy.std(bflux)        
#
#        pylab.plot([0.0,10000.0],[-49.5,-49.5],color='k',linestyle='--',linewidth=2.0)
#        pylab.plot([0.0,10000.0],[49.5,49.5],color='k',linestyle='--',linewidth=2.0)
##        pylab.plot([0.0,10000.0],[15.5,15.5],color='k',linestyle=':',linewidth=4.0)
##        pylab.plot([0.0,10000.0],[-15.5,-15.5],color='k',linestyle=':',linewidth=4.0)
##        pylab.plot([0.0,10000.0],[-202,-202],color='k',linestyle='--',linewidth=2.0)
##        pylab.plot([0.0,10000.0],[202,202],color='k',linestyle='--',linewidth=2.0)
##        pylab.plot([0.0,10000.0],[0,0],color='k',linestyle=':',linewidth=4.0)
##        pylab.plot([0.0,10000.0],[-81.*12.3,-81.*12.3],color='k',linestyle=':',linewidth=4.0)
        ax.minorticks_on()
        ax.tick_params('both', length=20, width=2, which='major')
        ax.tick_params('both', length=10, width=1, which='minor')

# save plot to file

    if status == 0 and outfile.lower() != 'none':
	pylab.savefig(outfile)

# render plot

        if cmdLine: 
            pylab.show(block=True)
        else: 
            pylab.ion()
            pylab.plot([])
            pylab.ioff()
	
# end time

    if (status == 0):
        message = 'KEPDRAW completed at'
    else:
        message = '\nKEPDRAW aborted at'
    kepmsg.clock(message,logfile,verbose)
Esempio n. 8
0
def keptest(infile,outfile,datacol,ploterr,errcol,quality,
	    lcolor,lwidth,fcolor,falpha,labelsize,ticksize,
	    xsize,ysize,fullrange,plotgrid,verbose,logfile,status): 

# log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPTEST -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'datacol='+datacol+' '
    perr = 'n'
    if (ploterr): perr = 'y'
    call += 'ploterr='+perr+ ' '
    call += 'errcol='+errcol+' '
    qual = 'n'
    if (quality): qual = 'y'
    call += 'quality='+qual+ ' '
    call += 'lcolor='+str(lcolor)+' '
    call += 'lwidth='+str(lwidth)+' '
    call += 'fcolor='+str(fcolor)+' '
    call += 'falpha='+str(falpha)+' '
    call += 'labelsize='+str(labelsize)+' '
    call += 'ticksize='+str(ticksize)+' '
    call += 'xsize='+str(xsize)+' '
    call += 'ysize='+str(ysize)+' '
    frange = 'n'
    if (fullrange): frange = 'y'
    call += 'fullrange='+frange+ ' '
    pgrid = 'n'
    if (plotgrid): pgrid = 'y'
    call += 'plotgrid='+pgrid+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

# start time

    kepmsg.clock('KEPTEST started at',logfile,verbose)

# test log file

    logfile = kepmsg.test(logfile)

# open input file

    if status == 0:
        struct, status = kepio.openfits(infile,'readonly',logfile,verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(struct,infile,logfile,verbose,status)

# read table structure

    if status == 0:
	table, status = kepio.readfitstab(infile,struct[1],logfile,verbose)

# read table columns

    if status == 0:
        intime, status = kepio.readtimecol(infile,table,logfile,verbose)
        #intime += bjdref
	indata, status = kepio.readfitscol(infile,table,datacol,logfile,verbose)
	if (ploterr):
            indataerr, status = kepio.readfitscol(infile,table,errcol,logfile,verbose)
    if status == 0:
        gaps = zeros(len(indata))

# read table quality column

    if status == 0 and quality:
        try:
            qualtest = table.field('SAP_QUALITY')
        except:
            message = 'ERROR -- KEPTEST: no SAP_QUALITY column found in file ' + infile
            message += '. Use keptest quality=n'
            status = kepmsg.err(logfile,message,verbose)
    if status == 0 and quality:
        gaps, status = kepio.readfitscol(infile,table,'SAP_QUALITY',logfile,verbose)       

# close infile

    if status == 0:
	status = kepio.closefits(struct,logfile,verbose)

# remove infinities and bad data

    if status == 0:
	barytime = []; data = []; dataerr = []
        if 'ap_raw' in datacol or 'ap_corr' in datacol:
            cadenom = cadence
        else:
            cadenom = 1.0
	for i in range(len(intime)):
            if numpy.isfinite(indata[i]) and indata[i] != 0.0 and gaps[i] == 0:
                barytime.append(intime[i])
                data.append(indata[i] / cadenom)
                if (ploterr):
                    dataerr.append(indataerr[i])
	barytime = numpy.array(barytime,dtype='float64')
	data = numpy.array(data,dtype='float64')
	if (ploterr):
            dataerr = numpy.array(dataerr,dtype='float64')

# clean up x-axis unit

    if status == 0:
	barytime0 = float(int(tstart / 100) * 100.0)
	barytime -= barytime0
        xlab = 'BJD $-$ %d' % barytime0

# clean up y-axis units

        try:
            nrm = len(str(int(data.max())))-1
        except:
            nrm = 0
	data = data / 10**nrm
	ylab1 = '10$^%d$ e$^-$ s$^{-1}$' % nrm

# data limits

	xmin = barytime.min()
	xmax = barytime.max()
	ymin = data.min()
	ymax = data.max()
	xr = xmax - xmin
	yr = ymax - ymin
	data[0] = ymin - yr * 2.0
	data[-1] = ymin - yr * 2.0
        if fullrange:
            data[0] = 0.0
            data[-1] = 0.0

# define plot formats

        try:
            rc('text', usetex=True)
            rc('font',**{'family':'sans-serif','sans-serif':['sans-serif']})
            params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': labelsize,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 12,
                      'legend.fontsize': 12,
                      'xtick.labelsize': ticksize,
                      'ytick.labelsize': ticksize}
            pylab.rcParams.update(params)
        except:
            pass

# define size of plot on monitor screen

	pylab.figure(figsize=[xsize,ysize])

# delete any fossil plots in the matplotlib window

        pylab.clf()

	# position axes inside the plotting window

	ax = pylab.axes([0.06,0.1,0.93,0.88])

# force tick labels to be absolute rather than relative

        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))

# rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90, fontsize=12)
	
# plot data time series as an unbroken line, retaining data gaps

	ltime = []; ldata = []; ldataerr = []; ldatagaps = []
        dt = 0

	# SVR 
	svr_rbf = SVR(kernel='rbf', C=1, gamma=0.1)
	svr_lin = SVR(kernel='linear', C=1)
	svr_poly = SVR(kernel='poly', C=1, degree=2)
	svr_ltime = []; svr_ldata = []


	for i in range(len(indata)):
            if i > 0:
		if numpy.isfinite(indata[i]) and indata[i] != 0.0 : 
			# print intime[i], " ", indata[i]
			ltime.append(intime[i])
			ldata.append(indata[i])
			svr_ltime.append([intime[i]])

	ltime = array(ltime, dtype=float64)
	ldata = array(ldata, dtype=float64)

	if len(ldata) > 0 and len(ltime) > 0 :
		pylab.scatter (ltime, ldata, s=1, color=lcolor, label='Data:Input lightcurve')

	svr_ltime = array(svr_ltime, dtype='float64')
	svr_ldata = array(ldata, dtype='float64')

	svr_ldata_rbf = svr_rbf.fit(svr_ltime, svr_ldata).predict(svr_ltime)

	## Get the transits!
	# Identify the difference of data min. and the regression line
	# = An approximate initial dip value.
	
	ldata_min = min(ldata)
	ldata_min_i = ldata.tolist().index(ldata_min)
	fluxdip = svr_ldata_rbf[ldata_min_i] - ldata_min
	# fluxthresh = (svr_ldata_rbf[ldata_min_i] + ldata_min ) / 2.0
	print "ldata min = ", ldata_min, "fluxdip =", fluxdip
	thresh_x = []; thresh_y = [];

	# Sequentially scan the inputs, look for y-points below the 
	# initial mean. Group the points
	i = 0
	while i < len(ldata):
		# print intime[i], " ", indata[i]
		fluxmin = fluxthresh = svr_ldata_rbf[i] - fluxdip/2.0
		if ldata[i] < fluxthresh:
			thresh_y.append(fluxthresh); thresh_x.append(ltime[i])
		# Identify the local min, calculate difference with regression line.
			while i < len(ldata) and ldata[i] < fluxthresh :
				if ldata[i] < fluxmin:
					fluxmin = ldata[i]
					fluxmin_i = i
				i += 1
			
		# We got the local min, now plot the line,
		# converge the dip value with the newly calculated one.	
			pylab.plot([ ltime[fluxmin_i], ltime[fluxmin_i] ], 
				[ ldata[fluxmin_i], svr_ldata_rbf[fluxmin_i] ], 
				'r-', linewidth=1)
			fluxdip = (fluxdip + svr_ldata_rbf[fluxmin_i] - fluxmin)/2.0
		i += 1


	pylab.plot(thresh_x, thresh_y, c='c', label='Adapted transit threshold')
	pylab.scatter(thresh_x, thresh_y, c='k', s=1)
	pylab.plot(svr_ltime, svr_ldata_rbf, c='g', label='Cum. RBF model')


	if (ploterr):
            ldataerr = numpy.array(ldataerr,dtype='float32')


# plot labels

	pylab.xlabel(xlab, {'color' : 'k'})
        try:
            pylab.ylabel(ylab1, {'color' : 'k'})
        except:
            ylab1 = '10**%d e-/s' % nrm
            pylab.ylabel(ylab1, {'color' : 'k'})

# make grid on plot

	if plotgrid: pylab.grid()

# paint plot into window
	pylab.legend()

        pylab.draw()

# save plot to file

    if status == 0 and outfile.lower() != 'none':
	pylab.savefig(outfile)
def kepsmooth(infile,outfile,datacol,function,fscale,plot,plotlab,
              clobber,verbose,logfile,status, cmdLine=False): 

## startup parameters

    status = 0
    labelsize = 24
    ticksize = 16
    xsize = 18
    ysize = 6
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#ffff00'
    falpha = 0.2

## log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPSMOOTH -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'datacol='+str(datacol)+' '
    call += 'function='+str(function)+' '
    call += 'fscale='+str(fscale)+' '
    plotit = 'n'
    if (plot): plotit = 'y'
    call += 'plot='+plotit+ ' '
    call += 'plotlab='+str(plotlab)+' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

## start time

    kepmsg.clock('KEPSMOOTH started at',logfile,verbose)

## test log file

    logfile = kepmsg.test(logfile)

## clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
	    message = 'ERROR -- KEPSMOOTH: ' + outfile + ' exists. Use clobber=yes'
	    status = kepmsg.err(logfile,message,verbose)

## open input file

    if status == 0:
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)
        if cadence == 0.0: 
            tstart, tstop, ncad, cadence, status = kepio.cadence(instr,infile,logfile,verbose,status) 
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

## fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

## read table structure

    if status == 0:
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)

# read time and flux columns

    if status == 0:
        barytime, status = kepio.readtimecol(infile,table,logfile,verbose)
    if status == 0:
        flux, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose)

# filter input data table

    if status == 0:
        try:
            nanclean = instr[1].header['NANCLEAN']
        except:
            naxis2 = 0
            for i in range(len(table.field(0))):
                if (numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i]) and flux[i] != 0.0):
                    table[naxis2] = table[i]
                    naxis2 += 1
            instr[1].data = table[:naxis2]
            comment = 'NaN cadences removed from data'
            status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose)

## read table columns

    if status == 0:
	try:
            intime = instr[1].data.field('barytime')
	except:
            intime, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose)
	indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose)
    if status == 0:
        intime = intime + bjdref
        indata = indata / cadenom

## smooth data

    if status == 0:
        outdata = kepfunc.smooth(indata,fscale/(cadence/86400),function)

## comment keyword in output file

    if status == 0:
        status = kepkey.history(call,instr[0],outfile,logfile,verbose)

## clean up x-axis unit

    if status == 0:
	intime0 = float(int(tstart / 100) * 100.0)
        if intime0 < 2.4e6: intime0 += 2.4e6
	ptime = intime - intime0
	xlab = 'BJD $-$ %d' % intime0

## clean up y-axis units

    if status == 0:
        pout = indata * 1.0
        pout2 = outdata * 1.0 
	nrm = len(str(int(numpy.nanmax(pout))))-1
	pout = pout / 10**nrm
	pout2 = pout2 / 10**nrm
	ylab = '10$^%d$ %s' % (nrm, re.sub('_','-',plotlab))

## data limits

	xmin = numpy.nanmin(ptime)
	xmax = numpy.nanmax(ptime)
	ymin = numpy.min(pout)
	ymax = numpy.nanmax(pout)
	xr = xmax - xmin
	yr = ymax - ymin
        ptime = insert(ptime,[0],[ptime[0]]) 
        ptime = append(ptime,[ptime[-1]])
        pout = insert(pout,[0],[0.0]) 
        pout = append(pout,0.0)
        pout2 = insert(pout2,[0],[0.0]) 
        pout2 = append(pout2,0.0)

## plot light curve

    if status == 0 and plot:
        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': labelsize,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 12,
                      'legend.fontsize': 12,
                      'xtick.labelsize': ticksize,
                      'ytick.labelsize': ticksize}
            rcParams.update(params)
        except:
            print 'ERROR -- KEPSMOOTH: install latex for scientific plotting'
            status = 1
    if status == 0 and plot:
        pylab.figure(1,figsize=[xsize,ysize])

# delete any fossil plots in the matplotlib window

        pylab.clf()

# position axes inside the plotting window

	ax = pylab.subplot(111)
	pylab.subplots_adjust(0.06,0.1,0.93,0.88)

# force tick labels to be absolute rather than relative

        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))

# rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90)

        pylab.plot(ptime[1:-1],pout[1:-1],color='#ff9900',linestyle='-',linewidth=lwidth)
        fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha)
        pylab.plot(ptime,pout2,color=lcolor,linestyle='-',linewidth=lwidth*4.0)
	pylab.xlabel(xlab, {'color' : 'k'})
	pylab.ylabel(ylab, {'color' : 'k'})
	xlim(xmin-xr*0.01,xmax+xr*0.01)
        if ymin >= 0.0: 
            ylim(ymin-yr*0.01,ymax+yr*0.01)
        else:
            ylim(1.0e-10,ymax+yr*0.01)
        pylab.grid()

# render plot

    if cmdLine: 
        pylab.show()
    else: 
        pylab.ion()
        pylab.plot([])
        pylab.ioff()
	
## write output file

    if status == 0:
        for i in range(len(outdata)):
            instr[1].data.field(datacol)[i] = outdata[i]
        instr.writeto(outfile)
    
## close input file

    if status == 0:
        status = kepio.closefits(instr,logfile,verbose)	    

## end time

    if (status == 0):
	    message = 'KEPSMOOTH completed at'
    else:
	    message = '\nKEPSMOOTH aborted at'
    kepmsg.clock(message,logfile,verbose)
Esempio n. 10
0
def kepbinary(infile, outfile, datacol, m1, m2, r1, r2, period, bjd0, eccn,
              omega, inclination, c1, c2, c3, c4, albedo, depth, contamination,
              gamma, fitparams, eclipses, dopboost, tides, job, clobber,
              verbose, logfile, status):

    # startup parameters

    status = 0
    labelsize = 24
    ticksize = 16
    xsize = 17
    ysize = 7
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#ffff00'
    falpha = 0.2

    # log the call

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile, hashline, verbose)
    call = 'KEPBINARY -- '
    call += 'infile=' + infile + ' '
    call += 'outfile=' + outfile + ' '
    call += 'datacol=' + datacol + ' '
    call += 'm1=' + str(m1) + ' '
    call += 'm2=' + str(m2) + ' '
    call += 'r1=' + str(r1) + ' '
    call += 'r2=' + str(r2) + ' '
    call += 'period=' + str(period) + ' '
    call += 'bjd0=' + str(bjd0) + ' '
    call += 'eccn=' + str(eccn) + ' '
    call += 'omega=' + str(omega) + ' '
    call += 'inclination=' + str(inclination) + ' '
    call += 'c1=' + str(c1) + ' '
    call += 'c2=' + str(c2) + ' '
    call += 'c3=' + str(c3) + ' '
    call += 'c4=' + str(c4) + ' '
    call += 'albedo=' + str(albedo) + ' '
    call += 'depth=' + str(depth) + ' '
    call += 'contamination=' + str(contamination) + ' '
    call += 'gamma=' + str(gamma) + ' '
    call += 'fitparams=' + str(fitparams) + ' '
    eclp = 'n'
    if (eclipses): eclp = 'y'
    call += 'eclipses=' + eclp + ' '
    boost = 'n'
    if (dopboost): boost = 'y'
    call += 'dopboost=' + boost + ' '
    distort = 'n'
    if (tides): distort = 'y'
    call += 'tides=' + distort + ' '
    call += 'job=' + str(job) + ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber=' + overwrite + ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose=' + chatter + ' '
    call += 'logfile=' + logfile
    kepmsg.log(logfile, call + '\n', verbose)

    # start time

    kepmsg.clock('KEPBINARY started at', logfile, verbose)

    # test log file

    logfile = kepmsg.test(logfile)

    # check and format the list of fit parameters

    if status == 0 and job == 'fit':
        allParams = [m1, m2, r1, r2, period, bjd0, eccn, omega, inclination]
        allNames = [
            'm1', 'm2', 'r1', 'r2', 'period', 'bjd0', 'eccn', 'omega',
            'inclination'
        ]
        fitparams = re.sub('\|', ',', fitparams.strip())
        fitparams = re.sub('\.', ',', fitparams.strip())
        fitparams = re.sub(';', ',', fitparams.strip())
        fitparams = re.sub(':', ',', fitparams.strip())
        fitparams = re.sub('\s+', ',', fitparams.strip())
        fitparams, status = kepio.parselist(fitparams, logfile, verbose)
        for fitparam in fitparams:
            if fitparam.strip() not in allNames:
                message = 'ERROR -- KEPBINARY: unknown field in list of fit parameters'
                status = kepmsg.err(logfile, message, verbose)

# clobber output file

    if status == 0:
        if clobber: status = kepio.clobber(outfile, logfile, verbose)
        if kepio.fileexists(outfile):
            message = 'ERROR -- KEPBINARY: ' + outfile + ' exists. Use --clobber'
            status = kepmsg.err(logfile, message, verbose)

# open input file

    if status == 0:
        instr, status = kepio.openfits(infile, 'readonly', logfile, verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(
            instr, infile, logfile, verbose, status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

# check the data column exists

    if status == 0:
        try:
            instr[1].data.field(datacol)
        except:
            message = 'ERROR -- KEPBINARY: ' + datacol + ' column does not exist in ' + infile + '[1]'
            status = kepmsg.err(logfile, message, verbose)

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr, file, logfile, verbose)

# read table structure

    if status == 0:
        table, status = kepio.readfitstab(infile, instr[1], logfile, verbose)

# filter input data table

    if status == 0:
        try:
            nanclean = instr[1].header['NANCLEAN']
        except:
            naxis2 = 0
            try:
                for i in range(len(table.field(0))):
                    if numpy.isfinite(table.field('barytime')[i]) and \
                            numpy.isfinite(table.field(datacol)[i]):
                        table[naxis2] = table[i]
                        naxis2 += 1
                        instr[1].data = table[:naxis2]
            except:
                for i in range(len(table.field(0))):
                    if numpy.isfinite(table.field('time')[i]) and \
                            numpy.isfinite(table.field(datacol)[i]):
                        table[naxis2] = table[i]
                        naxis2 += 1
                        instr[1].data = table[:naxis2]
            comment = 'NaN cadences removed from data'
            status = kepkey.new('NANCLEAN', True, comment, instr[1], outfile,
                                logfile, verbose)

# read table columns

    if status == 0:
        try:
            time = instr[1].data.field('barytime')
        except:
            time, status = kepio.readfitscol(infile, instr[1].data, 'time',
                                             logfile, verbose)
        indata, status = kepio.readfitscol(infile, instr[1].data, datacol,
                                           logfile, verbose)
    if status == 0:
        time = time + bjdref
        indata = indata / cadenom

# limb-darkening cofficients

    if status == 0:
        limbdark = numpy.array([c1, c2, c3, c4], dtype='float32')

# time details for model

    if status == 0:
        npt = len(time)
        exptime = numpy.zeros((npt), dtype='float64')
        dtype = numpy.zeros((npt), dtype='int')
        for i in range(npt):
            try:
                exptime[i] = time[i + 1] - time[i]
            except:
                exptime[i] = time[i] - time[i - 1]

# calculate binary model

    if status == 0:
        tmodel = kepsim.transitModel(1.0, m1, m2, r1, r2, period, inclination,
                                     bjd0, eccn, omega, depth, albedo, c1, c2,
                                     c3, c4, gamma, contamination, npt, time,
                                     exptime, dtype, eclipses, dopboost, tides)

# re-normalize binary model to data

    if status == 0 and (job == 'overlay' or job == 'fit'):
        dmedian = numpy.median(indata)
        tmodel = tmodel / numpy.median(tmodel) * dmedian

# define arrays of floating and frozen parameters

    if status == 0 and job == 'fit':
        params = []
        paramNames = []
        arguments = []
        argNames = []
        for i in range(len(allNames)):
            if allNames[i] in fitparams:
                params.append(allParams[i])
                paramNames.append(allNames[i])
            else:
                arguments.append(allParams[i])
                argNames.append(allNames[i])
        params.append(dmedian)
        params = numpy.array(params, dtype='float32')

# subtract model from data

    if status == 0 and job == 'fit':
        deltam = numpy.abs(indata - tmodel)

# fit statistics

    if status == 0 and job == 'fit':
        aveDelta = numpy.sum(deltam) / npt
        chi2 = math.sqrt(
            numpy.sum(
                (indata - tmodel) * (indata - tmodel) / (npt - len(params))))

# fit model to data using downhill simplex

    if status == 0 and job == 'fit':
        print ''
        print '%4s %11s %11s' % ('iter', 'delta', 'chi^2')
        print '----------------------------'
        print '%4d %.5E %.5E' % (0, aveDelta, chi2)
        bestFit = scipy.optimize.fmin(
            fitModel,
            params,
            args=(paramNames, dmedian, m1, m2, r1, r2, period, bjd0, eccn,
                  omega, inclination, depth, albedo, c1, c2, c3, c4, gamma,
                  contamination, npt, time, exptime, indata, dtype, eclipses,
                  dopboost, tides),
            maxiter=1e4)

# calculate best fit binary model

    if status == 0 and job == 'fit':
        print ''
        for i in range(len(paramNames)):
            if 'm1' in paramNames[i].lower():
                m1 = bestFit[i]
                print '  M1 = %.3f Msun' % bestFit[i]
            elif 'm2' in paramNames[i].lower():
                m2 = bestFit[i]
                print '  M2 = %.3f Msun' % bestFit[i]
            elif 'r1' in paramNames[i].lower():
                r1 = bestFit[i]
                print '  R1 = %.4f Rsun' % bestFit[i]
            elif 'r2' in paramNames[i].lower():
                r2 = bestFit[i]
                print '  R2 = %.4f Rsun' % bestFit[i]
            elif 'period' in paramNames[i].lower():
                period = bestFit[i]
            elif 'bjd0' in paramNames[i].lower():
                bjd0 = bestFit[i]
                print 'BJD0 = %.8f' % bestFit[i]
            elif 'eccn' in paramNames[i].lower():
                eccn = bestFit[i]
                print '   e = %.3f' % bestFit[i]
            elif 'omega' in paramNames[i].lower():
                omega = bestFit[i]
                print '   w = %.3f deg' % bestFit[i]
            elif 'inclination' in paramNames[i].lower():
                inclination = bestFit[i]
                print '   i = %.3f deg' % bestFit[i]
        flux = bestFit[-1]
        print ''
        tmodel = kepsim.transitModel(flux, m1, m2, r1, r2, period, inclination,
                                     bjd0, eccn, omega, depth, albedo, c1, c2,
                                     c3, c4, gamma, contamination, npt, time,
                                     exptime, dtype, eclipses, dopboost, tides)

# subtract model from data

    if status == 0:
        deltaMod = indata - tmodel

# standard deviation of model

    if status == 0:
        stdDev = math.sqrt(
            numpy.sum((indata - tmodel) * (indata - tmodel)) / npt)

# clean up x-axis unit

    if status == 0:
        time0 = float(int(tstart / 100) * 100.0)
        ptime = time - time0
        xlab = 'BJD $-$ %d' % time0

# clean up y-axis units

    if status == 0:
        nrm = len(str(int(indata.max()))) - 1
        pout = indata / 10**nrm
        pmod = tmodel / 10**nrm
        pres = deltaMod / stdDev
        if job == 'fit' or job == 'overlay':
            try:
                ylab1 = 'Flux (10$^%d$ e$^-$ s$^{-1}$)' % nrm
                ylab2 = 'Residual ($\sigma$)'
            except:
                ylab1 = 'Flux (10**%d e-/s)' % nrm
                ylab2 = 'Residual (sigma)'
        else:
            ylab1 = 'Normalized Flux'

# dynamic range of model plot

    if status == 0 and job == 'model':
        xmin = ptime.min()
        xmax = ptime.max()
        ymin = tmodel.min()
        ymax = tmodel.max()

# dynamic range of model/data overlay or fit

    if status == 0 and (job == 'overlay' or job == 'fit'):
        xmin = ptime.min()
        xmax = ptime.max()
        ymin = pout.min()
        ymax = pout.max()
        tmin = pmod.min()
        tmax = pmod.max()
        ymin = numpy.array([ymin, tmin]).min()
        ymax = numpy.array([ymax, tmax]).max()
        rmin = pres.min()
        rmax = pres.max()

# pad the dynamic range

    if status == 0:
        xr = (xmax - xmin) / 80
        yr = (ymax - ymin) / 40
        if job == 'overlay' or job == 'fit':
            rr = (rmax - rmin) / 40

# set up plot style

    if status == 0:
        labelsize = 24
        ticksize = 16
        xsize = 17
        ysize = 7
        lcolor = '#0000ff'
        lwidth = 1.0
        fcolor = '#ffff00'
        falpha = 0.2
        params = {
            'backend': 'png',
            'axes.linewidth': 2.5,
            'axes.labelsize': 24,
            'axes.font': 'sans-serif',
            'axes.fontweight': 'bold',
            'text.fontsize': 12,
            'legend.fontsize': 12,
            'xtick.labelsize': 16,
            'ytick.labelsize': 16
        }
        pylab.rcParams.update(params)
        pylab.figure(figsize=[14, 10])
        pylab.clf()

        # main plot window

        ax = pylab.axes([0.05, 0.3, 0.94, 0.68])
        pylab.gca().xaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))
        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90, fontsize=12)

# plot model time series

    if status == 0 and job == 'model':
        pylab.plot(ptime,
                   tmodel,
                   color='#0000ff',
                   linestyle='-',
                   linewidth=1.0)
        ptime = numpy.insert(ptime, [0.0], ptime[0])
        ptime = numpy.append(ptime, ptime[-1])
        tmodel = numpy.insert(tmodel, [0.0], 0.0)
        tmodel = numpy.append(tmodel, 0.0)
        pylab.fill(ptime, tmodel, fc='#ffff00', linewidth=0.0, alpha=0.2)

# plot data time series and best fit

    if status == 0 and (job == 'overlay' or job == 'fit'):
        pylab.plot(ptime, pout, color='#0000ff', linestyle='-', linewidth=1.0)
        ptime = numpy.insert(ptime, [0.0], ptime[0])
        ptime = numpy.append(ptime, ptime[-1])
        pout = numpy.insert(pout, [0], 0.0)
        pout = numpy.append(pout, 0.0)
        pylab.fill(ptime, pout, fc='#ffff00', linewidth=0.0, alpha=0.2)
        pylab.plot(ptime[1:-1], pmod, color='r', linestyle='-', linewidth=2.0)

# ranges and labels

    if status == 0:
        pylab.xlim(xmin - xr, xmax + xr)
        pylab.ylim(ymin - yr, ymax + yr)
        pylab.xlabel(xlab, {'color': 'k'})
        pylab.ylabel(ylab1, {'color': 'k'})

# residual plot window

    if status == 0 and (job == 'overlay' or job == 'fit'):
        ax = pylab.axes([0.05, 0.07, 0.94, 0.23])
        pylab.gca().xaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))
        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90, fontsize=12)

# plot residual time series

    if status == 0 and (job == 'overlay' or job == 'fit'):
        pylab.plot([ptime[0], ptime[-1]], [0.0, 0.0],
                   color='r',
                   linestyle='--',
                   linewidth=1.0)
        pylab.plot([ptime[0], ptime[-1]], [-1.0, -1.0],
                   color='r',
                   linestyle='--',
                   linewidth=1.0)
        pylab.plot([ptime[0], ptime[-1]], [1.0, 1.0],
                   color='r',
                   linestyle='--',
                   linewidth=1.0)
        pylab.plot(ptime[1:-1],
                   pres,
                   color='#0000ff',
                   linestyle='-',
                   linewidth=1.0)
        pres = numpy.insert(pres, [0], rmin)
        pres = numpy.append(pres, rmin)
        pylab.fill(ptime, pres, fc='#ffff00', linewidth=0.0, alpha=0.2)

# ranges and labels of residual time series

    if status == 0 and (job == 'overlay' or job == 'fit'):
        pylab.xlim(xmin - xr, xmax + xr)
        pylab.ylim(rmin - rr, rmax + rr)
        pylab.xlabel(xlab, {'color': 'k'})
        pylab.ylabel(ylab2, {'color': 'k'})

# display the plot

    if status == 0:
        pylab.draw()
Esempio n. 11
0
def kepdetrend(infile,outfile,datacol,errcol,ranges1,npoly1,nsig1,niter1,
               ranges2,npoly2,nsig2,niter2,popnans,plot,clobber,verbose,logfile,
               status,cmdLine=False): 

# startup parameters

    status = 0
    labelsize = 24
    ticksize = 16
    xsize = 16
    ysize = 9
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#ffff00'
    falpha = 0.2

# log the call 
          

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPDETREND -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'datacol='+str(datacol)+' '
    call += 'errcol='+str(errcol)+' '
    call += 'ranges1='+str(ranges1)+' '
    call += 'npoly1='+str(npoly1)+' '
    call += 'nsig1='+str(nsig1)+' '
    call += 'niter1='+str(niter1)+' '
    call += 'ranges2='+str(ranges2)+' '
    call += 'npoly2='+str(npoly2)+' '
    call += 'nsig2='+str(nsig2)+' '
    call += 'niter2='+str(niter2)+' '
    popn = 'n'
    if (popnans): popn = 'y'
    call += 'popnans='+popn+ ' '
    plotit = 'n'
    if (plot): plotit = 'y'
    call += 'plot='+plotit+ ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

# start time

    kepmsg.clock('KEPDETREND started at',logfile,verbose)

# test log file

    logfile = kepmsg.test(logfile)

# clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
	    message = 'ERROR -- KEPDETREND: ' + outfile + ' exists. Use clobber=yes'
	    status = kepmsg.err(logfile,message,verbose)

# open input file

    if status == 0:
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

# read table structure

    if status == 0:
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)

# filter input data table

    if status == 0:
        work1 = numpy.array([table.field('time'), table.field(datacol), table.field(errcol)])
        work1 = numpy.rot90(work1,3)
        work1 = work1[~numpy.isnan(work1).any(1)]            
 
# read table columns

    if status == 0:
        intime = work1[:,2] + bjdref
        indata = work1[:,1]
        inerr = work1[:,0]
        print(intime)

# time ranges for region 1 (region to be corrected)

    if status == 0:
        time1 = []; data1 = []; err1 = []
        t1start, t1stop, status = kepio.timeranges(ranges1,logfile,verbose)
    if status == 0:
        cadencelis1, status = kepstat.filterOnRange(intime,t1start,t1stop)
    if status == 0:
        for i in range(len(cadencelis1)):
            time1.append(intime[cadencelis1[i]])
            data1.append(indata[cadencelis1[i]])
            if errcol.lower() != 'none':
                err1.append(inerr[cadencelis1[i]])
        t0 = time1[0]
        time1 = array(time1,dtype='float64') - t0
        data1 = array(data1,dtype='float32')
        if errcol.lower() != 'none':
            err1 = array(err1,dtype='float32')
        else:
            err1 = None

# fit function to range 1

    if status == 0:
        functype = 'poly' + str(npoly1)
        pinit = [data1.mean()]
        if npoly1 > 0:
            for i in range(npoly1):
                pinit.append(0)
        pinit = array(pinit,dtype='float32')
        coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx1, ploty1, status = \
            kepfit.lsqclip(functype,pinit,time1,data1,err1,nsig1,nsig1,niter1,
                           logfile,verbose)
        fit1 = indata * 0.0
        for i in range(len(coeffs)):
            fit1 += coeffs[i] * (intime - t0)**i
        for i in range(len(intime)):
            if i not in cadencelis1:
                fit1[i] = 0.0
        plotx1 += t0
        print(coeffs)

# time ranges for region 2 (region that is correct)

    if status == 0:
        time2 = []; data2 = []; err2 = []
        t2start, t2stop, status = kepio.timeranges(ranges2,logfile,verbose)
        cadencelis2, status = kepstat.filterOnRange(intime,t2start,t2stop)
        for i in range(len(cadencelis2)):
            time2.append(intime[cadencelis2[i]])
            data2.append(indata[cadencelis2[i]])
            if errcol.lower() != 'none':
                err2.append(inerr[cadencelis2[i]])
        t0 = time2[0]
        time2 = array(time2,dtype='float64') - t0
        data2 = array(data2,dtype='float32')
        if errcol.lower() != 'none':
            err2 = array(err2,dtype='float32')
        else:
            err2 = None

# fit function to range 2

    if status == 0:
        functype = 'poly' + str(npoly2)
        pinit = [data2.mean()]
        if npoly2 > 0:
            for i in range(npoly2):
                pinit.append(0)
        pinit = array(pinit,dtype='float32')
        coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx2, ploty2, status = \
            kepfit.lsqclip(functype,pinit,time2,data2,err2,nsig2,nsig2,niter2,
                           logfile,verbose)
        fit2 = indata * 0.0
        for i in range(len(coeffs)):
            fit2 += coeffs[i] * (intime - t0)**i
        for i in range(len(intime)):
            if i not in cadencelis1:
                fit2[i] = 0.0
        plotx2 += t0

# normalize data

    if status == 0:
        outdata = indata - fit1 + fit2
        if errcol.lower() != 'none':
            outerr = inerr * 1.0

# comment keyword in output file

    if status == 0:
        status = kepkey.history(call,instr[0],outfile,logfile,verbose)

# clean up x-axis unit

    if status == 0:
	intime0 = float(int(tstart / 100) * 100.0)
        if intime0 < 2.4e6: intime0 += 2.4e6
	ptime = intime - intime0
	plotx1 = plotx1 - intime0
	plotx2 = plotx2 - intime0
	xlab = 'BJD $-$ %d' % intime0

# clean up y-axis units

    if status == 0:
        pout = outdata
        ploty1
        ploty2
	nrm = len(str(int(numpy.nanmax(indata))))-1
	indata = indata / 10**nrm
	pout = pout / 10**nrm
	ploty1 = ploty1 / 10**nrm
	ploty2 = ploty2 / 10**nrm
	ylab = '10$^%d$ e$^-$ s$^{-1}$' % nrm

# data limits

	xmin = ptime.min()
	xmax = ptime.max()
	ymin = indata.min()
	ymax = indata.max()
	omin = pout.min()
	omax = pout.max()
	xr = xmax - xmin
	yr = ymax - ymin
	oo = omax - omin
        ptime = insert(ptime,[0],[ptime[0]]) 
        ptime = append(ptime,[ptime[-1]])
        indata = insert(indata,[0],[0.0]) 
        indata = append(indata,[0.0])
        pout = insert(pout,[0],[0.0]) 
        pout = append(pout,0.0)

# plot light curve

    if status == 0 and plot:
        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': labelsize,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 12,
                      'legend.fontsize': 12,
                      'xtick.labelsize': ticksize,
                      'ytick.labelsize': ticksize}
            rcParams.update(params)
        except:
            pass

        pylab.figure(figsize=[xsize,ysize])
        pylab.clf()

# plot original data

        ax = pylab.axes([0.06,0.523,0.93,0.45])

# force tick labels to be absolute rather than relative

        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))

# rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        pylab.setp(labels, 'rotation', 90, fontsize=12)

        pylab.plot(ptime,indata,color=lcolor,linestyle='-',linewidth=lwidth)
        pylab.fill(ptime,indata,color=fcolor,linewidth=0.0,alpha=falpha)
        pylab.plot(plotx1,ploty1,color='r',linestyle='-',linewidth=2.0)
        pylab.plot(plotx2,ploty2,color='g',linestyle='-',linewidth=2.0)
        pylab.xlim(xmin-xr*0.01,xmax+xr*0.01)
        if ymin > 0.0: 
            pylab.ylim(ymin-yr*0.01,ymax+yr*0.01)
        else:
            pylab.ylim(1.0e-10,ymax+yr*0.01)
	    pylab.ylabel(ylab, {'color' : 'k'})
        pylab.grid()

# plot detrended data

        ax = pylab.axes([0.06,0.073,0.93,0.45])

# force tick labels to be absolute rather than relative

        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))

# rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        pylab.setp(labels, 'rotation', 90, fontsize=12)

        pylab.plot(ptime,pout,color=lcolor,linestyle='-',linewidth=lwidth)
        pylab.fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha)
        pylab.xlim(xmin-xr*0.01,xmax+xr*0.01)
        if ymin > 0.0: 
            pylab.ylim(omin-oo*0.01,omax+oo*0.01)
        else:
            pylab.ylim(1.0e-10,omax+oo*0.01)
	pylab.xlabel(xlab, {'color' : 'k'})
        try:
            pylab.ylabel(ylab, {'color' : 'k'})
        except:
            ylab = '10**%d e-/s' % nrm
            pylab.ylabel(ylab, {'color' : 'k'})

# render plot

    if status == 0:
        if cmdLine: 
            pylab.show()
        else: 
            pylab.ion()
            pylab.plot([])
            pylab.ioff()
	
# write output file
    if status == 0 and popnans:
	    instr[1].data.field(datacol)[good_data] = outdata
	    instr[1].data.field(errcol)[good_data] = outerr
	    instr[1].data.field(datacol)[bad_data] = None
	    instr[1].data.field(errcol)[bad_data] = None
	    instr.writeto(outfile)
    elif status == 0 and not popnans:
        for i in range(len(outdata)):
            instr[1].data.field(datacol)[i] = outdata[i]
            if errcol.lower() != 'none':
                instr[1].data.field(errcol)[i] = outerr[i]
        instr.writeto(outfile)
    
# close input file

    if status == 0:
        status = kepio.closefits(instr,logfile,verbose)	    

## end time

    if (status == 0):
	    message = 'KEPDETREND completed at'
    else:
	    message = '\nKEPDETREND aborted at'
    kepmsg.clock(message,logfile,verbose)
def kepconvert(infile, outfile, conversion, columns, baddata, clobber, verbose,
               logfile, status):

    # startup parameters

    status = 0

    # log the call

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile, hashline, verbose)
    call = 'KEPCONVERT -- '
    call += 'infile=' + infile + ' '
    call += 'outfile=' + outfile + ' '
    call += 'conversion=' + conversion + ' '
    call += 'columns=' + columns + ' '
    writebad = 'n'
    if (baddata): writebad = 'y'
    call += 'baddata=' + writebad + ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber=' + overwrite + ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose=' + chatter + ' '
    call += 'logfile=' + logfile
    kepmsg.log(logfile, call + '\n', verbose)

    # start time

    kepmsg.clock('KEPCONVERT started at', logfile, verbose)

    # test log file

    logfile = kepmsg.test(logfile)

    # data columns

    if status == 0:
        colnames = columns.strip().split(',')
        ncol = len(colnames)
        if ncol < 1:
            message = 'ERROR -- KEPCONVERT: no data columns specified'
            status = kepmsg.err(logfile, message, verbose)

# input file exists

    if status == 0 and not kepio.fileexists(infile):
        message = 'ERROR -- KEPCONVERT: input file ' + infile + ' does not exist'
        status = kepmsg.err(logfile, message, verbose)

# clobber output file

    if status == 0:
        if clobber: status = kepio.clobber(outfile, logfile, verbose)
        if kepio.fileexists(outfile):
            message = 'ERROR -- KEPCONVERT: ' + outfile + ' exists. Use clobber=yes'
            status = kepmsg.err(logfile, message, verbose)

# open FITS input file

    if status == 0 and conversion == 'fits2asc':
        instr, status = kepio.openfits(infile, 'readonly', logfile, verbose)
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(
            instr, infile, logfile, verbose, status)

# read FITS table data

    if status == 0 and conversion == 'fits2asc':
        table, status = kepio.readfitstab(infile, instr[1], logfile, verbose)

# check columns exist in FITS file
    if not baddata and status == 0 and conversion == 'fits2asc':
        try:
            qualcol = table.field('SAP_QUALITY') == 0
        except:
            message = 'No SAP_QUALITY column in data, are you using an old FITS file?'
            status = kepmsg.err(logfile, message, verbose)

    if status == 0 and conversion == 'fits2asc':
        work = []
        for colname in colnames:
            try:
                if colname.lower() == 'time':
                    work.append(table.field(colname) + bjdref)
                else:
                    work.append(table.field(colname))
            except:
                message = 'ERROR -- KEPCONVERT: no column ' + colname + ' in ' + infile
                status = kepmsg.err(logfile, message, verbose)
        if not baddata:
            for i in range(len(work)):
                work[i] = work[i][qualcol]
# close input file

    if status == 0 and conversion == 'fits2asc':
        status = kepio.closefits(instr, logfile, verbose)

## write output file

    if status == 0 and conversion == 'fits2asc':
        # table, status = kepio.openascii(outfile,'w',logfile,verbose)
        # for i in range(len(work[0])):
        # txt = ''
        # for j in range(len(work)):
        # if numpy.isfinite(work[j][i]):
        # txt += str(work[j][i]) + ' '
        # txt = txt.strip()
        # if len(re.sub('\s+',',',txt).split(',')) == ncol:
        # table.write(txt + '\n')
        # status = kepio.closeascii(table,logfile,verbose)
        savetxt(outfile, array(work).T)

## open and read ASCII input file

    if status == 0 and conversion == 'asc2fits':
        table, status = kepio.openascii(infile, 'r', logfile, verbose)

## organize ASCII table into arrays

    if status == 0 and conversion == 'asc2fits':
        work = []
        for i in range(ncol):
            work.append([])
        nline = 0
        for line in table:
            line = line.strip()
            line = re.sub('\s+', ',', line)
            line = re.sub('\|', ',', line)
            line = re.sub(';', ',', line)
            if '#' not in line:
                nline + 1
                line = line.split(',')
                if len(line) == ncol:
                    for i in range(len(line)):
                        try:
                            work[i].append(float(line[i]))
                        except:
                            message = 'ERROR --KEPCONVERT: ' + str(
                                line[i]) + ' is not float'
                            status = kepmsg.err(logfile, message, verbose)
                            break
                else:
                    message = 'ERROR --KEPCONVERT: ' + str(
                        ncol) + ' columns required but '
                    message += str(
                        len(line)) + ' columns supplied by ' + infile
                    message += ' at line' + str(nline)
                    status = kepmsg.err(logfile, message, verbose)
                    break
        for i in range(ncol):
            work[i] = numpy.array(work[i], dtype='float64')

## timing keywords for output file

    if status == 0 and conversion == 'asc2fits':
        for i in range(ncol):
            if 'time' in colnames[i].lower():
                if work[i][1] > 54000.0 and work[i][1] < 60000.0:
                    work[i] += 2.4e6
#                work[i] += 2.4553e6
                tstart = work[i].min()
                tstop = work[i].max()
                lc_start = tstart
                lc_end = tstop
                if lc_start > 2.4e6: lc_start -= 2.4e6
                if lc_end > 2.4e6: lc_end -= 2.4e6
                dts = []
                for j in range(1, len(work[i])):
                    dts.append(work[i][j] - work[i][j - 1])
                dts = numpy.array(dts, dtype='float32')
                cadence = numpy.median(dts)
                if cadence * 86400.0 > 58.0 and cadence * 86400.0 < 61.0:
                    obsmode = 'short cadence'
                elif cadence * 86400.0 > 1600.0 and cadence * 86400.0 < 2000.0:
                    obsmode = 'long cadence'
                else:
                    obsmode = 'unknown'

## Create the outfile primary extension

    if status == 0 and conversion == 'asc2fits':
        hdu0 = PrimaryHDU()
        try:
            hdu0.header.update('EXTNAME', 'PRIMARY', 'name of extension')
            hdu0.header.update('EXTVER', 1.0, 'extension version number')
            hdu0.header.update('ORIGIN', 'NASA/Ames',
                               'organization that generated this file')
            hdu0.header.update('DATE', time.asctime(time.localtime()),
                               'file creation date')
            hdu0.header.update('CREATOR', 'kepconvert',
                               'SW version used to create this file')
            hdu0.header.update('PROCVER', 'None', 'processing script version')
            hdu0.header.update('FILEVER', '2.0', 'file format version')
            hdu0.header.update('TIMVERSN', 'OGIP/93-003',
                               'OGIP memo number for file format')
            hdu0.header.update('TELESCOP', 'Kepler', 'telescope')
            hdu0.header.update('INSTRUME', 'Kepler photometer',
                               'detector type')
            hdu0.header.update('OBJECT', 'Unknown', 'string version of kepID')
            hdu0.header.update('KEPLERID', 'Unknown',
                               'unique Kepler target identifier')
            hdu0.header.update('CHANNEL', 'Unknown', 'CCD channel')
            hdu0.header.update('SKYGROUP', 'Unknown',
                               'roll-independent location of channel')
            hdu0.header.update('MODULE', 'Unknown', 'CCD module')
            hdu0.header.update('OUTPUT', 'Unknown', 'CCD output')
            hdu0.header.update(
                'QUARTER', 'Unknown',
                'mission quarter during which data was collected')
            hdu0.header.update(
                'SEASON', 'Unknown',
                'mission season during which data was collected')
            hdu0.header.update(
                'DATA_REL', 'Unknown',
                'version of data release notes describing data')
            hdu0.header.update('OBSMODE', obsmode, 'observing mode')
            hdu0.header.update('RADESYS', 'Unknown',
                               'reference frame of celestial coordinates')
            hdu0.header.update('RA_OBJ', 'Unknown',
                               '[deg] right ascension from KIC')
            hdu0.header.update('DEC_OBJ', 'Unknown',
                               '[deg] declination from KIC')
            hdu0.header.update('EQUINOX', 2000.0,
                               'equinox of celestial coordinate system')
            hdu0.header.update('PMRA', 'Unknown',
                               '[arcsec/yr] RA proper motion')
            hdu0.header.update('PMDEC', 'Unknown',
                               '[arcsec/yr] Dec proper motion')
            hdu0.header.update('PMTOTAL', 'Unknown',
                               '[arcsec/yr] total proper motion')
            hdu0.header.update('PARALLAX', 'Unknown', '[arcsec] parallax')
            hdu0.header.update('GLON', 'Unknown', '[deg] galactic longitude')
            hdu0.header.update('GLAT', 'Unknown', '[deg] galactic latitude')
            hdu0.header.update('GMAG', 'Unknown',
                               '[mag] SDSS g band magnitude from KIC')
            hdu0.header.update('RMAG', 'Unknown',
                               '[mag] SDSS r band magnitude from KIC')
            hdu0.header.update('IMAG', 'Unknown',
                               '[mag] SDSS i band magnitude from KIC')
            hdu0.header.update('ZMAG', 'Unknown',
                               '[mag] SDSS z band magnitude from KIC')
            hdu0.header.update('D51MAG', 'Unknown',
                               '[mag] D51 magnitude, from KIC')
            hdu0.header.update('JMAG', 'Unknown',
                               '[mag] J band magnitude from 2MASS')
            hdu0.header.update('HMAG', 'Unknown',
                               '[mag] H band magnitude from 2MASS')
            hdu0.header.update('KMAG', 'Unknown',
                               '[mag] K band magnitude from 2MASS')
            hdu0.header.update('KEPMAG', 'Unknown',
                               '[mag] Kepler magnitude (Kp) from KIC')
            hdu0.header.update('GRCOLOR', 'Unknown',
                               '[mag] (g-r) color, SDSS bands')
            hdu0.header.update('JKCOLOR', 'Unknown',
                               '[mag] (J-K) color, 2MASS bands')
            hdu0.header.update('GKCOLOR', 'Unknown',
                               '[mag] (g-K) color, SDSS g - 2MASS K')
            hdu0.header.update('TEFF', 'Unknown',
                               '[K] effective temperature from KIC')
            hdu0.header.update('LOGG', 'Unknown',
                               '[cm/s2] log10 surface gravity from KIC')
            hdu0.header.update('FEH', 'Unknown',
                               '[log10([Fe/H])] metallicity from KIC')
            hdu0.header.update('EBMINUSV', 'Unknown',
                               '[mag] E(B-V) redenning from KIC')
            hdu0.header.update('AV', 'Unknown',
                               '[mag] A_v extinction from KIC')
            hdu0.header.update('RADIUS', 'Unknown',
                               '[solar radii] stellar radius from KIC')
            hdu0.header.update('TMINDEX', 'Unknown',
                               'unique 2MASS catalog ID from KIC')
            hdu0.header.update('SCPID', 'Unknown',
                               'unique SCP processing ID from KIC')
            hdulist = HDUList(hdu0)
        except:
            message = 'ERROR -- KEPCONVERT: cannot create primary extension in ' + outfile
            status = kepmsg.err(logfile, message, verbose)

## create the outfile HDU 1 extension

    if status == 0 and conversion == 'asc2fits':
        try:
            fitscol = []
            for i in range(ncol):
                fitscol.append(
                    Column(name=colnames[i], format='D', array=work[i]))
            fitscols = ColDefs(fitscol)
            hdu1 = new_table(fitscols)
            hdulist.append(hdu1)
            hdu1.header.update('INHERIT', True, 'inherit primary keywords')
            hdu1.header.update('EXTNAME', 'LIGHTCURVE', 'name of extension')
            hdu1.header.update('EXTVER', 1, 'extension version number')
            hdu1.header.update('TELESCOP', 'Kepler', 'telescope')
            hdu1.header.update('INSTRUME', 'Kepler photometer',
                               'detector type')
            hdu1.header.update('OBJECT', 'Unknown', 'string version of kepID')
            hdu1.header.update('KEPLERID', 'Unknown',
                               'unique Kepler target identifier')
            hdu1.header.update('RADESYS', 'Unknown',
                               'reference frame of celestial coordinates')
            hdu1.header.update('RA_OBJ', 'Unknown',
                               '[deg] right ascension from KIC')
            hdu1.header.update('DEC_OBJ', 'Unknown',
                               '[deg] declination from KIC')
            hdu1.header.update('EQUINOX', 2000.0,
                               'equinox of celestial coordinate system')
            hdu1.header.update('TIMEREF', 'Unknown',
                               'barycentric correction applied to times')
            hdu1.header.update('TASSIGN', 'Unknown', 'where time is assigned')
            hdu1.header.update('TIMESYS', 'Unknown',
                               'time system is barycentric JD')
            hdu1.header.update('BJDREFI', 0.0,
                               'integer part of BJD reference date')
            hdu1.header.update('BJDREFF', 0.0,
                               'fraction of day in BJD reference date')
            hdu1.header.update('TIMEUNIT', 'Unknown',
                               'time unit for TIME, TSTART and TSTOP')
            hdu1.header.update('TSTART', tstart,
                               'observation start time in JD - BJDREF')
            hdu1.header.update('TSTOP', tstop,
                               'observation stop time in JD - BJDREF')
            hdu1.header.update('LC_START', lc_start,
                               'observation start time in MJD')
            hdu1.header.update('LC_END', lc_end,
                               'observation stop time in MJD')
            hdu1.header.update('TELAPSE', tstop - tstart, '[d] TSTOP - TSTART')
            hdu1.header.update('LIVETIME', 'Unknown',
                               '[d] TELAPSE multiplied by DEADC')
            hdu1.header.update('EXPOSURE', 'Unknown', '[d] time on source')
            hdu1.header.update('DEADC', 'Unknown', 'deadtime correction')
            hdu1.header.update('TIMEPIXR', 'Unknown',
                               'bin time beginning=0 middle=0.5 end=1')
            hdu1.header.update('TIERRELA', 'Unknown',
                               '[d] relative time error')
            hdu1.header.update('TIERABSO', 'Unknown',
                               '[d] absolute time error')
            hdu1.header.update('INT_TIME', 'Unknown',
                               '[s] photon accumulation time per frame')
            hdu1.header.update('READTIME', 'Unknown',
                               '[s] readout time per frame')
            hdu1.header.update('FRAMETIM', 'Unknown',
                               '[s] frame time (INT_TIME + READTIME)')
            hdu1.header.update('NUM_FRM', 'Unknown',
                               'number of frames per time stamp')
            hdu1.header.update('TIMEDEL', 'Unknown',
                               '[d] time resolution of data')
            hdu1.header.update('DATE-OBS', 'Unknown',
                               'TSTART as UT calendar date')
            hdu1.header.update('DATE-END', 'Unknown',
                               'TSTOP as UT calendar date')
            hdu1.header.update('BACKAPP', 'Unknown',
                               'background is subtracted')
            hdu1.header.update('DEADAPP', 'Unknown', 'deadtime applied')
            hdu1.header.update('VIGNAPP', 'Unknown',
                               'vignetting or collimator correction applied')
            hdu1.header.update('GAIN', 'Unknown',
                               'channel gain [electrons/count]')
            hdu1.header.update('READNOIS', 'Unknown', 'read noise [electrons]')
            hdu1.header.update('NREADOUT', 'Unknown',
                               'number of reads per cadence')
            hdu1.header.update('TIMSLICE', 'Unknown',
                               'time-slice readout sequence section')
            hdu1.header.update('MEANBLCK', 'Unknown',
                               'FSW mean black level [count]')
            hdu1.header.update('PDCSAPFL', 'Unknown',
                               'SAP PDC processing flags (bit code)')
            hdu1.header.update('PDCDIAFL', 'Unknown',
                               'DIA PDC processing flags (bit code)')
            hdu1.header.update(
                'MISPXSAP', 'Unknown',
                'no of optimal aperture pixels missing from SAP')
            hdu1.header.update(
                'MISPXDIA', 'Unknown',
                'no of optimal aperture pixels missing from DIA')
            hdu1.header.update('CROWDSAP', 'Unknown',
                               'crowding metric evaluated over SAP opt. ap.')
            hdu1.header.update('CROWDDIA', 'Unknown',
                               'crowding metric evaluated over DIA aperture')
        except:
            message = 'ERROR -- KEPCONVERT: cannot create light curve extension in ' + outfile
            status = kepmsg.err(logfile, message, verbose)

## history keyword in output file

    if status == 0 and conversion == 'asc2fits':
        status = kepkey.history(call, hdu0, outfile, logfile, verbose)

## filter data table

    if status == 0 and conversion == 'asc2fits':
        instr, status = kepio.filterNaN(
            hdulist, colnames[min(array([1, len(colnames) - 1], dtype='int'))],
            outfile, logfile, verbose)

## write output FITS file

    if status == 0 and conversion == 'asc2fits':
        hdulist.writeto(outfile, checksum=True)

## end time

    if (status == 0):
        message = 'KEPCONVERT completed at'
    else:
        message = '\nKEPCONVERT aborted at'
    kepmsg.clock(message, logfile, verbose)
Esempio n. 13
0
def kepflatten(infile,outfile,datacol,errcol,nsig,stepsize,winsize,npoly,niter,ranges,
               plot,clobber,verbose,logfile,status,cmdLine=False): 

# startup parameters

    status = 0
    labelsize = 32
    ticksize = 18
    xsize = 16
    ysize = 10
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#ffff00'
    falpha = 0.2

# log the call

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPFLATTEN -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'datacol='+str(datacol)+' '
    call += 'errcol='+str(errcol)+' '
    call += 'nsig='+str(nsig)+' '
    call += 'stepsize='+str(stepsize)+' '
    call += 'winsize='+str(winsize)+' '
    call += 'npoly='+str(npoly)+' '
    call += 'niter='+str(niter)+' '
    call += 'ranges='+str(ranges)+' '
    plotit = 'n'
    if (plot): plotit = 'y'
    call += 'plot='+plotit+ ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

# start time

    kepmsg.clock('KEPFLATTEN started at',logfile,verbose)

# test log file

    logfile = kepmsg.test(logfile)

# test winsize > stepsize

    if winsize < stepsize:
        message = 'ERROR -- KEPFLATTEN: winsize must be greater than stepsize'
        status = kepmsg.err(logfile,message,verbose)

# clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
        message = 'ERROR -- KEPFLATTEN: ' + outfile + ' exists. Use clobber=yes'
        status = kepmsg.err(logfile,message,verbose)

# open input file

    if status == 0:
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

# read table structure

    if status == 0:
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)

# filter input data table

    if status == 0:
        try:
            datac = table.field(datacol)
        except:
             message = 'ERROR -- KEPFLATTEN: cannot find or read data column ' + datacol
             status = kepmsg.err(logfile,message,verbose)
    if status == 0:
        try:
            err = table.field(errcol)
        except:
             message = 'WARNING -- KEPFLATTEN: cannot find or read error column ' + errcol
             errcol = 'None'
    if status == 0:
        if errcol.lower() == 'none' or errcol == 'PSF_FLUX_ERR':
            err = datac * cadence
            err = numpy.sqrt(numpy.abs(err)) / cadence
            work1 = numpy.array([table.field('time'), datac, err])
        else:
            work1 = numpy.array([table.field('time'), datac, err])
        work1 = numpy.rot90(work1,3)
        work1 = work1[~numpy.isnan(work1).any(1)]            
 
# read table columns

    if status == 0:
        intime = work1[:,2] + bjdref
        indata = work1[:,1]
        inerr = work1[:,0]
        if len(intime) == 0:
             message = 'ERROR -- KEPFLATTEN: one of the input arrays is all NaN'
             status = kepmsg.err(logfile,message,verbose)
       
# time ranges for region to be corrected

    if status == 0:
        t1, t2, status = kepio.timeranges(ranges,logfile,verbose)
        cadencelis, status = kepstat.filterOnRange(intime,t1,t2)

# find limits of each time step

    if status == 0:
        tstep1 = []; tstep2 = []
        work = intime[0]
        while work <= intime[-1]:
            tstep1.append(work)
            tstep2.append(array([work+winsize,intime[-1]],dtype='float64').min())
            work += stepsize

# find cadence limits of each time step

    if status == 0:
        cstep1 = []; cstep2 = []
        for n in range(len(tstep1)):
            for i in range(len(intime)-1):
                if intime[i] <= tstep1[n] and intime[i+1] > tstep1[n]:
                    for j in range(i,len(intime)-1):
                        if intime[j] < tstep2[n] and intime[j+1] >= tstep2[n]:
                            cstep1.append(i)
                            cstep2.append(j+1)

# comment keyword in output file

    if status == 0:
        status = kepkey.history(call,instr[0],outfile,logfile,verbose)

# clean up x-axis unit

    if status == 0:
	intime0 = float(int(tstart / 100) * 100.0)
	ptime = intime - intime0
	xlab = 'BJD $-$ %d' % intime0

# clean up y-axis units

    if status == 0:
        pout = copy(indata)
	nrm = len(str(int(pout.max())))-1
	pout = pout / 10**nrm
	ylab = '10$^%d$ e$^-$ s$^{-1}$' % nrm

# data limits

	xmin = ptime.min()
	xmax = ptime.max()
	ymin = pout.min()
	ymax = pout.max()
	xr = xmax - xmin
	yr = ymax - ymin
        ptime = insert(ptime,[0],[ptime[0]]) 
        ptime = append(ptime,[ptime[-1]])
        pout = insert(pout,[0],[0.0]) 
        pout = append(pout,0.0)

# plot light curve

    if status == 0 and plot:
        plotLatex = True
        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': labelsize,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 12,
                      'legend.fontsize': 12,
                      'xtick.labelsize': ticksize,
                      'ytick.labelsize': ticksize}
            rcParams.update(params)
        except:
            plotLatex = False
    if status == 0 and plot:
        pylab.figure(figsize=[xsize,ysize])
        pylab.clf()

# plot data

        ax = pylab.axes([0.06,0.54,0.93,0.43])

# force tick labels to be absolute rather than relative

        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))

# rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        pylab.setp(labels, 'rotation', 90)
        pylab.setp(pylab.gca(),xticklabels=[])

        pylab.plot(ptime[1:-1],pout[1:-1],color=lcolor,linestyle='-',linewidth=lwidth)
        pylab.fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha)
        if not plotLatex:
            ylab = '10**%d electrons/sec' % nrm
        ylabel(ylab, {'color' : 'k'})
        grid()

# loop over each time step, fit data, determine rms

    if status == 0:
        fitarray = numpy.zeros((len(indata),len(cstep1)),dtype='float32')
        sigarray = numpy.zeros((len(indata),len(cstep1)),dtype='float32')
        fitarray[:,:] = numpy.nan
        sigarray[:,:] = numpy.nan
        masterfit = indata * 0.0
        mastersigma = numpy.zeros(len(masterfit))
        functype = 'poly' + str(npoly)
        for i in range(len(cstep1)):
            timeSeries = intime[cstep1[i]:cstep2[i]+1]-intime[cstep1[i]]
            dataSeries = indata[cstep1[i]:cstep2[i]+1]
            fitTimeSeries = numpy.array([],dtype='float32')
            fitDataSeries = numpy.array([],dtype='float32')
            pinit = [dataSeries.mean()]
            if npoly > 0:
                for j in range(npoly):
                    pinit.append(0.0)
            pinit = array(pinit,dtype='float32')
            try:
                if len(fitarray[cstep1[i]:cstep2[i]+1,i]) > len(pinit):
                    coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \
                        kepfit.lsqclip(functype,pinit,timeSeries,dataSeries,None,nsig,nsig,niter,
                                       logfile,verbose)
                    fitarray[cstep1[i]:cstep2[i]+1,i] = 0.0
                    sigarray[cstep1[i]:cstep2[i]+1,i] = sigma
                    for j in range(len(coeffs)):
                        fitarray[cstep1[i]:cstep2[i]+1,i] += coeffs[j] * timeSeries**j
            except:
                for j in range(cstep1[i],cstep2[i]+1):
                    fitarray[cstep1[i]:cstep2[i]+1,i] = 0.0
                    sigarray[cstep1[i]:cstep2[i]+1,i] = 1.0e-10             
                message  = 'WARNING -- KEPFLATTEN: could not fit range '
                message += str(intime[cstep1[i]]) + '-' + str(intime[cstep2[i]])
                kepmsg.warn(None,message)

# find mean fit for each timestamp

    if status == 0:
        for i in range(len(indata)):
            masterfit[i] = scipy.stats.nanmean(fitarray[i,:])
            mastersigma[i] = scipy.stats.nanmean(sigarray[i,:])
        masterfit[-1] = masterfit[-4] #fudge
        masterfit[-2] = masterfit[-4] #fudge
        masterfit[-3] = masterfit[-4] #fudge
        pylab.plot(intime-intime0, masterfit / 10**nrm,'g',lw='3')

# reject outliers

    if status == 0:
        rejtime = []; rejdata = []; naxis2 = 0
        for i in range(len(masterfit)):
            if abs(indata[i] - masterfit[i]) > nsig * mastersigma[i] and i in cadencelis:
                rejtime.append(intime[i])
                rejdata.append(indata[i])
        rejtime = array(rejtime,dtype='float64')
        rejdata = array(rejdata,dtype='float32')
        if plot:
            pylab.plot(rejtime-intime0,rejdata / 10**nrm,'ro')

# new data for output file

    if status == 0:
        outdata = indata / masterfit
        outerr = inerr / masterfit

# plot ranges

    if status == 0 and plot:
        pylab.xlim(xmin-xr*0.01,xmax+xr*0.01)
        if ymin >= 0.0: 
            pylab.ylim(ymin-yr*0.01,ymax+yr*0.01)
        else:
            pylab.ylim(1.0e-10,ymax+yr*0.01)

# plot residual data

    if status == 0 and plot:
        ax = pylab.axes([0.06,0.09,0.93,0.43])

# force tick labels to be absolute rather than relative

    if status == 0 and plot:
        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))

# rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90)

# clean up y-axis units

    if status == 0:
        pout = copy(outdata)
	ylab = 'Normalized Flux'

# data limits

    if status == 0 and plot:
	ymin = pout.min()
	ymax = pout.max()
	yr = ymax - ymin
        pout = insert(pout,[0],[0.0]) 
        pout = append(pout,0.0)

        pylab.plot(ptime[1:-1],pout[1:-1],color=lcolor,linestyle='-',linewidth=lwidth)
        pylab.fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha)
	pylab.xlabel(xlab, {'color' : 'k'})
        pylab.ylabel(ylab, {'color' : 'k'})
        pylab.grid()

# plot ranges

    if status == 0 and plot:
        pylab.xlim(xmin-xr*0.01,xmax+xr*0.01)
        if ymin >= 0.0: 
            pylab.ylim(ymin-yr*0.01,ymax+yr*0.01)
        else:
            pylab.ylim(1.0e-10,ymax+yr*0.01)

# render plot

    if status == 0 and plot:
        pylab.savefig(re.sub('.fits','.png',outfile))
        if cmdLine: 
            pylab.show(block=True)
        else: 
            pylab.ion()
            pylab.plot([])
            pylab.ioff()
	
	
# add NaNs back into data

    if status == 0:
        n = 0
        work1 = array([],dtype='float32')
        work2 = array([],dtype='float32')
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)
        tn = table.field('time')
        dn = table.field(datacol)
        for i in range(len(table.field(0))):
            if numpy.isfinite(tn[i]) and numpy.isfinite(dn[i]) and numpy.isfinite(err[i]):
                try:
                    work1 = numpy.append(work1,outdata[n])
                    work2 = numpy.append(work2,outerr[n])
                    n += 1
                except:
                    pass
            else:
                work1 = numpy.append(work1,numpy.nan)
                work2 = numpy.append(work2,numpy.nan)

# history keyword in output file

    if status == 0:
        status = kepkey.history(call,instr[0],outfile,logfile,verbose)

# write output file

        try:
            col1 = pyfits.Column(name='DETSAP_FLUX',format='E13.7',array=work1)
            col2 = pyfits.Column(name='DETSAP_FLUX_ERR',format='E13.7',array=work2)
            cols = instr[1].data.columns + col1 + col2
            instr[1] = pyfits.new_table(cols,header=instr[1].header)
            instr.writeto(outfile)
        except ValueError:
            try:
                instr[1].data.field('DETSAP_FLUX')[:] = work1
                instr[1].data.field('DETSAP_FLUX_ERR')[:] = work2
                instr.writeto(outfile)
            except:
                message = 'ERROR -- KEPFLATTEN: cannot add DETSAP_FLUX data to FITS file'
                status = kepmsg.err(logfile,message,verbose)
	
# close input file

    if status == 0:
        status = kepio.closefits(instr,logfile,verbose)	    

## end time

    if (status == 0):
	    message = 'KEPFLATTEN completed at'
    else:
	    message = '\nKEPFLATTEN aborted at'
    kepmsg.clock(message,logfile,verbose)
Esempio n. 14
0
def kepsmooth(
    infile, outfile, datacol, function, fscale, plot, plotlab, clobber, verbose, logfile, status, cmdLine=False
):

    ## startup parameters

    status = 0
    labelsize = 24
    ticksize = 16
    xsize = 18
    ysize = 6
    lcolor = "#0000ff"
    lwidth = 1.0
    fcolor = "#ffff00"
    falpha = 0.2

    ## log the call

    hashline = "----------------------------------------------------------------------------"
    kepmsg.log(logfile, hashline, verbose)
    call = "KEPSMOOTH -- "
    call += "infile=" + infile + " "
    call += "outfile=" + outfile + " "
    call += "datacol=" + str(datacol) + " "
    call += "function=" + str(function) + " "
    call += "fscale=" + str(fscale) + " "
    plotit = "n"
    if plot:
        plotit = "y"
    call += "plot=" + plotit + " "
    call += "plotlab=" + str(plotlab) + " "
    overwrite = "n"
    if clobber:
        overwrite = "y"
    call += "clobber=" + overwrite + " "
    chatter = "n"
    if verbose:
        chatter = "y"
    call += "verbose=" + chatter + " "
    call += "logfile=" + logfile
    kepmsg.log(logfile, call + "\n", verbose)

    ## start time

    kepmsg.clock("KEPSMOOTH started at", logfile, verbose)

    ## test log file

    logfile = kepmsg.test(logfile)

    ## clobber output file

    if clobber:
        status = kepio.clobber(outfile, logfile, verbose)
    if kepio.fileexists(outfile):
        message = "ERROR -- KEPSMOOTH: " + outfile + " exists. Use clobber=yes"
        status = kepmsg.err(logfile, message, verbose)

    ## open input file

    if status == 0:
        instr, status = kepio.openfits(infile, "readonly", logfile, verbose)
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr, infile, logfile, verbose, status)
        if cadence == 0.0:
            tstart, tstop, ncad, cadence, status = kepio.cadence(instr, infile, logfile, verbose, status)
    if status == 0:
        try:
            work = instr[0].header["FILEVER"]
            cadenom = 1.0
        except:
            cadenom = cadence

    ## fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr, file, logfile, verbose)

    ## read table structure

    if status == 0:
        table, status = kepio.readfitstab(infile, instr[1], logfile, verbose)

    # read time and flux columns

    if status == 0:
        barytime, status = kepio.readtimecol(infile, table, logfile, verbose)
    if status == 0:
        flux, status = kepio.readfitscol(infile, instr[1].data, datacol, logfile, verbose)

    # filter input data table

    if status == 0:
        try:
            nanclean = instr[1].header["NANCLEAN"]
        except:
            naxis2 = 0
            for i in range(len(table.field(0))):
                if numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i]) and flux[i] != 0.0:
                    table[naxis2] = table[i]
                    naxis2 += 1
            instr[1].data = table[:naxis2]
            comment = "NaN cadences removed from data"
            status = kepkey.new("NANCLEAN", True, comment, instr[1], outfile, logfile, verbose)

    ## read table columns

    if status == 0:
        try:
            intime = instr[1].data.field("barytime")
        except:
            intime, status = kepio.readfitscol(infile, instr[1].data, "time", logfile, verbose)
        indata, status = kepio.readfitscol(infile, instr[1].data, datacol, logfile, verbose)
    if status == 0:
        intime = intime + bjdref
        indata = indata / cadenom

    ## smooth data

    if status == 0:
        outdata = kepfunc.smooth(indata, fscale / (cadence / 86400), function)

    ## comment keyword in output file

    if status == 0:
        status = kepkey.history(call, instr[0], outfile, logfile, verbose)

    ## clean up x-axis unit

    if status == 0:
        intime0 = float(int(tstart / 100) * 100.0)
        if intime0 < 2.4e6:
            intime0 += 2.4e6
        ptime = intime - intime0
        xlab = "BJD $-$ %d" % intime0

    ## clean up y-axis units

    if status == 0:
        pout = indata * 1.0
        pout2 = outdata * 1.0
        nrm = len(str(int(numpy.nanmax(pout)))) - 1
        pout = pout / 10 ** nrm
        pout2 = pout2 / 10 ** nrm
        ylab = "10$^%d$ %s" % (nrm, re.sub("_", "-", plotlab))

        ## data limits

        xmin = numpy.nanmin(ptime)
        xmax = numpy.nanmax(ptime)
        ymin = numpy.min(pout)
        ymax = numpy.nanmax(pout)
        xr = xmax - xmin
        yr = ymax - ymin
        ptime = insert(ptime, [0], [ptime[0]])
        ptime = append(ptime, [ptime[-1]])
        pout = insert(pout, [0], [0.0])
        pout = append(pout, 0.0)
        pout2 = insert(pout2, [0], [0.0])
        pout2 = append(pout2, 0.0)

    ## plot light curve

    if status == 0 and plot:
        try:
            params = {
                "backend": "png",
                "axes.linewidth": 2.5,
                "axes.labelsize": labelsize,
                "axes.font": "sans-serif",
                "axes.fontweight": "bold",
                "text.fontsize": 12,
                "legend.fontsize": 12,
                "xtick.labelsize": ticksize,
                "ytick.labelsize": ticksize,
            }
            rcParams.update(params)
        except:
            print "ERROR -- KEPSMOOTH: install latex for scientific plotting"
            status = 1
    if status == 0 and plot:
        pylab.figure(1, figsize=[xsize, ysize])

        # delete any fossil plots in the matplotlib window

        pylab.clf()

        # position axes inside the plotting window

        ax = pylab.subplot(111)
        pylab.subplots_adjust(0.06, 0.1, 0.93, 0.88)

        # force tick labels to be absolute rather than relative

        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))

        # rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        setp(labels, "rotation", 90)

        pylab.plot(ptime[1:-1], pout[1:-1], color="#ff9900", linestyle="-", linewidth=lwidth)
        fill(ptime, pout, color=fcolor, linewidth=0.0, alpha=falpha)
        pylab.plot(ptime, pout2, color=lcolor, linestyle="-", linewidth=lwidth * 4.0)
        pylab.xlabel(xlab, {"color": "k"})
        pylab.ylabel(ylab, {"color": "k"})
        xlim(xmin - xr * 0.01, xmax + xr * 0.01)
        if ymin >= 0.0:
            ylim(ymin - yr * 0.01, ymax + yr * 0.01)
        else:
            ylim(1.0e-10, ymax + yr * 0.01)
        pylab.grid()

    # render plot

    if cmdLine:
        pylab.show()
    else:
        pylab.ion()
        pylab.plot([])
        pylab.ioff()

    ## write output file

    if status == 0:
        for i in range(len(outdata)):
            instr[1].data.field(datacol)[i] = outdata[i]
        instr.writeto(outfile)

    ## close input file

    if status == 0:
        status = kepio.closefits(instr, logfile, verbose)

    ## end time

    if status == 0:
        message = "KEPSMOOTH completed at"
    else:
        message = "\nKEPSMOOTH aborted at"
    kepmsg.clock(message, logfile, verbose)
Esempio n. 15
0
def kepbinary(infile,outfile,datacol,m1,m2,r1,r2,period,bjd0,eccn,omega,inclination,
              c1,c2,c3,c4,albedo,depth,contamination,gamma,fitparams,eclipses,dopboost,
              tides,job,clobber,verbose,logfile,status): 

# startup parameters

    status = 0
    labelsize = 24; ticksize = 16; xsize = 17; ysize = 7
    lcolor = '#0000ff'; lwidth = 1.0; fcolor = '#ffff00'; falpha = 0.2

# log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPBINARY -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'datacol='+datacol+' '
    call += 'm1='+str(m1)+' '
    call += 'm2='+str(m2)+' '
    call += 'r1='+str(r1)+' '
    call += 'r2='+str(r2)+' '
    call += 'period='+str(period)+' '
    call += 'bjd0='+str(bjd0)+' '
    call += 'eccn='+str(eccn)+' '
    call += 'omega='+str(omega)+' '
    call += 'inclination='+str(inclination)+' '
    call += 'c1='+str(c1)+' '
    call += 'c2='+str(c2)+' '
    call += 'c3='+str(c3)+' '
    call += 'c4='+str(c4)+' '
    call += 'albedo='+str(albedo)+' '
    call += 'depth='+str(depth)+' '
    call += 'contamination='+str(contamination)+' '
    call += 'gamma='+str(gamma)+' '
    call += 'fitparams='+str(fitparams)+' '
    eclp = 'n'
    if (eclipses): eclp = 'y'
    call += 'eclipses='+eclp+ ' '
    boost = 'n'
    if (dopboost): boost = 'y'
    call += 'dopboost='+boost+ ' '
    distort = 'n'
    if (tides): distort = 'y'
    call += 'tides='+distort+ ' '
    call += 'job='+str(job)+ ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

# start time

    kepmsg.clock('KEPBINARY started at',logfile,verbose)

# test log file

    logfile = kepmsg.test(logfile)

# check and format the list of fit parameters

    if status == 0 and job == 'fit':
        allParams = [m1,m2,r1,r2,period,bjd0,eccn,omega,inclination]
        allNames = ['m1','m2','r1','r2','period','bjd0','eccn','omega','inclination']
        fitparams = re.sub('\|',',',fitparams.strip())
        fitparams = re.sub('\.',',',fitparams.strip())
        fitparams = re.sub(';',',',fitparams.strip())
        fitparams = re.sub(':',',',fitparams.strip())
        fitparams = re.sub('\s+',',',fitparams.strip())
        fitparams, status = kepio.parselist(fitparams,logfile,verbose)
        for fitparam in fitparams:
            if fitparam.strip() not in allNames:
                message = 'ERROR -- KEPBINARY: unknown field in list of fit parameters'
                status = kepmsg.err(logfile,message,verbose)

# clobber output file

    if status == 0:
        if clobber: status = kepio.clobber(outfile,logfile,verbose)
        if kepio.fileexists(outfile): 
            message = 'ERROR -- KEPBINARY: ' + outfile + ' exists. Use --clobber'
            status = kepmsg.err(logfile,message,verbose)

# open input file

    if status == 0:
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

# check the data column exists

    if status == 0:
        try:
            instr[1].data.field(datacol)
        except:
            message = 'ERROR -- KEPBINARY: ' + datacol + ' column does not exist in ' + infile + '[1]'
            status = kepmsg.err(logfile,message,verbose)

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

# read table structure

    if status == 0:
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)

# filter input data table

    if status == 0:
        try:
            nanclean = instr[1].header['NANCLEAN']
        except:
            naxis2 = 0
            try:
                for i in range(len(table.field(0))):
                    if numpy.isfinite(table.field('barytime')[i]) and \
                            numpy.isfinite(table.field(datacol)[i]):
                        table[naxis2] = table[i]
                        naxis2 += 1
                        instr[1].data = table[:naxis2]
            except:
                for i in range(len(table.field(0))):
                    if numpy.isfinite(table.field('time')[i]) and \
                            numpy.isfinite(table.field(datacol)[i]):
                        table[naxis2] = table[i]
                        naxis2 += 1
                        instr[1].data = table[:naxis2]
            comment = 'NaN cadences removed from data'
            status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose)
 
# read table columns

    if status == 0:
	try:
            time = instr[1].data.field('barytime')
	except:
            time, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose)
	indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose)
    if status == 0:
        time = time + bjdref
        indata = indata / cadenom

# limb-darkening cofficients

    if status == 0:
        limbdark = numpy.array([c1,c2,c3,c4],dtype='float32')

# time details for model

    if status == 0:
        npt = len(time)
        exptime = numpy.zeros((npt),dtype='float64')
        dtype = numpy.zeros((npt),dtype='int')
        for i in range(npt):
            try:
                exptime[i] = time[i+1] - time[i]
            except:
                exptime[i] = time[i] - time[i-1]

# calculate binary model

    if status == 0:
        tmodel = kepsim.transitModel(1.0,m1,m2,r1,r2,period,inclination,bjd0,eccn,omega,depth,
                                     albedo,c1,c2,c3,c4,gamma,contamination,npt,time,exptime,
                                     dtype,eclipses,dopboost,tides)

# re-normalize binary model to data

    if status == 0 and (job == 'overlay' or job == 'fit'):
        dmedian = numpy.median(indata)
        tmodel = tmodel / numpy.median(tmodel) * dmedian

# define arrays of floating and frozen parameters

    if status == 0 and job =='fit':
        params = []; paramNames = []; arguments = []; argNames = []
        for i in range(len(allNames)):
            if allNames[i] in fitparams:
                params.append(allParams[i])
                paramNames.append(allNames[i])
            else:
                arguments.append(allParams[i])
                argNames.append(allNames[i])
        params.append(dmedian)
        params = numpy.array(params,dtype='float32')

# subtract model from data

    if status == 0 and job == 'fit':
        deltam = numpy.abs(indata - tmodel)

# fit statistics

    if status == 0 and job == 'fit':
        aveDelta = numpy.sum(deltam) / npt
        chi2 = math.sqrt(numpy.sum((indata - tmodel) * (indata - tmodel) / (npt - len(params))))

# fit model to data using downhill simplex

    if status == 0 and job == 'fit':
        print ''
        print '%4s %11s %11s' % ('iter', 'delta', 'chi^2')
        print '----------------------------'
        print '%4d %.5E %.5E' % (0,aveDelta,chi2)
        bestFit = scipy.optimize.fmin(fitModel,params,args=(paramNames,dmedian,m1,m2,r1,r2,period,bjd0,eccn,
                                                            omega,inclination,depth,albedo,c1,c2,c3,c4,
                                                            gamma,contamination,npt,time,exptime,indata,
                                                            dtype,eclipses,dopboost,tides),maxiter=1e4)

# calculate best fit binary model

    if status == 0 and job == 'fit':
        print ''
        for i in range(len(paramNames)):
            if 'm1' in paramNames[i].lower():
                m1 = bestFit[i]
                print '  M1 = %.3f Msun' % bestFit[i]
            elif 'm2' in paramNames[i].lower():
                m2 = bestFit[i]
                print '  M2 = %.3f Msun' % bestFit[i]
            elif 'r1' in paramNames[i].lower():
                r1 = bestFit[i]
                print '  R1 = %.4f Rsun' % bestFit[i]
            elif 'r2' in paramNames[i].lower():
                r2 = bestFit[i]
                print '  R2 = %.4f Rsun' % bestFit[i]
            elif 'period' in paramNames[i].lower():
                period = bestFit[i]
            elif 'bjd0' in paramNames[i].lower():
                bjd0 = bestFit[i]
                print 'BJD0 = %.8f' % bestFit[i]
            elif 'eccn' in paramNames[i].lower():
                eccn = bestFit[i]
                print '   e = %.3f' % bestFit[i]
            elif 'omega' in paramNames[i].lower():
                omega = bestFit[i]
                print '   w = %.3f deg' % bestFit[i]
            elif 'inclination' in paramNames[i].lower():
                inclination = bestFit[i]
                print '   i = %.3f deg' % bestFit[i]
        flux = bestFit[-1]
        print ''
        tmodel = kepsim.transitModel(flux,m1,m2,r1,r2,period,inclination,bjd0,eccn,omega,depth,
                                     albedo,c1,c2,c3,c4,gamma,contamination,npt,time,exptime,
                                     dtype,eclipses,dopboost,tides)

# subtract model from data

    if status == 0:
        deltaMod = indata - tmodel

# standard deviation of model

    if status == 0:
        stdDev = math.sqrt(numpy.sum((indata - tmodel) * (indata - tmodel)) / npt)

# clean up x-axis unit

    if status == 0:
	time0 = float(int(tstart / 100) * 100.0)
	ptime = time - time0
	xlab = 'BJD $-$ %d' % time0

# clean up y-axis units

    if status == 0:
	nrm = len(str(int(indata.max())))-1
	pout = indata / 10**nrm
	pmod = tmodel / 10**nrm
        pres = deltaMod / stdDev
        if job == 'fit' or job == 'overlay':
            try:
                ylab1 = 'Flux (10$^%d$ e$^-$ s$^{-1}$)' % nrm
                ylab2 = 'Residual ($\sigma$)'
            except:
                ylab1 = 'Flux (10**%d e-/s)' % nrm
                ylab2 = 'Residual (sigma)'
        else:
            ylab1 = 'Normalized Flux'

# dynamic range of model plot

    if status == 0 and job == 'model':
        xmin = ptime.min()
        xmax = ptime.max()
        ymin = tmodel.min()
        ymax = tmodel.max()

# dynamic range of model/data overlay or fit

    if status == 0 and (job == 'overlay' or job == 'fit'):
        xmin = ptime.min()
        xmax = ptime.max()
        ymin = pout.min()
        ymax = pout.max()
        tmin = pmod.min()
        tmax = pmod.max()
        ymin = numpy.array([ymin,tmin]).min()
        ymax = numpy.array([ymax,tmax]).max()
        rmin = pres.min()
        rmax = pres.max()
 
# pad the dynamic range

    if status == 0:
        xr = (xmax - xmin) / 80
        yr = (ymax - ymin) / 40
        if job == 'overlay' or job == 'fit':
            rr = (rmax - rmin) / 40

# set up plot style

    if status == 0:
        labelsize = 24; ticksize = 16; xsize = 17; ysize = 7
        lcolor = '#0000ff'; lwidth = 1.0; fcolor = '#ffff00'; falpha = 0.2
        params = {'backend': 'png',
                  'axes.linewidth': 2.5,
                  'axes.labelsize': 24,
                  'axes.font': 'sans-serif',
                  'axes.fontweight' : 'bold',
                  'text.fontsize': 12,
                  'legend.fontsize': 12,
                  'xtick.labelsize': 16,
                  'ytick.labelsize': 16}
        pylab.rcParams.update(params)
        pylab.figure(figsize=[14,10])
        pylab.clf()

# main plot window

        ax = pylab.axes([0.05,0.3,0.94,0.68])
        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90, fontsize=12)

# plot model time series 

    if status == 0 and job == 'model':
        pylab.plot(ptime,tmodel,color='#0000ff',linestyle='-',linewidth=1.0)
        ptime = numpy.insert(ptime,[0.0],ptime[0])
        ptime = numpy.append(ptime,ptime[-1])
        tmodel = numpy.insert(tmodel,[0.0],0.0)
        tmodel = numpy.append(tmodel,0.0)
        pylab.fill(ptime,tmodel,fc='#ffff00',linewidth=0.0,alpha=0.2)

# plot data time series and best fit

    if status == 0 and (job == 'overlay' or job == 'fit'):
        pylab.plot(ptime,pout,color='#0000ff',linestyle='-',linewidth=1.0)
        ptime = numpy.insert(ptime,[0.0],ptime[0])
        ptime = numpy.append(ptime,ptime[-1])
        pout = numpy.insert(pout,[0],0.0)
        pout = numpy.append(pout,0.0)
        pylab.fill(ptime,pout,fc='#ffff00',linewidth=0.0,alpha=0.2)
        pylab.plot(ptime[1:-1],pmod,color='r',linestyle='-',linewidth=2.0)

# ranges and labels

    if status == 0:
        pylab.xlim(xmin-xr,xmax+xr)
        pylab.ylim(ymin-yr,ymax+yr)
        pylab.xlabel(xlab, {'color' : 'k'})
        pylab.ylabel(ylab1, {'color' : 'k'})

# residual plot window

    if status == 0 and (job == 'overlay' or job == 'fit'):
        ax = pylab.axes([0.05,0.07,0.94,0.23])
        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90, fontsize=12)

# plot residual time series 

    if status == 0 and (job == 'overlay' or job == 'fit'):
        pylab.plot([ptime[0],ptime[-1]],[0.0,0.0],color='r',linestyle='--',linewidth=1.0)
        pylab.plot([ptime[0],ptime[-1]],[-1.0,-1.0],color='r',linestyle='--',linewidth=1.0)
        pylab.plot([ptime[0],ptime[-1]],[1.0,1.0],color='r',linestyle='--',linewidth=1.0)
        pylab.plot(ptime[1:-1],pres,color='#0000ff',linestyle='-',linewidth=1.0)
        pres = numpy.insert(pres,[0],rmin)
        pres = numpy.append(pres,rmin)
        pylab.fill(ptime,pres,fc='#ffff00',linewidth=0.0,alpha=0.2)

# ranges and labels of residual time series

    if status == 0 and (job == 'overlay' or job == 'fit'):
        pylab.xlim(xmin-xr,xmax+xr)
        pylab.ylim(rmin-rr,rmax+rr)
        pylab.xlabel(xlab, {'color' : 'k'})
        pylab.ylabel(ylab2, {'color' : 'k'})

# display the plot

    if status == 0:
        pylab.draw()
Esempio n. 16
0
def kepoutlier(infile,outfile,datacol,nsig,stepsize,npoly,niter,
               operation,ranges,plot,plotfit,clobber,verbose,logfile,status, cmdLine=False): 

# startup parameters

    status = 0
    labelsize = 24
    ticksize = 16
    xsize = 16
    ysize = 6
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#ffff00'
    falpha = 0.2

# log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPOUTLIER -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'datacol='+str(datacol)+' '
    call += 'nsig='+str(nsig)+' '
    call += 'stepsize='+str(stepsize)+' '
    call += 'npoly='+str(npoly)+' '
    call += 'niter='+str(niter)+' '
    call += 'operation='+str(operation)+' '
    call += 'ranges='+str(ranges)+' '
    plotit = 'n'
    if (plot): plotit = 'y'
    call += 'plot='+plotit+ ' '
    plotf = 'n'
    if (plotfit): plotf = 'y'
    call += 'plotfit='+plotf+ ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

# start time

    kepmsg.clock('KEPOUTLIER started at',logfile,verbose)

# test log file

    logfile = kepmsg.test(logfile)

# clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
	    message = 'ERROR -- KEPOUTLIER: ' + outfile + ' exists. Use clobber=yes'
	    status = kepmsg.err(logfile,message,verbose)

# open input file

    if status == 0:
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

# read table structure

    if status == 0:
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)

# filter input data table

    if status == 0:
        try:
            nanclean = instr[1].header['NANCLEAN']
        except:
            naxis2 = 0
            try:
                for i in range(len(table.field(0))):
                    if numpy.isfinite(table.field('barytime')[i]) and \
                            numpy.isfinite(table.field(datacol)[i]):
                        table[naxis2] = table[i]
                        naxis2 += 1
                        instr[1].data = table[:naxis2]
            except:
                for i in range(len(table.field(0))):
                    if numpy.isfinite(table.field('time')[i]) and \
                            numpy.isfinite(table.field(datacol)[i]):
                        table[naxis2] = table[i]
                        naxis2 += 1
                        instr[1].data = table[:naxis2]
            comment = 'NaN cadences removed from data'
            status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose)
 
# read table columns

    if status == 0:
	try:
            intime = instr[1].data.field('barytime') + 2.4e6
	except:
            intime, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose)
	indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose)
    if status == 0:
        intime = intime + bjdref
        indata = indata / cadenom

# time ranges for region to be corrected

    if status == 0:
        t1, t2, status = kepio.timeranges(ranges,logfile,verbose)
        cadencelis, status = kepstat.filterOnRange(intime,t1,t2)

# find limits of each time step

    if status == 0:
        tstep1 = []; tstep2 = []
        work = intime[0]
        while work < intime[-1]:
            tstep1.append(work)
            tstep2.append(array([work+stepsize,intime[-1]],dtype='float64').min())
            work += stepsize

# find cadence limits of each time step

    if status == 0:
        cstep1 = []; cstep2 = []
        work1 = 0; work2 = 0
        for i in range(len(intime)):
            if intime[i] >= intime[work1] and intime[i] < intime[work1] + stepsize:
                work2 = i
            else:
                cstep1.append(work1)
                cstep2.append(work2)
                work1 = i; work2 = i
        cstep1.append(work1)
        cstep2.append(work2)

        outdata = indata * 1.0

# comment keyword in output file

    if status == 0:
        status = kepkey.history(call,instr[0],outfile,logfile,verbose)

# clean up x-axis unit

    if status == 0:
	intime0 = float(int(tstart / 100) * 100.0)
	ptime = intime - intime0
	xlab = 'BJD $-$ %d' % intime0

# clean up y-axis units

    if status == 0:
        pout = indata * 1.0
	nrm = len(str(int(pout.max())))-1
	pout = pout / 10**nrm
	ylab = '10$^%d$ e$^-$ s$^{-1}$' % nrm

# data limits

	xmin = ptime.min()
	xmax = ptime.max()
	ymin = pout.min()
	ymax = pout.max()
	xr = xmax - xmin
	yr = ymax - ymin
        ptime = insert(ptime,[0],[ptime[0]]) 
        ptime = append(ptime,[ptime[-1]])
        pout = insert(pout,[0],[0.0]) 
        pout = append(pout,0.0)

# plot light curve

    if status == 0 and plot:
        plotLatex = True
        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': labelsize,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 12,
                      'legend.fontsize': 12,
                      'xtick.labelsize': ticksize,
                      'ytick.labelsize': ticksize}
            rcParams.update(params)
        except:
            plotLatex = False
    if status == 0 and plot:
        pylab.figure(figsize=[xsize,ysize])
        pylab.clf()

# plot data

        ax = pylab.axes([0.06,0.1,0.93,0.87])

# force tick labels to be absolute rather than relative

        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))

# rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90, fontsize=12)

        pylab.plot(ptime,pout,color=lcolor,linestyle='-',linewidth=lwidth)
        fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha)
	xlabel(xlab, {'color' : 'k'})
        if not plotLatex:
            ylab = '10**%d electrons/sec' % nrm
        ylabel(ylab, {'color' : 'k'})
        grid()

# loop over each time step, fit data, determine rms

    if status == 0:
        masterfit = indata * 0.0
        mastersigma = zeros(len(masterfit))
        functype = 'poly' + str(npoly)
        for i in range(len(cstep1)):
            pinit = [indata[cstep1[i]:cstep2[i]+1].mean()]
            if npoly > 0:
                for j in range(npoly):
                    pinit.append(0.0)
            pinit = array(pinit,dtype='float32')
            try:
                coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \
                    kepfit.lsqclip(functype,pinit,intime[cstep1[i]:cstep2[i]+1]-intime[cstep1[i]],
                                   indata[cstep1[i]:cstep2[i]+1],None,nsig,nsig,niter,logfile,
                                   verbose)
                for j in range(len(coeffs)):
                    masterfit[cstep1[i]:cstep2[i]+1] += coeffs[j] * \
                        (intime[cstep1[i]:cstep2[i]+1] - intime[cstep1[i]])**j
                for j in range(cstep1[i],cstep2[i]+1):
                    mastersigma[j] = sigma
                if plotfit:
                    pylab.plot(plotx+intime[cstep1[i]]-intime0,ploty / 10**nrm,
                               'g',lw='3')
            except:
                for j in range(cstep1[i],cstep2[i]+1):
                    masterfit[j] = indata[j]
                    mastersigma[j] = 1.0e10               
                message  = 'WARNING -- KEPOUTLIER: could not fit range '
                message += str(intime[cstep1[i]]) + '-' + str(intime[cstep2[i]])
                kepmsg.warn(None,message)

# reject outliers

    if status == 0:
        rejtime = []; rejdata = []; naxis2 = 0
        for i in range(len(masterfit)):
            if abs(indata[i] - masterfit[i]) > nsig * mastersigma[i] and i in cadencelis:
                rejtime.append(intime[i])
                rejdata.append(indata[i])
                if operation == 'replace':
                    [rnd] = kepstat.randarray([masterfit[i]],[mastersigma[i]])
                    table[naxis2] = table[i]
                    table.field(datacol)[naxis2] = rnd
                    naxis2 += 1
            else:
                table[naxis2] = table[i]
                naxis2 += 1
        instr[1].data = table[:naxis2]
        rejtime = array(rejtime,dtype='float64')
        rejdata = array(rejdata,dtype='float32')
        pylab.plot(rejtime-intime0,rejdata / 10**nrm,'ro')

# plot ranges

        xlim(xmin-xr*0.01,xmax+xr*0.01)
        if ymin >= 0.0: 
            ylim(ymin-yr*0.01,ymax+yr*0.01)
        else:
            ylim(1.0e-10,ymax+yr*0.01)

# render plot

        if cmdLine: 
            pylab.show()
        else: 
            pylab.ion()
            pylab.plot([])
            pylab.ioff()
	
# write output file

    if status == 0:
        instr.writeto(outfile)
    
# close input file

    if status == 0:
        status = kepio.closefits(instr,logfile,verbose)	    

# end time

    if (status == 0):
	    message = 'KEPOUTLIER completed at'
    else:
	    message = '\nKEPOUTLIER aborted at'
    kepmsg.clock(message,logfile,verbose)
Esempio n. 17
0
def kepfilter(infile,outfile,datacol,function,cutoff,passband,plot,plotlab,
              clobber,verbose,logfile,status,cmdLine=False): 

## startup parameters

    status = 0
    numpy.seterr(all="ignore") 
    labelsize = 24
    ticksize = 16
    xsize = 16
    ysize = 6
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#ffff00'
    falpha = 0.2

## log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPFILTER -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'datacol='+str(datacol)+' '
    call += 'function='+str(function)+' '
    call += 'cutoff='+str(cutoff)+' '
    call += 'passband='+str(passband)+' '
    plotit = 'n'
    if (plot): plotit = 'y'
    call += 'plot='+plotit+ ' '
    call += 'plotlab='+str(plotlab)+' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

## start time

    kepmsg.clock('KEPFILTER started at',logfile,verbose)

## test log file

    logfile = kepmsg.test(logfile)

## clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
	    message = 'ERROR -- KEPFILTER: ' + outfile + ' exists. Use clobber=yes'
	    status = kepmsg.err(logfile,message,verbose)

## open input file

    if status == 0:
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

## fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

## read table structure

    if status == 0:
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)

# read time and flux columns

    if status == 0:
        barytime, status = kepio.readtimecol(infile,table,logfile,verbose)
        flux, status = kepio.readsapcol(infile,table,logfile,verbose)

# filter input data table

    if status == 0:
        try:
            nanclean = instr[1].header['NANCLEAN']
        except:
            naxis2 = 0
            for i in range(len(table.field(0))):
                if (numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i]) and flux[i] != 0.0):
                    table[naxis2] = table[i]
                    naxis2 += 1
            instr[1].data = table[:naxis2]
            comment = 'NaN cadences removed from data'
            status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose)

## read table columns

    if status == 0:
        intime, status = kepio.readtimecol(infile,instr[1].data,logfile,verbose)
    if status == 0:
	indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose)
    if status == 0:
        intime = intime + bjdref
        indata = indata / cadenom

## define data sampling

    if status == 0:
        tr = 1.0 / (cadence / 86400)
        timescale = 1.0 / (cutoff / tr)

## define convolution function

    if status == 0:
        if function == 'boxcar':
            filtfunc = numpy.ones(numpy.ceil(timescale))
        elif function == 'gauss':
            timescale /= 2
            dx = numpy.ceil(timescale * 10 + 1)
            filtfunc = kepfunc.gauss()
            filtfunc = filtfunc([1.0,dx/2-1.0,timescale],linspace(0,dx-1,dx))
        elif function == 'sinc':
            dx = numpy.ceil(timescale * 12 + 1)
            fx = linspace(0,dx-1,dx)
            fx = fx - dx / 2 + 0.5
            fx /= timescale
            filtfunc = numpy.sinc(fx)
        filtfunc /= numpy.sum(filtfunc)

## pad time series at both ends with noise model

    if status == 0:
        ave, sigma  = kepstat.stdev(indata[:len(filtfunc)])
        padded = append(kepstat.randarray(np.ones(len(filtfunc)) * ave,
                                          np.ones(len(filtfunc)) * sigma), indata)
        ave, sigma  = kepstat.stdev(indata[-len(filtfunc):])
        padded = append(padded, kepstat.randarray(np.ones(len(filtfunc)) * ave,
                                                  np.ones(len(filtfunc)) * sigma))

## convolve data

    if status == 0:
        convolved = convolve(padded,filtfunc,'same')

## remove padding from the output array

    if status == 0:
        if function == 'boxcar':
            outdata = convolved[len(filtfunc):-len(filtfunc)]
        else:
            outdata = convolved[len(filtfunc):-len(filtfunc)]
            

## subtract low frequencies

    if status == 0 and passband == 'high':
        outmedian = median(outdata)
        outdata = indata - outdata + outmedian

## comment keyword in output file

    if status == 0:
        status = kepkey.history(call,instr[0],outfile,logfile,verbose)

## clean up x-axis unit

    if status == 0:
	intime0 = float(int(tstart / 100) * 100.0)
        if intime0 < 2.4e6: intime0 += 2.4e6
	ptime = intime - intime0
	xlab = 'BJD $-$ %d' % intime0

## clean up y-axis units

    if status == 0:
        pout = indata * 1.0
        pout2 = outdata * 1.0
	nrm = len(str(int(numpy.nanmax(pout))))-1
	pout = pout / 10**nrm
	pout2 = pout2 / 10**nrm
	ylab = '10$^%d$ %s' % (nrm, plotlab)

## data limits

	xmin = ptime.min()
	xmax = ptime.max()
	ymin = numpy.nanmin(pout)
	ymax = numpy.nanmax(pout)
	xr = xmax - xmin
	yr = ymax - ymin
        ptime = insert(ptime,[0],[ptime[0]]) 
        ptime = append(ptime,[ptime[-1]])
        pout = insert(pout,[0],[0.0]) 
        pout = append(pout,0.0)
        pout2 = insert(pout2,[0],[0.0]) 
        pout2 = append(pout2,0.0)

## plot light curve

    if status == 0 and plot:
        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': labelsize,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 12,
                      'legend.fontsize': 12,
                      'xtick.labelsize': ticksize,
                      'ytick.labelsize': ticksize}
            rcParams.update(params)
        except:
            print 'ERROR -- KEPFILTER: install latex for scientific plotting'
            status = 1
    if status == 0 and plot:
        pylab.figure(figsize=[xsize,ysize])
        pylab.clf()

## plot filtered data

        ax = pylab.axes([0.06,0.1,0.93,0.87])
        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90, fontsize=12)
        pylab.plot(ptime,pout,color='#ff9900',linestyle='-',linewidth=lwidth)
        fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha)
        if passband == 'low':
            pylab.plot(ptime[1:-1],pout2[1:-1],color=lcolor,linestyle='-',linewidth=lwidth)
        else:
            pylab.plot(ptime,pout2,color=lcolor,linestyle='-',linewidth=lwidth)
            fill(ptime,pout2,color=lcolor,linewidth=0.0,alpha=falpha)
	xlabel(xlab, {'color' : 'k'})
	ylabel(ylab, {'color' : 'k'})
	xlim(xmin-xr*0.01,xmax+xr*0.01)
        if ymin >= 0.0: 
            ylim(ymin-yr*0.01,ymax+yr*0.01)
        else:
            ylim(1.0e-10,ymax+yr*0.01)
        pylab.grid()
        
# render plot

        if cmdLine: 
            pylab.show()
        else: 
            pylab.ion()
            pylab.plot([])
            pylab.ioff()
	
## write output file

    if status == 0:
        for i in range(len(outdata)):
            instr[1].data.field(datacol)[i] = outdata[i]
        instr.writeto(outfile)
    
## close input file

    if status == 0:
        status = kepio.closefits(instr,logfile,verbose)	    

## end time

    if (status == 0):
	    message = 'KEPFILTER completed at'
    else:
	    message = '\nKEPFILTER aborted at'
    kepmsg.clock(message,logfile,verbose)
Esempio n. 18
0
def kepsmooth(infile,outfile,datacol,function,fscale,plot,plotlab,
              clobber,verbose,logfile,status, cmdLine=False): 

## startup parameters

    status = 0
    labelsize = 24
    ticksize = 16
    xsize = 18
    ysize = 6
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#ffff00'
    falpha = 0.2

## log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPSMOOTH -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'datacol='+str(datacol)+' '
    call += 'function='+str(function)+' '
    call += 'fscale='+str(fscale)+' '
    plotit = 'n'
    if (plot): plotit = 'y'
    call += 'plot='+plotit+ ' '
    call += 'plotlab='+str(plotlab)+' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

## start time

    kepmsg.clock('KEPSMOOTH started at',logfile,verbose)

## test log file

    logfile = kepmsg.test(logfile)

## clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
	    message = 'ERROR -- KEPSMOOTH: ' + outfile + ' exists. Use clobber=yes'
	    status = kepmsg.err(logfile,message,verbose)

## open input file

    if status == 0:
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)
        if cadence == 0.0: 
            tstart, tstop, ncad, cadence, status = kepio.cadence(instr,infile,logfile,verbose,status) 
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

## fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

## read table structure

    if status == 0:
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)

# read time and flux columns

    if status == 0:
        barytime, status = kepio.readtimecol(infile,table,logfile,verbose)
    if status == 0:
        flux, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose)

# filter input data table

    if status == 0:
        try:
            nanclean = instr[1].header['NANCLEAN']
        except:
            naxis2 = 0
            for i in range(len(table.field(0))):
                if (numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i]) and flux[i] != 0.0):
                    table[naxis2] = table[i]
                    naxis2 += 1
            instr[1].data = table[:naxis2]
            comment = 'NaN cadences removed from data'
            status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose)

## read table columns

    if status == 0:
	try:
            intime = instr[1].data.field('barytime')
	except:
            intime, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose)
	indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose)
    if status == 0:
        intime = intime + bjdref
        indata = indata / cadenom

## smooth data

    if status == 0:
        outdata = kepfunc.smooth(indata,fscale/(cadence/86400),function)

## comment keyword in output file

    if status == 0:
        status = kepkey.history(call,instr[0],outfile,logfile,verbose)

## clean up x-axis unit

    if status == 0:
	intime0 = float(int(tstart / 100) * 100.0)
        if intime0 < 2.4e6: intime0 += 2.4e6
	ptime = intime - intime0
	xlab = 'BJD $-$ %d' % intime0

## clean up y-axis units

    if status == 0:
        pout = indata * 1.0
        pout2 = outdata * 1.0 
	nrm = len(str(int(numpy.nanmax(pout))))-1
	pout = pout / 10**nrm
	pout2 = pout2 / 10**nrm
	ylab = '10$^%d$ %s' % (nrm, re.sub('_','-',plotlab))

## data limits

	xmin = numpy.nanmin(ptime)
	xmax = numpy.nanmax(ptime)
	ymin = numpy.min(pout)
	ymax = numpy.nanmax(pout)
	xr = xmax - xmin
	yr = ymax - ymin
        ptime = insert(ptime,[0],[ptime[0]]) 
        ptime = append(ptime,[ptime[-1]])
        pout = insert(pout,[0],[0.0]) 
        pout = append(pout,0.0)
        pout2 = insert(pout2,[0],[0.0]) 
        pout2 = append(pout2,0.0)

## plot light curve

    if status == 0 and plot:
        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': labelsize,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 12,
                      'legend.fontsize': 12,
                      'xtick.labelsize': ticksize,
                      'ytick.labelsize': ticksize}
            rcParams.update(params)
        except:
            print('ERROR -- KEPSMOOTH: install latex for scientific plotting')
            status = 1
    if status == 0 and plot:
        pylab.figure(1,figsize=[xsize,ysize])

# delete any fossil plots in the matplotlib window

        pylab.clf()

# position axes inside the plotting window

	ax = pylab.subplot(111)
	pylab.subplots_adjust(0.06,0.1,0.93,0.88)

# force tick labels to be absolute rather than relative

        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))

# rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90)

        pylab.plot(ptime[1:-1],pout[1:-1],color='#ff9900',linestyle='-',linewidth=lwidth)
        fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha)
        pylab.plot(ptime,pout2,color=lcolor,linestyle='-',linewidth=lwidth*4.0)
	pylab.xlabel(xlab, {'color' : 'k'})
	pylab.ylabel(ylab, {'color' : 'k'})
	xlim(xmin-xr*0.01,xmax+xr*0.01)
        if ymin >= 0.0: 
            ylim(ymin-yr*0.01,ymax+yr*0.01)
        else:
            ylim(1.0e-10,ymax+yr*0.01)
        pylab.grid()

# render plot

    if cmdLine: 
        pylab.show()
    else: 
        pylab.ion()
        pylab.plot([])
        pylab.ioff()
	
## write output file

    if status == 0:
        for i in range(len(outdata)):
            instr[1].data.field(datacol)[i] = outdata[i]
        instr.writeto(outfile)
    
## close input file

    if status == 0:
        status = kepio.closefits(instr,logfile,verbose)	    

## end time

    if (status == 0):
	    message = 'KEPSMOOTH completed at'
    else:
	    message = '\nKEPSMOOTH aborted at'
    kepmsg.clock(message,logfile,verbose)
Esempio n. 19
0
def kepregr(infile, outfile, datacol, kmethod, kneighb, plot, plotlab, clobber,
            verbose, logfile, status):
    """
    Perform a k-nearest neighbor regression analysis.
    """

    ## startup parameters

    status = 0
    labelsize = 24
    ticksize = 16
    xsize = 16
    ysize = 6
    lcolor = '#47AE10'
    lwidth = 1.0
    fcolor = '#9AFF9A'
    falpha = 0.3

    ## log the call

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile, hashline, verbose)
    call = 'KEPREGR -- '
    call += 'infile=' + infile + ' '
    call += 'outfile=' + outfile + ' '
    call += 'datacol=' + str(datacol) + ' '
    call += 'kmethod=' + str(kmethod) + ' '
    call += 'kneighb=' + str(kneighb) + ' '
    plotit = 'n'
    if (plot): plotit = 'y'
    call += 'plot=' + plotit + ' '
    call += 'plotlab=' + str(plotlab) + ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber=' + overwrite + ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose=' + chatter + ' '
    call += 'logfile=' + logfile
    kepmsg.log(logfile, call + '\n', verbose)

    ## start time

    kepmsg.clock('KEPREGR started at', logfile, verbose)

    ## test log file

    logfile = kepmsg.test(logfile)

    ## clobber output file

    if clobber: status = kepio.clobber(outfile, logfile, verbose)
    if kepio.fileexists(outfile):
        message = 'ERROR -- KEPREGR: ' + outfile + ' exists. Use clobber=yes'
        status = kepmsg.err(logfile, message, verbose)

## open input file

    if status == 0:
        instr, status = kepio.openfits(infile, 'readonly', logfile, verbose)
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(
            instr, infile, logfile, verbose, status)
        if cadence == 0.0:
            tstart, tstop, ncad, cadence, status = kepio.cadence(
                instr, infile, logfile, verbose, status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

## fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr, file, logfile, verbose)

## read table structure

    if status == 0:
        table, status = kepio.readfitstab(infile, instr[1], logfile, verbose)

# read time and flux columns

    if status == 0:
        barytime, status = kepio.readtimecol(infile, table, logfile, verbose)
    if status == 0:
        flux, status = kepio.readfitscol(infile, instr[1].data, datacol,
                                         logfile, verbose)

# filter input data table

    if status == 0:
        try:
            nanclean = instr[1].header['NANCLEAN']
        except:
            naxis2 = 0
            for i in range(len(table.field(0))):
                if (numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i])
                        and flux[i] != 0.0):
                    table[naxis2] = table[i]
                    naxis2 += 1
            instr[1].data = table[:naxis2]
            comment = 'NaN cadences removed from data'
            status = kepkey.new('NANCLEAN', True, comment, instr[1], outfile,
                                logfile, verbose)

## read table columns

    if status == 0:
        try:
            intime = instr[1].data.field('barytime')
        except:
            intime, status = kepio.readfitscol(infile, instr[1].data, 'time',
                                               logfile, verbose)
        indata, status = kepio.readfitscol(infile, instr[1].data, datacol,
                                           logfile, verbose)
    if status == 0:
        intime = intime + bjdref
        indata = indata / cadenom

    if status == 0:
        outdata = knn_predict(intime, indata, kmethod, kneighb)

## comment keyword in output file

    if status == 0:
        status = kepkey.history(call, instr[0], outfile, logfile, verbose)

## clean up x-axis unit

    if status == 0:
        intime0 = float(int(tstart / 100) * 100.0)
        if intime0 < 2.4e6: intime0 += 2.4e6
        ptime = intime - intime0
        # print ptime,intime,intime0
        xlab = 'BJD $-$ %d' % intime0

## clean up y-axis units

    if status == 0:
        pout = indata * 1.0
        pout2 = outdata * 1.0
        nrm = len(str(int(numpy.nanmax(pout)))) - 1
        pout = pout / 10**nrm
        pout2 = pout2 / 10**nrm
        ylab = '10$^%d$ %s' % (nrm, plotlab)

        ## data limits

        xmin = numpy.nanmin(ptime)
        xmax = numpy.nanmax(ptime)
        ymin = numpy.min(pout)
        ymax = numpy.nanmax(pout)
        xr = xmax - xmin
        yr = ymax - ymin
        ptime = insert(ptime, [0], [ptime[0]])
        ptime = append(ptime, [ptime[-1]])
        pout = insert(pout, [0], [0.0])
        pout = append(pout, 0.0)
        pout2 = insert(pout2, [0], [0.0])
        pout2 = append(pout2, 0.0)

## plot light curve

    if status == 0 and plot:
        try:
            params = {
                'backend': 'png',
                'axes.linewidth': 2.5,
                'axes.labelsize': labelsize,
                'axes.font': 'sans-serif',
                'axes.fontweight': 'bold',
                'text.fontsize': 12,
                'legend.fontsize': 12,
                'xtick.labelsize': ticksize,
                'ytick.labelsize': ticksize
            }
            rcParams.update(params)
        except:
            print('ERROR -- KEPREGR: install latex for scientific plotting')
            status = 1
    if status == 0 and plot:
        pylab.figure(1, figsize=[xsize, ysize])

        ## plot regression data

        ax = pylab.axes([0.06, 0.1, 0.93, 0.87])
        pylab.gca().xaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))
        # pylab.plot(ptime,pout,color='#ff9900',linestyle='-',linewidth=lwidth)
        pylab.scatter(ptime, pout, color='#214CAE', s=5)
        fill(ptime, pout, color=fcolor, linewidth=0.0, alpha=falpha)
        pylab.plot(ptime[kneighb:-kneighb],
                   pout2[kneighb:-kneighb],
                   color=lcolor,
                   linestyle='-',
                   linewidth=lwidth * 2.0)
        xlabel(xlab, {'color': 'k'})
        ylabel(ylab, {'color': 'k'})
        xlim(xmin - xr * 0.01, xmax + xr * 0.01)
        if ymin >= 0.0:
            ylim(ymin - yr * 0.01, ymax + yr * 0.01)
        else:
            ylim(1.0e-10, ymax + yr * 0.01)
        pylab.grid()
        pylab.draw()
        pylab.savefig(re.sub('\.\S+', '.png', outfile), dpi=100)

## write output file

    if status == 0:
        for i in range(len(outdata)):
            instr[1].data.field(datacol)[i] = outdata[i]
        instr.writeto(outfile)

## close input file

    if status == 0:
        status = kepio.closefits(instr, logfile, verbose)

## end time

    if (status == 0):
        message = 'KEPREGR completed at'
    else:
        message = '\nKEPREGR aborted at'
    kepmsg.clock(message, logfile, verbose)
Esempio n. 20
0
def keptransitmodel(inputfile,
                    datacol,
                    errorcol,
                    period_d,
                    rprs,
                    T0,
                    Ecc,
                    ars,
                    inc,
                    omega,
                    LDparams,
                    sec,
                    norm=False,
                    verbose=0,
                    logfile='logfile.dat',
                    status=0,
                    cmdLine=False):

    #write to a logfile
    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile, hashline, verbose)
    call = 'KEPTRANSIT -- '
    call += 'inputfile=' + inputfile + ' '
    call += 'datacol=' + str(datacol) + ' '
    call += 'errorcol=' + str(errorcol) + ' '
    call += 'period_d=' + str(period_d) + ' '
    call += 'rprs=' + str(rprs) + ' '
    call += 'T0=' + str(T0) + ' '
    call += 'Ecc=' + str(Ecc) + ' '
    call += 'ars=' + str(ars) + ' '
    call += 'inc=' + str(inc) + ' '
    call += 'omega=' + str(omega) + ' '
    call += 'LDparams=' + str(LDparams) + ' '
    call += 'sec=' + str(sec) + ' '
    #to finish

    # open input file

    if status == 0:
        instr, status = kepio.openfits(inputfile, 'readonly', logfile, verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(
            instr, inputfile, logfile, verbose, status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

    # fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr, file, logfile, verbose)

# read table structure

    if status == 0:
        table, status = kepio.readfitstab(inputfile, instr[1], logfile,
                                          verbose)

# filter input data table

    if status == 0:
        try:
            nanclean = instr[1].header['NANCLEAN']
        except:
            naxis2 = 0
            try:
                for i in range(len(table.field(0))):
                    if np.isfinite(table.field('barytime')[i]) and \
                            np.isfinite(table.field(datacol)[i]):
                        table[naxis2] = table[i]
                        naxis2 += 1
                        instr[1].data = table[:naxis2]
            except:
                for i in range(len(table.field(0))):
                    if np.isfinite(table.field('time')[i]) and \
                            np.isfinite(table.field(datacol)[i]):
                        table[naxis2] = table[i]
                        naxis2 += 1
                        instr[1].data = table[:naxis2]


#            comment = 'NaN cadences removed from data'
#            status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose)

# read table columns

    if status == 0:
        try:
            intime = instr[1].data.field('barytime') + 2.4e6
        except:
            intime, status = kepio.readfitscol(inputfile, instr[1].data,
                                               'time', logfile, verbose)

        indata, status = kepio.readfitscol(inputfile, instr[1].data, datacol,
                                           logfile, verbose)
        inerr, status = kepio.readfitscol(inputfile, instr[1].data, errorcol,
                                          logfile, verbose)
    if status == 0:
        intime = intime + bjdref
        indata = indata / cadenom
        inerr = inerr / cadenom

    if status == 0 and norm:
        #first remove outliers before normalizing
        threesig = 3. * np.std(indata)
        mask = np.logical_and(indata < indata + threesig,
                              indata > indata - threesig)
        #now normalize
        indata = indata / np.median(indata[mask])

    if status == 0:
        #need to check if LD params are sensible and in right format
        LDparams = [float(i) for i in LDparams.split()]

        inc = inc * np.pi / 180.

    if status == 0:
        modelfit = tmod.lightcurve(intime, period_d, rprs, T0, Ecc, ars, inc,
                                   omega, LDparams, sec)

    if status == 0:
        phi, fluxfold, modelfold, errorfold, phiNotFold = fold_data(
            intime, modelfit, indata, inerr, period_d, T0)

    if status == 0:
        do_plot(intime, modelfit, indata, inerr, period_d, T0, cmdLine)
Esempio n. 21
0
def kepstddev(infile,outfile,datacol,timescale,clobber,verbose,logfile,status,cmdLine=False): 

# startup parameters

    status = 0
    labelsize = 44
    ticksize = 36
    xsize = 16
    ysize = 6
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#ffff00'
    falpha = 0.2

# log the call

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPSTDDEV -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'datacol='+str(datacol)+' '
    call += 'timescale='+str(timescale)+' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

# start time

    kepmsg.clock('KEPSTDDEV started at',logfile,verbose)

# test log file

    logfile = kepmsg.test(logfile)

# clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
        message = 'ERROR -- KEPSTDDEV: ' + outfile + ' exists. Use clobber=yes'
        status = kepmsg.err(logfile,message,verbose)

# open input file

    if status == 0:
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

# read table structure

    if status == 0:
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)

# filter input data table

    if status == 0:
        work1 = numpy.array([table.field('time'), table.field(datacol)])
        work1 = numpy.rot90(work1,3)
        work1 = work1[~numpy.isnan(work1).any(1)]            
 
# read table columns

    if status == 0:
        intime = work1[:,1] + bjdref
        indata = work1[:,0]

# calculate STDDEV in units of ppm

    if status == 0:
        stddev = running_frac_std(intime,indata,timescale/24) * 1.0e6
        astddev = numpy.std(indata) * 1.0e6
        cdpp = stddev / sqrt(timescale * 3600.0 / cadence)

# filter cdpp

    if status == 0:
        for i in range(len(cdpp)):
            if cdpp[i] > median(cdpp) * 10.0: cdpp[i] = cdpp[i-1]

# calculate median STDDEV

    if status == 0:
        medcdpp = ones((len(cdpp)),dtype='float32') * median(cdpp[:])
#        print '\nMedian %.1fhr standard deviation = %d ppm' % (timescale, median(stddev[:]))
        print('\nStandard deviation = %d ppm' % astddev)

# calculate median STDDEV

    if status == 0:
        medcdpp = ones((len(cdpp)),dtype='float32') * median(cdpp[:])
        print('Median %.1fhr CDPP = %d ppm' % (timescale, median(cdpp[:])))

# calculate RMS STDDEV

    if status == 0:
        rms, status = kepstat.rms(cdpp,zeros(len(stddev)),logfile,verbose)
        rmscdpp = ones((len(cdpp)),dtype='float32') * rms
        print('   RMS %.1fhr CDPP = %d ppm\n' % (timescale, rms))

# clean up x-axis unit

    if status == 0:
	intime0 = float(int(tstart / 100) * 100.0)
	ptime = intime - intime0
	xlab = 'BJD $-$ %d' % intime0

# clean up y-axis units

    if status == 0:
        pout = copy(cdpp)
        nrm = math.ceil(math.log10(median(cdpp))) - 1.0
#	pout = pout / 10**nrm
#	ylab = '%.1fhr $\sigma$ (10$^%d$ ppm)' % (timescale,nrm)
	ylab = '%.1fhr $\sigma$ (ppm)' % timescale

# data limits

	xmin = ptime.min()
	xmax = ptime.max()
	ymin = pout.min()
	ymax = pout.max()
	xr = xmax - xmin
	yr = ymax - ymin
        ptime = insert(ptime,[0],[ptime[0]]) 
        ptime = append(ptime,[ptime[-1]])
        pout = insert(pout,[0],[0.0]) 
        pout = append(pout,0.0)

# plot style

    if status == 0:
        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': 36,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 12,
                      'legend.fontsize': 12,
                      'xtick.labelsize': 32,
                      'ytick.labelsize': 36}
            pylab.rcParams.update(params)
        except:
            pass

# define size of plot on monitor screen

	pylab.figure(figsize=[xsize,ysize])

# delete any fossil plots in the matplotlib window

        pylab.clf()

# position first axes inside the plotting window

        ax = pylab.axes([0.07,0.15,0.92,0.83])

# force tick labels to be absolute rather than relative

        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        ax.yaxis.set_major_locator(MaxNLocator(5))

# rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        pylab.setp(labels, 'rotation', 90,fontsize=36)

# plot flux vs time

        ltime = array([],dtype='float64')
        ldata = array([],dtype='float32')
        dt = 0
        work1 = 2.0 * cadence / 86400
        for i in range(1,len(ptime)-1):
            dt = ptime[i] - ptime[i-1]
            if dt < work1:
                ltime = append(ltime,ptime[i])
                ldata = append(ldata,pout[i])
            else:
                pylab.plot(ltime,ldata,color='#0000ff',linestyle='-',linewidth=1.0)
                ltime = array([],dtype='float64')
                ldata = array([],dtype='float32')
        pylab.plot(ltime,ldata,color='#0000ff',linestyle='-',linewidth=1.0)

# plot the fill color below data time series, with no data gaps

	pylab.fill(ptime,pout,fc='#ffff00',linewidth=0.0,alpha=0.2)

# plot median CDPP

#        pylab.plot(intime - intime0,medcdpp / 10**nrm,color='r',linestyle='-',linewidth=2.0)
#        pylab.plot(intime - intime0,medcdpp,color='r',linestyle='-',linewidth=2.0)

# plot RMS CDPP

#        pylab.plot(intime - intime0,rmscdpp / 10**nrm,color='r',linestyle='--',linewidth=2.0)

# define plot x and y limits

	pylab.xlim(xmin - xr * 0.01, xmax + xr * 0.01)
	if ymin - yr * 0.01 <= 0.0:
            pylab.ylim(1.0e-10, ymax + yr * 0.01)
	else:
            pylab.ylim(ymin - yr * 0.01, ymax + yr * 0.01)
           
# plot labels

	pylab.xlabel(xlab, {'color' : 'k'})
        pylab.ylabel(ylab, {'color' : 'k'})

# make grid on plot

	pylab.grid()

# render plot

    if status == 0:
        if cmdLine: 
            pylab.show(block=True)
        else: 
            pylab.ion()
            pylab.plot([])
            pylab.ioff()

# add NaNs back into data

    if status == 0:
        n = 0
        work1 = array([],dtype='float32')
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)
        for i in range(len(table.field(0))):
            if isfinite(table.field('time')[i]) and isfinite(table.field(datacol)[i]):
                work1 = append(work1,cdpp[n])
                n += 1
            else:
                work1 = append(work1,nan)

# write output file
                
    if status == 0:
        status = kepkey.new('MCDPP%d' % (timescale * 10.0),medcdpp[0],
                            'Median %.1fhr CDPP (ppm)' % timescale,
                            instr[1],outfile,logfile,verbose)
        status = kepkey.new('RCDPP%d' % (timescale * 10.0),rmscdpp[0],
                            'RMS %.1fhr CDPP (ppm)' % timescale,
                            instr[1],outfile,logfile,verbose)
        colname = 'CDPP_%d' % (timescale * 10)
	col1 = pyfits.Column(name=colname,format='E13.7',array=work1)
	cols = instr[1].data.columns + col1
	instr[1] = pyfits.new_table(cols,header=instr[1].header)
	instr.writeto(outfile)
	
# comment keyword in output file

    if status == 0:
        status = kepkey.history(call,instr[0],outfile,logfile,verbose)

# close FITS

    if status == 0:
        status = kepio.closefits(instr,logfile,verbose)	    

# end time

    if (status == 0):
	    message = 'KEPSTDDEV completed at'
    else:
	    message = '\nKEPSTDDEV aborted at'
    kepmsg.clock(message,logfile,verbose)
def kepsff(infile,
           outfile,
           datacol,
           cenmethod,
           stepsize,
           npoly_cxcy,
           sigma_cxcy,
           npoly_ardx,
           npoly_dsdt,
           sigma_dsdt,
           npoly_arfl,
           sigma_arfl,
           plotres,
           clobber,
           verbose,
           logfile,
           status,
           cmdLine=False):

    # startup parameters

    status = 0
    labelsize = 16
    ticksize = 14
    xsize = 20
    ysize = 8
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#ffff00'
    falpha = 0.2
    seterr(all="ignore")

    # log the call

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile, hashline, verbose)
    call = 'KEPSFF -- '
    call += 'infile=' + infile + ' '
    call += 'outfile=' + outfile + ' '
    call += 'datacol=' + datacol + ' '
    call += 'cenmethod=' + cenmethod + ' '
    call += 'stepsize=' + str(stepsize) + ' '
    call += 'npoly_cxcy=' + str(npoly_cxcy) + ' '
    call += 'sigma_cxcy=' + str(sigma_cxcy) + ' '
    call += 'npoly_ardx=' + str(npoly_ardx) + ' '
    call += 'npoly_dsdt=' + str(npoly_dsdt) + ' '
    call += 'sigma_dsdt=' + str(sigma_dsdt) + ' '
    call += 'npoly_arfl=' + str(npoly_arfl) + ' '
    call += 'sigma_arfl=' + str(sigma_arfl) + ' '
    savep = 'n'
    if (plotres): savep = 'y'
    call += 'plotres=' + savep + ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber=' + overwrite + ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose=' + chatter + ' '
    call += 'logfile=' + logfile
    kepmsg.log(logfile, call + '\n', verbose)

    # start time

    kepmsg.clock('KEPSFF started at', logfile, verbose)

    # test log file

    logfile = kepmsg.test(logfile)

    # clobber output file

    if clobber: status = kepio.clobber(outfile, logfile, verbose)
    if kepio.fileexists(outfile):
        message = 'ERROR -- KEPSFF: ' + outfile + ' exists. Use clobber=yes'
        status = kepmsg.err(logfile, message, verbose)

# open input file

    if status == 0:
        instr, status = kepio.openfits(infile, 'readonly', logfile, verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(
            instr, infile, logfile, verbose, status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr, file, logfile, verbose)

# read table structure

    if status == 0:
        table, status = kepio.readfitstab(infile, instr[1], logfile, verbose)

# determine sequence of windows in time

    if status == 0:
        frametim = instr[1].header['FRAMETIM']
        num_frm = instr[1].header['NUM_FRM']
        exptime = frametim * num_frm / 86400
        tstart = table.field('TIME')[0]
        tstop = table.field('TIME')[-1]
        winedge = arange(tstart, tstop, stepsize)
        if tstop > winedge[-1] + stepsize / 2:
            winedge = append(winedge, tstop)
        else:
            winedge[-1] = tstop
        winedge = (winedge - tstart) / exptime
        winedge = winedge.astype(int)
        if len(table.field('TIME')) > winedge[-1] + 1:
            winedge = append(winedge, len(table.field('TIME')))
        elif len(table.field('TIME')) < winedge[-1]:
            winedge[-1] = len(table.field('TIME'))

# step through the time windows

    if status == 0:
        for iw in range(1, len(winedge)):
            t1 = winedge[iw - 1]
            t2 = winedge[iw]

            # filter input data table

            work1 = numpy.array([
                table.field('TIME')[t1:t2],
                table.field('CADENCENO')[t1:t2],
                table.field(datacol)[t1:t2],
                table.field('MOM_CENTR1')[t1:t2],
                table.field('MOM_CENTR2')[t1:t2],
                table.field('PSF_CENTR1')[t1:t2],
                table.field('PSF_CENTR2')[t1:t2],
                table.field('SAP_QUALITY')[t1:t2]
            ], 'float64')
            work1 = numpy.rot90(work1, 3)
            work2 = work1[~numpy.isnan(work1).any(1)]
            work2 = work2[(work2[:, 0] == 0.0) | (work2[:, 0] > 1e5)]

            # assign table columns

            intime = work2[:, 7] + bjdref
            cadenceno = work2[:, 6].astype(int)
            indata = work2[:, 5]
            mom_centr1 = work2[:, 4]
            mom_centr2 = work2[:, 3]
            psf_centr1 = work2[:, 2]
            psf_centr2 = work2[:, 1]
            sap_quality = work2[:, 0]
            if cenmethod == 'moments':
                centr1 = copy(mom_centr1)
                centr2 = copy(mom_centr2)
            else:
                centr1 = copy(psf_centr1)
                centr2 = copy(psf_centr2)

# fit centroid data with low-order polynomial

            cfit = zeros((len(centr2)))
            csig = zeros((len(centr2)))
            functype = 'poly' + str(npoly_cxcy)
            pinit = array([nanmean(centr2)])
            if npoly_cxcy > 0:
                for j in range(npoly_cxcy):
                    pinit = append(pinit, 0.0)
            try:
                coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \
                    kepfit.lsqclip(functype,pinit,centr1,centr2,None,sigma_cxcy,sigma_cxcy,10,logfile,verbose)
                for j in range(len(coeffs)):
                    cfit += coeffs[j] * numpy.power(centr1, j)
                    csig[:] = sigma
            except:
                message = 'ERROR -- KEPSFF: could not fit centroid data with polynomial. There are no data points within the range of input rows %d - %d. Either increase the stepsize (with an appreciation of the effects on light curve quality this will have!), or better yet - cut the timeseries up to remove large gaps in the input light curve using kepclip.' % (
                    t1, t2)
                status = kepmsg.err(logfile, message, verbose)
                #                sys.exit('')
                os._exit(1)

# reject outliers

            time_good = array([], 'float64')
            centr1_good = array([], 'float32')
            centr2_good = array([], 'float32')
            flux_good = array([], 'float32')
            cad_good = array([], 'int')
            for i in range(len(cfit)):
                if abs(centr2[i] - cfit[i]) < sigma_cxcy * csig[i]:
                    time_good = append(time_good, intime[i])
                    centr1_good = append(centr1_good, centr1[i])
                    centr2_good = append(centr2_good, centr2[i])
                    flux_good = append(flux_good, indata[i])
                    cad_good = append(cad_good, cadenceno[i])

# covariance matrix for centroid time series

            centr = concatenate([[centr1_good] - mean(centr1_good),
                                 [centr2_good] - mean(centr2_good)])
            covar = cov(centr)

            # eigenvector eigenvalues of covariance matrix

            [eval, evec] = numpy.linalg.eigh(covar)
            ex = arange(-10.0, 10.0, 0.1)
            epar = evec[1, 1] / evec[0, 1] * ex
            enor = evec[1, 0] / evec[0, 0] * ex
            ex = ex + mean(centr1)
            epar = epar + mean(centr2_good)
            enor = enor + mean(centr2_good)

            # rotate centroid data

            centr_rot = dot(evec.T, centr)

            # fit polynomial to rotated centroids

            rfit = zeros((len(centr2)))
            rsig = zeros((len(centr2)))
            functype = 'poly' + str(npoly_ardx)
            pinit = array([nanmean(centr_rot[0, :])])
            pinit = array([1.0])
            if npoly_ardx > 0:
                for j in range(npoly_ardx):
                    pinit = append(pinit, 0.0)
            try:
                coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \
                    kepfit.lsqclip(functype,pinit,centr_rot[1,:],centr_rot[0,:],None,100.0,100.0,1,
                                   logfile,verbose)
            except:
                message = 'ERROR -- KEPSFF: could not fit rotated centroid data with polynomial'
                status = kepmsg.err(logfile, message, verbose)
            rx = linspace(nanmin(centr_rot[1, :]), nanmax(centr_rot[1, :]),
                          100)
            ry = zeros((len(rx)))
            for i in range(len(coeffs)):
                ry = ry + coeffs[i] * numpy.power(rx, i)

# calculate arclength of centroids

            s = zeros((len(rx)))
            for i in range(1, len(s)):
                work3 = ((ry[i] - ry[i - 1]) / (rx[i] - rx[i - 1]))**2
                s[i] = s[i - 1] + math.sqrt(1.0 + work3) * (rx[i] - rx[i - 1])

# fit arclength as a function of strongest eigenvector

            sfit = zeros((len(centr2)))
            ssig = zeros((len(centr2)))
            functype = 'poly' + str(npoly_ardx)
            pinit = array([nanmean(s)])
            if npoly_ardx > 0:
                for j in range(npoly_ardx):
                    pinit = append(pinit, 0.0)
            try:
                acoeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \
                    kepfit.lsqclip(functype,pinit,rx,s,None,100.0,100.0,100,logfile,verbose)
            except:
                message = 'ERROR -- KEPSFF: could not fit rotated centroid data with polynomial'
                status = kepmsg.err(logfile, message, verbose)

# correlate arclength with detrended flux

            t = copy(time_good)
            c = copy(cad_good)
            y = copy(flux_good)
            z = centr_rot[1, :]
            x = zeros((len(z)))
            for i in range(len(acoeffs)):
                x = x + acoeffs[i] * numpy.power(z, i)

# calculate time derivative of arclength s

            dx = zeros((len(x)))
            for i in range(1, len(x)):
                dx[i] = (x[i] - x[i - 1]) / (t[i] - t[i - 1])
            dx[0] = dx[1]

            # fit polynomial to derivative and flag outliers (thruster firings)

            dfit = zeros((len(dx)))
            dsig = zeros((len(dx)))
            functype = 'poly' + str(npoly_dsdt)
            pinit = array([nanmean(dx)])
            if npoly_dsdt > 0:
                for j in range(npoly_dsdt):
                    pinit = append(pinit, 0.0)
            try:
                dcoeffs, errors, covar, iiter, dsigma, chi2, dof, fit, dumx, dumy, status = \
                    kepfit.lsqclip(functype,pinit,t,dx,None,3.0,3.0,10,logfile,verbose)
            except:
                message = 'ERROR -- KEPSFF: could not fit rotated centroid data with polynomial'
                status = kepmsg.err(logfile, message, verbose)
            for i in range(len(dcoeffs)):
                dfit = dfit + dcoeffs[i] * numpy.power(t, i)
            centr1_pnt = array([], 'float32')
            centr2_pnt = array([], 'float32')
            time_pnt = array([], 'float64')
            flux_pnt = array([], 'float32')
            dx_pnt = array([], 'float32')
            s_pnt = array([], 'float32')
            time_thr = array([], 'float64')
            flux_thr = array([], 'float32')
            dx_thr = array([], 'float32')
            thr_cadence = []
            for i in range(len(t)):
                if dx[i] < dfit[i] + sigma_dsdt * dsigma and dx[
                        i] > dfit[i] - sigma_dsdt * dsigma:
                    time_pnt = append(time_pnt, time_good[i])
                    flux_pnt = append(flux_pnt, flux_good[i])
                    dx_pnt = append(dx_pnt, dx[i])
                    s_pnt = append(s_pnt, x[i])
                    centr1_pnt = append(centr1_pnt, centr1_good[i])
                    centr2_pnt = append(centr2_pnt, centr2_good[i])
                else:
                    time_thr = append(time_thr, time_good[i])
                    flux_thr = append(flux_thr, flux_good[i])
                    dx_thr = append(dx_thr, dx[i])
                    thr_cadence.append(cad_good[i])

# fit arclength-flux correlation

            cfit = zeros((len(time_pnt)))
            csig = zeros((len(time_pnt)))
            functype = 'poly' + str(npoly_arfl)
            pinit = array([nanmean(flux_pnt)])
            if npoly_arfl > 0:
                for j in range(npoly_arfl):
                    pinit = append(pinit, 0.0)
            try:
                ccoeffs, errors, covar, iiter, sigma, chi2, dof, fit, plx, ply, status = \
                    kepfit.lsqclip(functype,pinit,s_pnt,flux_pnt,None,sigma_arfl,sigma_arfl,100,logfile,verbose)
            except:
                message = 'ERROR -- KEPSFF: could not fit rotated centroid data with polynomial'
                status = kepmsg.err(logfile, message, verbose)

# correction factors for unfiltered data

            centr = concatenate([[centr1] - mean(centr1_good),
                                 [centr2] - mean(centr2_good)])
            centr_rot = dot(evec.T, centr)
            yy = copy(indata)
            zz = centr_rot[1, :]
            xx = zeros((len(zz)))
            cfac = zeros((len(zz)))
            for i in range(len(acoeffs)):
                xx = xx + acoeffs[i] * numpy.power(zz, i)
            for i in range(len(ccoeffs)):
                cfac = cfac + ccoeffs[i] * numpy.power(xx, i)

# apply correction to flux time-series

            out_detsap = indata / cfac

            # split time-series data for plotting

            tim_gd = array([], 'float32')
            flx_gd = array([], 'float32')
            tim_bd = array([], 'float32')
            flx_bd = array([], 'float32')
            for i in range(len(indata)):
                if intime[i] in time_pnt:
                    tim_gd = append(tim_gd, intime[i])
                    flx_gd = append(flx_gd, out_detsap[i])
                else:
                    tim_bd = append(tim_bd, intime[i])
                    flx_bd = append(flx_bd, out_detsap[i])

# plot style and size

            status = kepplot.define(labelsize, ticksize, logfile, verbose)
            pylab.figure(figsize=[xsize, ysize])
            pylab.clf()

            # plot x-centroid vs y-centroid

            ax = kepplot.location([0.04, 0.57, 0.16, 0.41])  # plot location
            px = copy(centr1)  # clean-up x-axis units
            py = copy(centr2)  # clean-up y-axis units
            pxmin = px.min()
            pxmax = px.max()
            pymin = py.min()
            pymax = py.max()
            pxr = pxmax - pxmin
            pyr = pymax - pymin
            pad = 0.05
            if pxr > pyr:
                dely = (pxr - pyr) / 2
                xlim(pxmin - pxr * pad, pxmax + pxr * pad)
                ylim(pymin - dely - pyr * pad, pymax + dely + pyr * pad)
            else:
                delx = (pyr - pxr) / 2
                ylim(pymin - pyr * pad, pymax + pyr * pad)
                xlim(pxmin - delx - pxr * pad, pxmax + delx + pxr * pad)
            pylab.plot(px,
                       py,
                       color='#980000',
                       markersize=5,
                       marker='D',
                       ls='')  # plot data
            pylab.plot(centr1_good,
                       centr2_good,
                       color='#009900',
                       markersize=5,
                       marker='D',
                       ls='')  # plot data
            pylab.plot(ex, epar, color='k', ls='-')
            pylab.plot(ex, enor, color='k', ls='-')
            for tick in ax.xaxis.get_major_ticks():
                tick.label.set_fontsize(14)
            for tick in ax.yaxis.get_major_ticks():
                tick.label.set_fontsize(14)
            kepplot.labels('CCD Column', 'CCD Row', 'k', 16)  # labels
            pylab.grid()  # grid lines

            # plot arclength fits vs drift along strongest eigenvector

            ax = kepplot.location([0.24, 0.57, 0.16, 0.41])  # plot location
            px = rx - rx[0]
            py = s - rx - (s[0] - rx[0])  # clean-up y-axis units
            py, ylab, status = kepplot.cleany(py, 1.0, logfile,
                                              verbose)  # clean-up x-axis units
            kepplot.RangeOfPlot(px, py, 0.05, False)  # data limits
            pylab.plot(px,
                       py,
                       color='#009900',
                       markersize=5,
                       marker='D',
                       ls='')
            px = plotx - rx[0]  # clean-up x-axis units
            py = ploty - plotx - (s[0] - rx[0])  # clean-up y-axis units
            py, ylab, status = kepplot.cleany(py, 1.0, logfile,
                                              verbose)  # clean-up x-axis units
            pylab.plot(px, py, color='r', ls='-', lw=3)
            for tick in ax.xaxis.get_major_ticks():
                tick.label.set_fontsize(14)
            for tick in ax.yaxis.get_major_ticks():
                tick.label.set_fontsize(14)
            ylab = re.sub(' e\S+', ' pixels)', ylab)
            ylab = re.sub(' s\S+', '', ylab)
            ylab = re.sub('Flux', 's $-$ x\'', ylab)
            kepplot.labels('Linear Drift [x\'] (pixels)', ylab, 'k',
                           16)  # labels
            pylab.grid()  # grid lines

            # plot time derivative of arclength s

            ax = kepplot.location([0.04, 0.08, 0.16, 0.41])  # plot location
            px = copy(time_pnt)
            py = copy(dx_pnt)
            px, xlab, status = kepplot.cleanx(px, logfile,
                                              verbose)  # clean-up x-axis units
            kepplot.RangeOfPlot(px, dx, 0.05, False)  # data limits
            pylab.plot(px,
                       py,
                       color='#009900',
                       markersize=5,
                       marker='D',
                       ls='')
            try:
                px = copy(time_thr)
                py = copy(dx_thr)
                px, xlab, status = kepplot.cleanx(
                    px, logfile, verbose)  # clean-up x-axis units
                pylab.plot(px,
                           py,
                           color='#980000',
                           markersize=5,
                           marker='D',
                           ls='')
            except:
                pass
            px = copy(t)
            py = copy(dfit)
            px, xlab, status = kepplot.cleanx(px, logfile,
                                              verbose)  # clean-up x-axis units
            pylab.plot(px, py, color='r', ls='-', lw=3)
            py = copy(dfit + sigma_dsdt * dsigma)
            pylab.plot(px, py, color='r', ls='--', lw=3)
            py = copy(dfit - sigma_dsdt * dsigma)
            pylab.plot(px, py, color='r', ls='--', lw=3)
            for tick in ax.xaxis.get_major_ticks():
                tick.label.set_fontsize(14)
            for tick in ax.yaxis.get_major_ticks():
                tick.label.set_fontsize(14)
            kepplot.labels(xlab, 'ds/dt (pixels day$^{-1}$)', 'k',
                           16)  # labels
            pylab.grid()  # grid lines

            # plot relation of arclength vs detrended flux

            ax = kepplot.location([0.24, 0.08, 0.16, 0.41])  # plot location
            px = copy(s_pnt)
            py = copy(flux_pnt)
            py, ylab, status = kepplot.cleany(py, 1.0, logfile,
                                              verbose)  # clean-up x-axis units
            kepplot.RangeOfPlot(px, py, 0.05, False)  # data limits
            pylab.plot(px,
                       py,
                       color='#009900',
                       markersize=5,
                       marker='D',
                       ls='')
            pylab.plot(plx, ply, color='r', ls='-', lw=3)
            for tick in ax.xaxis.get_major_ticks():
                tick.label.set_fontsize(14)
            for tick in ax.yaxis.get_major_ticks():
                tick.label.set_fontsize(14)
            kepplot.labels('Arclength [s] (pixels)', ylab, 'k', 16)  # labels
            pylab.grid()  # grid lines

            # plot aperture photometry

            kepplot.location([0.44, 0.53, 0.55, 0.45])  # plot location
            px, xlab, status = kepplot.cleanx(intime, logfile,
                                              verbose)  # clean-up x-axis units
            py, ylab, status = kepplot.cleany(indata, 1.0, logfile,
                                              verbose)  # clean-up x-axis units
            kepplot.RangeOfPlot(px, py, 0.01, True)  # data limits
            kepplot.plot1d(px, py, cadence, lcolor, lwidth, fcolor, falpha,
                           True)  # plot data
            kepplot.labels(' ', ylab, 'k', 16)  # labels
            pylab.setp(pylab.gca(),
                       xticklabels=[])  # remove x- or y-tick labels
            kepplot.labels(xlab, re.sub('Flux', 'Aperture Flux', ylab), 'k',
                           16)  # labels
            pylab.grid()  # grid lines

            # Plot corrected photometry

            kepplot.location([0.44, 0.08, 0.55, 0.45])  # plot location
            kepplot.RangeOfPlot(px, py, 0.01, True)  # data limits
            px, xlab, status = kepplot.cleanx(tim_gd, logfile,
                                              verbose)  # clean-up x-axis units
            py, ylab, status = kepplot.cleany(flx_gd, 1.0, logfile,
                                              verbose)  # clean-up x-axis units
            kepplot.plot1d(px, py, cadence, lcolor, lwidth, fcolor, falpha,
                           True)  # plot data
            try:
                px, xlab, status = kepplot.cleanx(
                    tim_bd, logfile, verbose)  # clean-up x-axis units
                py = copy(flx_bd)
                pylab.plot(px,
                           py,
                           color='#980000',
                           markersize=5,
                           marker='D',
                           ls='')
            except:
                pass
            kepplot.labels(xlab, re.sub('Flux', 'Corrected Flux', ylab), 'k',
                           16)  # labels
            pylab.grid()  # grid lines

            # render plot

            if plotres:
                kepplot.render(cmdLine)

# save plot to file

            if plotres:
                pylab.savefig(re.sub('.fits', '_%d.png' % (iw + 1), outfile))

# correct fluxes within the output file

            intime = work1[:, 7] + bjdref
            cadenceno = work1[:, 6].astype(int)
            indata = work1[:, 5]
            mom_centr1 = work1[:, 4]
            mom_centr2 = work1[:, 3]
            psf_centr1 = work1[:, 2]
            psf_centr2 = work1[:, 1]
            centr1 = copy(mom_centr1)
            centr2 = copy(mom_centr2)
            centr = concatenate([[centr1] - mean(centr1_good),
                                 [centr2] - mean(centr2_good)])
            centr_rot = dot(evec.T, centr)
            yy = copy(indata)
            zz = centr_rot[1, :]
            xx = zeros((len(zz)))
            cfac = zeros((len(zz)))
            for i in range(len(acoeffs)):
                xx = xx + acoeffs[i] * numpy.power(zz, i)
            for i in range(len(ccoeffs)):
                cfac = cfac + ccoeffs[i] * numpy.power(xx, i)
            out_detsap = yy / cfac
            instr[1].data.field('SAP_FLUX')[t1:t2] /= cfac
            instr[1].data.field('PDCSAP_FLUX')[t1:t2] /= cfac
            try:
                instr[1].data.field('DETSAP_FLUX')[t1:t2] /= cfac
            except:
                pass

# add quality flag to output file for thruster firings

            for i in range(len(intime)):
                if cadenceno[i] in thr_cadence:
                    instr[1].data.field('SAP_QUALITY')[t1 + i] += 131072

# write output file

    if status == 0:
        instr.writeto(outfile)

# close input file

    if status == 0:
        status = kepio.closefits(instr, logfile, verbose)

# end time

    if (status == 0):
        message = 'KEPSFF completed at'
    else:
        message = '\nKEPSFF aborted at'
    kepmsg.clock(message, logfile, verbose)
Esempio n. 23
0
def kepsff(infile,outfile,datacol,cenmethod,stepsize,npoly_cxcy,sigma_cxcy,npoly_ardx,
           npoly_dsdt,sigma_dsdt,npoly_arfl,sigma_arfl,plotres,clobber,verbose,logfile,
           status,cmdLine=False): 

# startup parameters

    status = 0
    labelsize = 16
    ticksize = 14
    xsize = 20
    ysize = 8
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#ffff00'
    falpha = 0.2
    seterr(all="ignore") 

# log the call

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPSFF -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'datacol='+datacol+' '
    call += 'cenmethod='+cenmethod+' '
    call += 'stepsize='+str(stepsize)+' '
    call += 'npoly_cxcy='+str(npoly_cxcy)+' '
    call += 'sigma_cxcy='+str(sigma_cxcy)+' '
    call += 'npoly_ardx='+str(npoly_ardx)+' '
    call += 'npoly_dsdt='+str(npoly_dsdt)+' '
    call += 'sigma_dsdt='+str(sigma_dsdt)+' '
    call += 'npoly_arfl='+str(npoly_arfl)+' '
    call += 'sigma_arfl='+str(sigma_arfl)+' '
    savep = 'n'
    if (plotres): savep = 'y'
    call += 'plotres='+savep+ ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

# start time

    kepmsg.clock('KEPSFF started at',logfile,verbose)

# test log file

    logfile = kepmsg.test(logfile)

# clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
        message = 'ERROR -- KEPSFF: ' + outfile + ' exists. Use clobber=yes'
        status = kepmsg.err(logfile,message,verbose)

# open input file

    if status == 0:
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

# read table structure

    if status == 0:
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)

# determine sequence of windows in time

    if status == 0:
        frametim = instr[1].header['FRAMETIM']
        num_frm = instr[1].header['NUM_FRM']
        exptime = frametim * num_frm / 86400
        tstart = table.field('TIME')[0]
        tstop = table.field('TIME')[-1]
        winedge = arange(tstart,tstop,stepsize) 
        if tstop > winedge[-1] + stepsize / 2:
            winedge = append(winedge,tstop)
        else:
            winedge[-1] = tstop
        winedge = (winedge - tstart) / exptime
        winedge = winedge.astype(int)
        if len(table.field('TIME')) > winedge[-1] + 1:
            winedge = append(winedge,len(table.field('TIME')))
        elif len(table.field('TIME')) < winedge[-1]:
            winedge[-1] = len(table.field('TIME'))

# step through the time windows
        
    if status == 0:
        for iw in range(1,len(winedge)):
            t1 = winedge[iw-1]
            t2 = winedge[iw]

# filter input data table

            work1 = numpy.array([table.field('TIME')[t1:t2], table.field('CADENCENO')[t1:t2], 
                                 table.field(datacol)[t1:t2], 
                                 table.field('MOM_CENTR1')[t1:t2], table.field('MOM_CENTR2')[t1:t2],
                                 table.field('PSF_CENTR1')[t1:t2], table.field('PSF_CENTR2')[t1:t2],
                                 table.field('SAP_QUALITY')[t1:t2]],'float64')
            work1 = numpy.rot90(work1,3)
            work2 = work1[~numpy.isnan(work1).any(1)]            
            work2 = work2[(work2[:,0] == 0.0) | (work2[:,0] > 1e5)]

# assign table columns

            intime = work2[:,7] + bjdref
            cadenceno = work2[:,6].astype(int)
            indata = work2[:,5]
            mom_centr1 = work2[:,4]
            mom_centr2 = work2[:,3]
            psf_centr1 = work2[:,2]
            psf_centr2 = work2[:,1]
            sap_quality = work2[:,0]
            if cenmethod == 'moments':
                centr1 = copy(mom_centr1)
                centr2 = copy(mom_centr2)
            else:
                centr1 = copy(psf_centr1)
                centr2 = copy(psf_centr2)                

# fit centroid data with low-order polynomial

            cfit = zeros((len(centr2)))
            csig = zeros((len(centr2)))
            functype = 'poly' + str(npoly_cxcy)
            pinit = array([nanmean(centr2)])
            if npoly_cxcy > 0:
                for j in range(npoly_cxcy):
                    pinit = append(pinit,0.0)
            try:
                coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \
                    kepfit.lsqclip(functype,pinit,centr1,centr2,None,sigma_cxcy,sigma_cxcy,10,logfile,verbose)
                for j in range(len(coeffs)):
                    cfit += coeffs[j] * numpy.power(centr1,j)
                    csig[:] = sigma
            except:
                message  = 'ERROR -- KEPSFF: could not fit centroid data with polynomial. There are no data points within the range of input rows %d - %d. Either increase the stepsize (with an appreciation of the effects on light curve quality this will have!), or better yet - cut the timeseries up to remove large gaps in the input light curve using kepclip.' % (t1,t2)
                status = kepmsg.err(logfile,message,verbose)
#                sys.exit('')
                os._exit(1)

# reject outliers

            time_good = array([],'float64')
            centr1_good = array([],'float32')
            centr2_good = array([],'float32')
            flux_good = array([],'float32')
            cad_good = array([],'int')
            for i in range(len(cfit)):
                if abs(centr2[i] - cfit[i]) < sigma_cxcy * csig[i]:
                    time_good = append(time_good,intime[i])
                    centr1_good = append(centr1_good,centr1[i])
                    centr2_good = append(centr2_good,centr2[i])
                    flux_good = append(flux_good,indata[i])
                    cad_good = append(cad_good,cadenceno[i])

# covariance matrix for centroid time series

            centr = concatenate([[centr1_good] - mean(centr1_good), [centr2_good] - mean(centr2_good)])
            covar = cov(centr)

# eigenvector eigenvalues of covariance matrix

            [eval, evec] = numpy.linalg.eigh(covar)
            ex = arange(-10.0,10.0,0.1)
            epar = evec[1,1] / evec[0,1] * ex
            enor = evec[1,0] / evec[0,0] * ex
            ex = ex + mean(centr1)
            epar = epar + mean(centr2_good)
            enor = enor + mean(centr2_good)

# rotate centroid data

            centr_rot = dot(evec.T,centr)

# fit polynomial to rotated centroids

            rfit = zeros((len(centr2)))
            rsig = zeros((len(centr2)))
            functype = 'poly' + str(npoly_ardx)
            pinit = array([nanmean(centr_rot[0,:])])
            pinit = array([1.0])
            if npoly_ardx > 0:
                for j in range(npoly_ardx):
                    pinit = append(pinit,0.0)
            try:
                coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \
                    kepfit.lsqclip(functype,pinit,centr_rot[1,:],centr_rot[0,:],None,100.0,100.0,1,
                                   logfile,verbose)
            except:
                message  = 'ERROR -- KEPSFF: could not fit rotated centroid data with polynomial'
                status = kepmsg.err(logfile,message,verbose)
            rx = linspace(nanmin(centr_rot[1,:]),nanmax(centr_rot[1,:]),100)
            ry = zeros((len(rx)))
            for i in range(len(coeffs)):
                ry = ry + coeffs[i] * numpy.power(rx,i)

# calculate arclength of centroids

            s = zeros((len(rx)))
            for i in range(1,len(s)):
                work3 = ((ry[i] - ry[i-1]) / (rx[i] - rx[i-1]))**2 
                s[i] = s[i-1] + math.sqrt(1.0 + work3) * (rx[i] - rx[i-1])

# fit arclength as a function of strongest eigenvector

            sfit = zeros((len(centr2)))
            ssig = zeros((len(centr2)))
            functype = 'poly' + str(npoly_ardx)
            pinit = array([nanmean(s)])
            if npoly_ardx > 0:
                for j in range(npoly_ardx):
                    pinit = append(pinit,0.0)
            try:
                acoeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \
                    kepfit.lsqclip(functype,pinit,rx,s,None,100.0,100.0,100,logfile,verbose)
            except:
                message  = 'ERROR -- KEPSFF: could not fit rotated centroid data with polynomial'
                status = kepmsg.err(logfile,message,verbose)

# correlate arclength with detrended flux

            t = copy(time_good)
            c = copy(cad_good)
            y = copy(flux_good)
            z = centr_rot[1,:]
            x = zeros((len(z)))
            for i in range(len(acoeffs)):
                x = x + acoeffs[i] * numpy.power(z,i)

# calculate time derivative of arclength s

            dx = zeros((len(x)))
            for i in range(1,len(x)):
                dx[i] = (x[i] - x[i-1]) / (t[i] - t[i-1])
            dx[0] = dx[1]

# fit polynomial to derivative and flag outliers (thruster firings)

            dfit = zeros((len(dx)))
            dsig = zeros((len(dx)))
            functype = 'poly' + str(npoly_dsdt)
            pinit = array([nanmean(dx)])
            if npoly_dsdt > 0:
                for j in range(npoly_dsdt):
                    pinit = append(pinit,0.0)
            try:
                dcoeffs, errors, covar, iiter, dsigma, chi2, dof, fit, dumx, dumy, status = \
                    kepfit.lsqclip(functype,pinit,t,dx,None,3.0,3.0,10,logfile,verbose)
            except:
                message  = 'ERROR -- KEPSFF: could not fit rotated centroid data with polynomial'
                status = kepmsg.err(logfile,message,verbose)
            for i in range(len(dcoeffs)):
                dfit = dfit + dcoeffs[i] * numpy.power(t,i)
            centr1_pnt = array([],'float32')
            centr2_pnt = array([],'float32')
            time_pnt = array([],'float64')
            flux_pnt = array([],'float32')
            dx_pnt = array([],'float32')
            s_pnt = array([],'float32')
            time_thr = array([],'float64')
            flux_thr = array([],'float32')
            dx_thr = array([],'float32')
            thr_cadence = []
            for i in range(len(t)):
                if dx[i] < dfit[i] + sigma_dsdt * dsigma and dx[i] > dfit[i] - sigma_dsdt * dsigma:
                    time_pnt = append(time_pnt,time_good[i])
                    flux_pnt = append(flux_pnt,flux_good[i])
                    dx_pnt = append(dx_pnt,dx[i])                
                    s_pnt = append(s_pnt,x[i])                
                    centr1_pnt = append(centr1_pnt,centr1_good[i])
                    centr2_pnt = append(centr2_pnt,centr2_good[i])
                else:
                    time_thr = append(time_thr,time_good[i])
                    flux_thr = append(flux_thr,flux_good[i])                
                    dx_thr = append(dx_thr,dx[i]) 
                    thr_cadence.append(cad_good[i])

# fit arclength-flux correlation

            cfit = zeros((len(time_pnt)))
            csig = zeros((len(time_pnt)))
            functype = 'poly' + str(npoly_arfl)
            pinit = array([nanmean(flux_pnt)])
            if npoly_arfl > 0:
                for j in range(npoly_arfl):
                    pinit = append(pinit,0.0)
            try:
                ccoeffs, errors, covar, iiter, sigma, chi2, dof, fit, plx, ply, status = \
                    kepfit.lsqclip(functype,pinit,s_pnt,flux_pnt,None,sigma_arfl,sigma_arfl,100,logfile,verbose)
            except:
                message  = 'ERROR -- KEPSFF: could not fit rotated centroid data with polynomial'
                status = kepmsg.err(logfile,message,verbose)        

# correction factors for unfiltered data

            centr = concatenate([[centr1] - mean(centr1_good), [centr2] - mean(centr2_good)])
            centr_rot = dot(evec.T,centr)
            yy = copy(indata)
            zz = centr_rot[1,:]
            xx = zeros((len(zz)))
            cfac = zeros((len(zz)))
            for i in range(len(acoeffs)):
                xx = xx + acoeffs[i] * numpy.power(zz,i)
            for i in range(len(ccoeffs)):
                cfac = cfac + ccoeffs[i] * numpy.power(xx,i)

# apply correction to flux time-series

            out_detsap = indata / cfac

# split time-series data for plotting

            tim_gd = array([],'float32')
            flx_gd = array([],'float32')
            tim_bd = array([],'float32')
            flx_bd = array([],'float32')
            for i in range(len(indata)):
                if intime[i] in time_pnt:
                    tim_gd = append(tim_gd,intime[i])
                    flx_gd = append(flx_gd,out_detsap[i])
                else:
                    tim_bd = append(tim_bd,intime[i])
                    flx_bd = append(flx_bd,out_detsap[i])

# plot style and size

            status = kepplot.define(labelsize,ticksize,logfile,verbose)
            pylab.figure(figsize=[xsize,ysize])
            pylab.clf()

# plot x-centroid vs y-centroid

            ax = kepplot.location([0.04,0.57,0.16,0.41])                                      # plot location
            px = copy(centr1)                                                             # clean-up x-axis units
            py = copy(centr2)                                                             # clean-up y-axis units
            pxmin = px.min()
            pxmax = px.max()
            pymin = py.min()
            pymax = py.max()
            pxr = pxmax - pxmin
            pyr = pymax - pymin
            pad = 0.05
            if pxr > pyr:
                dely = (pxr - pyr) / 2 
                xlim(pxmin - pxr * pad, pxmax + pxr * pad)
                ylim(pymin - dely - pyr * pad, pymax + dely + pyr * pad)
            else:
                delx = (pyr - pxr) / 2 
                ylim(pymin - pyr * pad, pymax + pyr * pad)
                xlim(pxmin - delx - pxr * pad, pxmax + delx + pxr * pad)
            pylab.plot(px,py,color='#980000',markersize=5,marker='D',ls='')                   # plot data
            pylab.plot(centr1_good,centr2_good,color='#009900',markersize=5,marker='D',ls='') # plot data
            pylab.plot(ex,epar,color='k',ls='-')
            pylab.plot(ex,enor,color='k',ls='-')
            for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(14) 
            for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(14) 
            kepplot.labels('CCD Column','CCD Row','k',16)                                     # labels
            pylab.grid()                                                                      # grid lines
            
# plot arclength fits vs drift along strongest eigenvector

            ax = kepplot.location([0.24,0.57,0.16,0.41])                                      # plot location
            px = rx - rx[0]
            py = s - rx - (s[0] - rx[0])                                                      # clean-up y-axis units
            py, ylab, status = kepplot.cleany(py,1.0,logfile,verbose)                         # clean-up x-axis units
            kepplot.RangeOfPlot(px,py,0.05,False)                                             # data limits
            pylab.plot(px,py,color='#009900',markersize=5,marker='D',ls='')
            px = plotx - rx[0]                                                              # clean-up x-axis units
            py = ploty-plotx - (s[0] - rx[0])                                              # clean-up y-axis units
            py, ylab, status = kepplot.cleany(py,1.0,logfile,verbose)                         # clean-up x-axis units
            pylab.plot(px,py,color='r',ls='-',lw=3)
            for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(14) 
            for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(14) 
            ylab = re.sub(' e\S+',' pixels)',ylab)
            ylab = re.sub(' s\S+','',ylab)
            ylab = re.sub('Flux','s $-$ x\'',ylab)
            kepplot.labels('Linear Drift [x\'] (pixels)',ylab,'k',16)                               # labels
            pylab.grid()                                                                      # grid lines

# plot time derivative of arclength s

            ax = kepplot.location([0.04,0.08,0.16,0.41])                                        # plot location
            px = copy(time_pnt)
            py = copy(dx_pnt)
            px, xlab, status = kepplot.cleanx(px,logfile,verbose)       # clean-up x-axis units
            kepplot.RangeOfPlot(px,dx,0.05,False)                                             # data limits
            pylab.plot(px,py,color='#009900',markersize=5,marker='D',ls='')
            try:
                px = copy(time_thr)
                py = copy(dx_thr)
                px, xlab, status = kepplot.cleanx(px,logfile,verbose)       # clean-up x-axis units
                pylab.plot(px,py,color='#980000',markersize=5,marker='D',ls='')
            except:
                pass
            px = copy(t)
            py = copy(dfit)
            px, xlab, status = kepplot.cleanx(px,logfile,verbose)       # clean-up x-axis units
            pylab.plot(px,py,color='r',ls='-',lw=3)
            py = copy(dfit+sigma_dsdt*dsigma)
            pylab.plot(px,py,color='r',ls='--',lw=3)
            py = copy(dfit-sigma_dsdt*dsigma)
            pylab.plot(px,py,color='r',ls='--',lw=3)
            for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(14) 
            for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(14) 
            kepplot.labels(xlab,'ds/dt (pixels day$^{-1}$)','k',16)                                  # labels
            pylab.grid()                                                                      # grid lines

# plot relation of arclength vs detrended flux

            ax = kepplot.location([0.24,0.08,0.16,0.41])                                       # plot location
            px = copy(s_pnt)
            py = copy(flux_pnt)
            py, ylab, status = kepplot.cleany(py,1.0,logfile,verbose)                         # clean-up x-axis units
            kepplot.RangeOfPlot(px,py,0.05,False)                                             # data limits
            pylab.plot(px,py,color='#009900',markersize=5,marker='D',ls='')
            pylab.plot(plx,ply,color='r',ls='-',lw=3)
            for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(14) 
            for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(14) 
            kepplot.labels('Arclength [s] (pixels)',ylab,'k',16)                                  # labels
            pylab.grid()                                                                      # grid lines
            
# plot aperture photometry

            kepplot.location([0.44,0.53,0.55,0.45])                          # plot location
            px, xlab, status = kepplot.cleanx(intime,logfile,verbose)       # clean-up x-axis units
            py, ylab, status = kepplot.cleany(indata,1.0,logfile,verbose)   # clean-up x-axis units
            kepplot.RangeOfPlot(px,py,0.01,True)                                 # data limits
            kepplot.plot1d(px,py,cadence,lcolor,lwidth,fcolor,falpha,True)  # plot data
            kepplot.labels(' ',ylab,'k',16)                                   # labels
            pylab.setp(pylab.gca(),xticklabels=[])                          # remove x- or y-tick labels
            kepplot.labels(xlab,re.sub('Flux','Aperture Flux',ylab),'k',16)   # labels
            pylab.grid()                                                    # grid lines

# Plot corrected photometry

            kepplot.location([0.44,0.08,0.55,0.45])                          # plot location
            kepplot.RangeOfPlot(px,py,0.01,True)                                 # data limits
            px, xlab, status = kepplot.cleanx(tim_gd,logfile,verbose)       # clean-up x-axis units
            py, ylab, status = kepplot.cleany(flx_gd,1.0,logfile,verbose)   # clean-up x-axis units
            kepplot.plot1d(px,py,cadence,lcolor,lwidth,fcolor,falpha,True)  # plot data
            try:
                px, xlab, status = kepplot.cleanx(tim_bd,logfile,verbose)       # clean-up x-axis units
                py = copy(flx_bd)
                pylab.plot(px,py,color='#980000',markersize=5,marker='D',ls='')
            except:
                pass
            kepplot.labels(xlab,re.sub('Flux','Corrected Flux',ylab),'k',16)   # labels
            pylab.grid()                                                    # grid lines

# render plot

            if plotres:
                kepplot.render(cmdLine)

# save plot to file

            if plotres:
                pylab.savefig(re.sub('.fits','_%d.png' % (iw + 1),outfile))

# correct fluxes within the output file
                
            intime = work1[:,7] + bjdref
            cadenceno = work1[:,6].astype(int)
            indata = work1[:,5]
            mom_centr1 = work1[:,4]
            mom_centr2 = work1[:,3]
            psf_centr1 = work1[:,2]
            psf_centr2 = work1[:,1]
            centr1 = copy(mom_centr1)
            centr2 = copy(mom_centr2)
            centr = concatenate([[centr1] - mean(centr1_good), [centr2] - mean(centr2_good)])
            centr_rot = dot(evec.T,centr)
            yy = copy(indata)
            zz = centr_rot[1,:]
            xx = zeros((len(zz)))
            cfac = zeros((len(zz)))
            for i in range(len(acoeffs)):
                xx = xx + acoeffs[i] * numpy.power(zz,i)
            for i in range(len(ccoeffs)):
                cfac = cfac + ccoeffs[i] * numpy.power(xx,i)
            out_detsap = yy / cfac
            instr[1].data.field('SAP_FLUX')[t1:t2] /= cfac
            instr[1].data.field('PDCSAP_FLUX')[t1:t2] /= cfac
            try:
                instr[1].data.field('DETSAP_FLUX')[t1:t2] /= cfac
            except:
                pass

# add quality flag to output file for thruster firings

            for i in range(len(intime)):
                if cadenceno[i] in thr_cadence:
                    instr[1].data.field('SAP_QUALITY')[t1+i] += 131072

# write output file

    if status == 0:
        instr.writeto(outfile)
    
# close input file

    if status == 0:
        status = kepio.closefits(instr,logfile,verbose)	    

# end time

    if (status == 0):
	    message = 'KEPSFF completed at'
    else:
	    message = '\nKEPSFF aborted at'
    kepmsg.clock(message,logfile,verbose)
Esempio n. 24
0
def kepconvert(infile,outfile,conversion,columns,baddata,clobber,verbose,logfile,status): 

# startup parameters

    status = 0

# log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPCONVERT -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'conversion='+conversion+' '
    call += 'columns='+columns+ ' '
    writebad = 'n'
    if (baddata): writebad = 'y'
    call += 'baddata='+writebad+ ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)
    
# start time

    kepmsg.clock('KEPCONVERT started at',logfile,verbose)

# test log file

    logfile = kepmsg.test(logfile)

# data columns

    if status == 0:
        colnames = columns.strip().split(',')
        ncol = len(colnames)
        if ncol < 1:
            message = 'ERROR -- KEPCONVERT: no data columns specified'
            status = kepmsg.err(logfile,message,verbose)

# input file exists

    if status == 0 and not kepio.fileexists(infile):
        message = 'ERROR -- KEPCONVERT: input file '+infile+' does not exist'
        status = kepmsg.err(logfile,message,verbose)

# clobber output file

    if status == 0:
        if clobber: status = kepio.clobber(outfile,logfile,verbose)
        if kepio.fileexists(outfile): 
            message = 'ERROR -- KEPCONVERT: ' + outfile + ' exists. Use clobber=yes'
            status = kepmsg.err(logfile,message,verbose)

# open FITS input file


    if status == 0 and conversion == 'fits2asc':
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)

# read FITS table data

    if status == 0 and conversion == 'fits2asc':
        table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)

# check columns exist in FITS file
    if not baddata and status == 0 and conversion == 'fits2asc':
	    try:
	    	qualcol = table.field('SAP_QUALITY') == 0
	    except:
	    	message = 'No SAP_QUALITY column in data, are you using an old FITS file?'
	    	status = kepmsg.err(logfile,message,verbose)

    if status == 0 and conversion == 'fits2asc':
        work = []
        for colname in colnames:
            try:
                if colname.lower() == 'time':
                    work.append(table.field(colname) + bjdref)
                else:
                    work.append(table.field(colname))
            except:
                message = 'ERROR -- KEPCONVERT: no column ' + colname + ' in ' + infile
                status = kepmsg.err(logfile,message,verbose)
        if not baddata:
            for i in range(len(work)):
                work[i] = work[i][qualcol]
# close input file

    if status == 0 and conversion == 'fits2asc':
        status = kepio.closefits(instr,logfile,verbose)

## write output file

    if status == 0 and conversion == 'fits2asc':
        # table, status = kepio.openascii(outfile,'w',logfile,verbose)
        # for i in range(len(work[0])):
            # txt = ''
            # for j in range(len(work)):
                # if numpy.isfinite(work[j][i]):
                    # txt += str(work[j][i]) + ' '
            # txt = txt.strip()
            # if len(re.sub('\s+',',',txt).split(',')) == ncol:
                # table.write(txt + '\n')
        # status = kepio.closeascii(table,logfile,verbose)
        savetxt(outfile,array(work).T)
    	
## open and read ASCII input file

    if status == 0 and conversion == 'asc2fits':
        table, status = kepio.openascii(infile,'r',logfile,verbose)

## organize ASCII table into arrays

    if status == 0 and conversion == 'asc2fits':
        work = []
        for i in range(ncol):
            work.append([])
        nline = 0
        for line in table:
            line = line.strip()
            line = re.sub('\s+',',',line)
            line = re.sub('\|',',',line)
            line = re.sub(';',',',line)
            if '#' not in line:
                nline + 1
                line = line.split(',')
                if len(line) == ncol:
                    for i in range(len(line)):
                        try:
                            work[i].append(float(line[i]))
                        except:
                            message = 'ERROR --KEPCONVERT: ' + str(line[i]) + ' is not float'
                            status = kepmsg.err(logfile,message,verbose)
                            break
                else:
                    message  = 'ERROR --KEPCONVERT: ' + str(ncol) + ' columns required but '
                    message += str(len(line)) + ' columns supplied by ' + infile
                    message += ' at line' + str(nline)
                    status = kepmsg.err(logfile,message,verbose)
                    break
        for i in range(ncol):
            work[i] = numpy.array(work[i],dtype='float64')

## timing keywords for output file

    if status == 0 and conversion == 'asc2fits':
        for i in range(ncol):
            if 'time' in colnames[i].lower():
                if work[i][1] > 54000.0 and work[i][1] < 60000.0:
                    work[i] += 2.4e6
#                work[i] += 2.4553e6
                tstart = work[i].min()
                tstop = work[i].max()
                lc_start = tstart
                lc_end = tstop
                if lc_start > 2.4e6: lc_start -= 2.4e6
                if lc_end > 2.4e6: lc_end -= 2.4e6
                dts = []
                for j in range(1,len(work[i])):
                   dts.append(work[i][j] - work[i][j-1])
                dts = numpy.array(dts,dtype='float32')
                cadence = numpy.median(dts)
                if cadence * 86400.0 > 58.0 and cadence * 86400.0 < 61.0:
                    obsmode = 'short cadence'
                elif cadence * 86400.0 > 1600.0 and cadence * 86400.0 < 2000.0:
                    obsmode = 'long cadence'
                else:
                    obsmode = 'unknown'

## Create the outfile primary extension

    if status == 0 and conversion == 'asc2fits':
        hdu0 = PrimaryHDU()
        try:
            hdu0.header.update('EXTNAME','PRIMARY','name of extension')
            hdu0.header.update('EXTVER',1.0,'extension version number')
            hdu0.header.update('ORIGIN','NASA/Ames','organization that generated this file')
            hdu0.header.update('DATE',time.asctime(time.localtime()),'file creation date')
            hdu0.header.update('CREATOR','kepconvert','SW version used to create this file')
            hdu0.header.update('PROCVER','None','processing script version')
            hdu0.header.update('FILEVER','2.0','file format version')
            hdu0.header.update('TIMVERSN','OGIP/93-003','OGIP memo number for file format')
            hdu0.header.update('TELESCOP','Kepler','telescope')
            hdu0.header.update('INSTRUME','Kepler photometer','detector type')
            hdu0.header.update('OBJECT','Unknown','string version of kepID')
            hdu0.header.update('KEPLERID','Unknown','unique Kepler target identifier')
            hdu0.header.update('CHANNEL','Unknown','CCD channel')
            hdu0.header.update('SKYGROUP','Unknown','roll-independent location of channel')
            hdu0.header.update('MODULE','Unknown','CCD module')
            hdu0.header.update('OUTPUT','Unknown','CCD output')
            hdu0.header.update('QUARTER','Unknown','mission quarter during which data was collected')
            hdu0.header.update('SEASON','Unknown','mission season during which data was collected')
            hdu0.header.update('DATA_REL','Unknown','version of data release notes describing data')
            hdu0.header.update('OBSMODE',obsmode,'observing mode')
            hdu0.header.update('RADESYS','Unknown','reference frame of celestial coordinates')
            hdu0.header.update('RA_OBJ','Unknown','[deg] right ascension from KIC')
            hdu0.header.update('DEC_OBJ','Unknown','[deg] declination from KIC')
            hdu0.header.update('EQUINOX',2000.0,'equinox of celestial coordinate system')
            hdu0.header.update('PMRA','Unknown','[arcsec/yr] RA proper motion')
            hdu0.header.update('PMDEC','Unknown','[arcsec/yr] Dec proper motion')
            hdu0.header.update('PMTOTAL','Unknown','[arcsec/yr] total proper motion')
            hdu0.header.update('PARALLAX','Unknown','[arcsec] parallax')
            hdu0.header.update('GLON','Unknown','[deg] galactic longitude')
            hdu0.header.update('GLAT','Unknown','[deg] galactic latitude')
            hdu0.header.update('GMAG','Unknown','[mag] SDSS g band magnitude from KIC')
            hdu0.header.update('RMAG','Unknown','[mag] SDSS r band magnitude from KIC')
            hdu0.header.update('IMAG','Unknown','[mag] SDSS i band magnitude from KIC')
            hdu0.header.update('ZMAG','Unknown','[mag] SDSS z band magnitude from KIC')
            hdu0.header.update('D51MAG','Unknown','[mag] D51 magnitude, from KIC')
            hdu0.header.update('JMAG','Unknown','[mag] J band magnitude from 2MASS')
            hdu0.header.update('HMAG','Unknown','[mag] H band magnitude from 2MASS')
            hdu0.header.update('KMAG','Unknown','[mag] K band magnitude from 2MASS')
            hdu0.header.update('KEPMAG','Unknown','[mag] Kepler magnitude (Kp) from KIC')
            hdu0.header.update('GRCOLOR','Unknown','[mag] (g-r) color, SDSS bands')
            hdu0.header.update('JKCOLOR','Unknown','[mag] (J-K) color, 2MASS bands')
            hdu0.header.update('GKCOLOR','Unknown','[mag] (g-K) color, SDSS g - 2MASS K')
            hdu0.header.update('TEFF','Unknown','[K] effective temperature from KIC')
            hdu0.header.update('LOGG','Unknown','[cm/s2] log10 surface gravity from KIC')
            hdu0.header.update('FEH','Unknown','[log10([Fe/H])] metallicity from KIC')
            hdu0.header.update('EBMINUSV','Unknown','[mag] E(B-V) redenning from KIC')
            hdu0.header.update('AV','Unknown','[mag] A_v extinction from KIC')
            hdu0.header.update('RADIUS','Unknown','[solar radii] stellar radius from KIC')
            hdu0.header.update('TMINDEX','Unknown','unique 2MASS catalog ID from KIC')
            hdu0.header.update('SCPID','Unknown','unique SCP processing ID from KIC') 
            hdulist = HDUList(hdu0)
        except:
            message = 'ERROR -- KEPCONVERT: cannot create primary extension in ' + outfile
            status = kepmsg.err(logfile,message,verbose)
            
## create the outfile HDU 1 extension

    if status == 0 and conversion == 'asc2fits':
        try:
            fitscol = []
            for i in range(ncol):
                fitscol.append(Column(name=colnames[i],format='D',array=work[i]))
            fitscols = ColDefs(fitscol)
            hdu1 = new_table(fitscols)
            hdulist.append(hdu1)
            hdu1.header.update('INHERIT',True,'inherit primary keywords')
            hdu1.header.update('EXTNAME','LIGHTCURVE','name of extension')
            hdu1.header.update('EXTVER',1,'extension version number')
            hdu1.header.update('TELESCOP','Kepler','telescope')
            hdu1.header.update('INSTRUME','Kepler photometer','detector type')
            hdu1.header.update('OBJECT','Unknown','string version of kepID')
            hdu1.header.update('KEPLERID','Unknown','unique Kepler target identifier')
            hdu1.header.update('RADESYS','Unknown','reference frame of celestial coordinates')
            hdu1.header.update('RA_OBJ','Unknown','[deg] right ascension from KIC')
            hdu1.header.update('DEC_OBJ','Unknown','[deg] declination from KIC')
            hdu1.header.update('EQUINOX',2000.0,'equinox of celestial coordinate system')
            hdu1.header.update('TIMEREF','Unknown','barycentric correction applied to times')
            hdu1.header.update('TASSIGN','Unknown','where time is assigned')
            hdu1.header.update('TIMESYS','Unknown','time system is barycentric JD')
            hdu1.header.update('BJDREFI',0.0,'integer part of BJD reference date')
            hdu1.header.update('BJDREFF',0.0,'fraction of day in BJD reference date')
            hdu1.header.update('TIMEUNIT','Unknown','time unit for TIME, TSTART and TSTOP')
            hdu1.header.update('TSTART',tstart,'observation start time in JD - BJDREF')
            hdu1.header.update('TSTOP',tstop,'observation stop time in JD - BJDREF')
            hdu1.header.update('LC_START',lc_start,'observation start time in MJD')
            hdu1.header.update('LC_END',lc_end,'observation stop time in MJD')
            hdu1.header.update('TELAPSE',tstop-tstart,'[d] TSTOP - TSTART')
            hdu1.header.update('LIVETIME','Unknown','[d] TELAPSE multiplied by DEADC')
            hdu1.header.update('EXPOSURE','Unknown','[d] time on source')
            hdu1.header.update('DEADC','Unknown','deadtime correction')
            hdu1.header.update('TIMEPIXR','Unknown','bin time beginning=0 middle=0.5 end=1')
            hdu1.header.update('TIERRELA','Unknown','[d] relative time error')
            hdu1.header.update('TIERABSO','Unknown','[d] absolute time error')
            hdu1.header.update('INT_TIME','Unknown','[s] photon accumulation time per frame')
            hdu1.header.update('READTIME','Unknown','[s] readout time per frame')
            hdu1.header.update('FRAMETIM','Unknown','[s] frame time (INT_TIME + READTIME)')
            hdu1.header.update('NUM_FRM','Unknown','number of frames per time stamp')
            hdu1.header.update('TIMEDEL','Unknown','[d] time resolution of data')
            hdu1.header.update('DATE-OBS','Unknown','TSTART as UT calendar date')
            hdu1.header.update('DATE-END','Unknown','TSTOP as UT calendar date')
            hdu1.header.update('BACKAPP','Unknown','background is subtracted')
            hdu1.header.update('DEADAPP','Unknown','deadtime applied')
            hdu1.header.update('VIGNAPP','Unknown','vignetting or collimator correction applied')
            hdu1.header.update('GAIN','Unknown','channel gain [electrons/count]')
            hdu1.header.update('READNOIS','Unknown','read noise [electrons]')
            hdu1.header.update('NREADOUT','Unknown','number of reads per cadence')
            hdu1.header.update('TIMSLICE','Unknown','time-slice readout sequence section')
            hdu1.header.update('MEANBLCK','Unknown','FSW mean black level [count]')
            hdu1.header.update('PDCSAPFL','Unknown','SAP PDC processing flags (bit code)')
            hdu1.header.update('PDCDIAFL','Unknown','DIA PDC processing flags (bit code)')
            hdu1.header.update('MISPXSAP','Unknown','no of optimal aperture pixels missing from SAP')
            hdu1.header.update('MISPXDIA','Unknown','no of optimal aperture pixels missing from DIA')
            hdu1.header.update('CROWDSAP','Unknown','crowding metric evaluated over SAP opt. ap.')
            hdu1.header.update('CROWDDIA','Unknown','crowding metric evaluated over DIA aperture')
        except:
            message = 'ERROR -- KEPCONVERT: cannot create light curve extension in ' + outfile
            status = kepmsg.err(logfile,message,verbose)

## history keyword in output file

    if status == 0 and conversion == 'asc2fits':
        status = kepkey.history(call,hdu0,outfile,logfile,verbose)

## filter data table

    if status == 0 and conversion == 'asc2fits':
        instr, status = kepio.filterNaN(hdulist,colnames[min(array([1,len(colnames)-1],dtype='int'))],
                                        outfile,logfile,verbose)

## write output FITS file

    if status == 0 and conversion == 'asc2fits':
        hdulist.writeto(outfile,checksum=True)

## end time

    if (status == 0):
	    message = 'KEPCONVERT completed at'
    else:
	    message = '\nKEPCONVERT aborted at'
    kepmsg.clock(message,logfile,verbose)
def kepdetrend(infile,
               outfile,
               datacol,
               errcol,
               ranges1,
               npoly1,
               nsig1,
               niter1,
               ranges2,
               npoly2,
               nsig2,
               niter2,
               popnans,
               plot,
               clobber,
               verbose,
               logfile,
               status,
               cmdLine=False):

    # startup parameters

    status = 0
    labelsize = 24
    ticksize = 16
    xsize = 16
    ysize = 9
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#ffff00'
    falpha = 0.2

    # log the call

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile, hashline, verbose)
    call = 'KEPDETREND -- '
    call += 'infile=' + infile + ' '
    call += 'outfile=' + outfile + ' '
    call += 'datacol=' + str(datacol) + ' '
    call += 'errcol=' + str(errcol) + ' '
    call += 'ranges1=' + str(ranges1) + ' '
    call += 'npoly1=' + str(npoly1) + ' '
    call += 'nsig1=' + str(nsig1) + ' '
    call += 'niter1=' + str(niter1) + ' '
    call += 'ranges2=' + str(ranges2) + ' '
    call += 'npoly2=' + str(npoly2) + ' '
    call += 'nsig2=' + str(nsig2) + ' '
    call += 'niter2=' + str(niter2) + ' '
    popn = 'n'
    if (popnans): popn = 'y'
    call += 'popnans=' + popn + ' '
    plotit = 'n'
    if (plot): plotit = 'y'
    call += 'plot=' + plotit + ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber=' + overwrite + ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose=' + chatter + ' '
    call += 'logfile=' + logfile
    kepmsg.log(logfile, call + '\n', verbose)

    # start time

    kepmsg.clock('KEPDETREND started at', logfile, verbose)

    # test log file

    logfile = kepmsg.test(logfile)

    # clobber output file

    if clobber: status = kepio.clobber(outfile, logfile, verbose)
    if kepio.fileexists(outfile):
        message = 'ERROR -- KEPDETREND: ' + outfile + ' exists. Use clobber=yes'
        status = kepmsg.err(logfile, message, verbose)

# open input file

    if status == 0:
        instr, status = kepio.openfits(infile, 'readonly', logfile, verbose)
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(
            instr, infile, logfile, verbose, status)

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr, file, logfile, verbose)

# read table structure

    if status == 0:
        table, status = kepio.readfitstab(infile, instr[1], logfile, verbose)

# filter input data table

    if status == 0:
        work1 = numpy.array(
            [table.field('time'),
             table.field(datacol),
             table.field(errcol)])
        work1 = numpy.rot90(work1, 3)
        work1 = work1[~numpy.isnan(work1).any(1)]

# read table columns

    if status == 0:
        intime = work1[:, 2] + bjdref
        indata = work1[:, 1]
        inerr = work1[:, 0]
        print intime

# time ranges for region 1 (region to be corrected)

    if status == 0:
        time1 = []
        data1 = []
        err1 = []
        t1start, t1stop, status = kepio.timeranges(ranges1, logfile, verbose)
    if status == 0:
        cadencelis1, status = kepstat.filterOnRange(intime, t1start, t1stop)
    if status == 0:
        for i in range(len(cadencelis1)):
            time1.append(intime[cadencelis1[i]])
            data1.append(indata[cadencelis1[i]])
            if errcol.lower() != 'none':
                err1.append(inerr[cadencelis1[i]])
        t0 = time1[0]
        time1 = array(time1, dtype='float64') - t0
        data1 = array(data1, dtype='float32')
        if errcol.lower() != 'none':
            err1 = array(err1, dtype='float32')
        else:
            err1 = None

# fit function to range 1

    if status == 0:
        functype = 'poly' + str(npoly1)
        pinit = [data1.mean()]
        if npoly1 > 0:
            for i in range(npoly1):
                pinit.append(0)
        pinit = array(pinit, dtype='float32')
        coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx1, ploty1, status = \
            kepfit.lsqclip(functype,pinit,time1,data1,err1,nsig1,nsig1,niter1,
                           logfile,verbose)
        fit1 = indata * 0.0
        for i in range(len(coeffs)):
            fit1 += coeffs[i] * (intime - t0)**i
        for i in range(len(intime)):
            if i not in cadencelis1:
                fit1[i] = 0.0
        plotx1 += t0
        print coeffs

# time ranges for region 2 (region that is correct)

    if status == 0:
        time2 = []
        data2 = []
        err2 = []
        t2start, t2stop, status = kepio.timeranges(ranges2, logfile, verbose)
        cadencelis2, status = kepstat.filterOnRange(intime, t2start, t2stop)
        for i in range(len(cadencelis2)):
            time2.append(intime[cadencelis2[i]])
            data2.append(indata[cadencelis2[i]])
            if errcol.lower() != 'none':
                err2.append(inerr[cadencelis2[i]])
        t0 = time2[0]
        time2 = array(time2, dtype='float64') - t0
        data2 = array(data2, dtype='float32')
        if errcol.lower() != 'none':
            err2 = array(err2, dtype='float32')
        else:
            err2 = None

# fit function to range 2

    if status == 0:
        functype = 'poly' + str(npoly2)
        pinit = [data2.mean()]
        if npoly2 > 0:
            for i in range(npoly2):
                pinit.append(0)
        pinit = array(pinit, dtype='float32')
        coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx2, ploty2, status = \
            kepfit.lsqclip(functype,pinit,time2,data2,err2,nsig2,nsig2,niter2,
                           logfile,verbose)
        fit2 = indata * 0.0
        for i in range(len(coeffs)):
            fit2 += coeffs[i] * (intime - t0)**i
        for i in range(len(intime)):
            if i not in cadencelis1:
                fit2[i] = 0.0
        plotx2 += t0

# normalize data

    if status == 0:
        outdata = indata - fit1 + fit2
        if errcol.lower() != 'none':
            outerr = inerr * 1.0

# comment keyword in output file

    if status == 0:
        status = kepkey.history(call, instr[0], outfile, logfile, verbose)

# clean up x-axis unit

    if status == 0:
        intime0 = float(int(tstart / 100) * 100.0)
        if intime0 < 2.4e6: intime0 += 2.4e6
        ptime = intime - intime0
        plotx1 = plotx1 - intime0
        plotx2 = plotx2 - intime0
        xlab = 'BJD $-$ %d' % intime0

# clean up y-axis units

    if status == 0:
        pout = outdata
        ploty1
        ploty2
        nrm = len(str(int(numpy.nanmax(indata)))) - 1
        indata = indata / 10**nrm
        pout = pout / 10**nrm
        ploty1 = ploty1 / 10**nrm
        ploty2 = ploty2 / 10**nrm
        ylab = '10$^%d$ e$^-$ s$^{-1}$' % nrm

        # data limits

        xmin = ptime.min()
        xmax = ptime.max()
        ymin = indata.min()
        ymax = indata.max()
        omin = pout.min()
        omax = pout.max()
        xr = xmax - xmin
        yr = ymax - ymin
        oo = omax - omin
        ptime = insert(ptime, [0], [ptime[0]])
        ptime = append(ptime, [ptime[-1]])
        indata = insert(indata, [0], [0.0])
        indata = append(indata, [0.0])
        pout = insert(pout, [0], [0.0])
        pout = append(pout, 0.0)

# plot light curve

    if status == 0 and plot:
        try:
            params = {
                'backend': 'png',
                'axes.linewidth': 2.5,
                'axes.labelsize': labelsize,
                'axes.font': 'sans-serif',
                'axes.fontweight': 'bold',
                'text.fontsize': 12,
                'legend.fontsize': 12,
                'xtick.labelsize': ticksize,
                'ytick.labelsize': ticksize
            }
            rcParams.update(params)
        except:
            pass

        pylab.figure(figsize=[xsize, ysize])
        pylab.clf()

        # plot original data

        ax = pylab.axes([0.06, 0.523, 0.93, 0.45])

        # force tick labels to be absolute rather than relative

        pylab.gca().xaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))

        # rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        pylab.setp(labels, 'rotation', 90, fontsize=12)

        pylab.plot(ptime,
                   indata,
                   color=lcolor,
                   linestyle='-',
                   linewidth=lwidth)
        pylab.fill(ptime, indata, color=fcolor, linewidth=0.0, alpha=falpha)
        pylab.plot(plotx1, ploty1, color='r', linestyle='-', linewidth=2.0)
        pylab.plot(plotx2, ploty2, color='g', linestyle='-', linewidth=2.0)
        pylab.xlim(xmin - xr * 0.01, xmax + xr * 0.01)
        if ymin > 0.0:
            pylab.ylim(ymin - yr * 0.01, ymax + yr * 0.01)
        else:
            pylab.ylim(1.0e-10, ymax + yr * 0.01)
            pylab.ylabel(ylab, {'color': 'k'})
        pylab.grid()

        # plot detrended data

        ax = pylab.axes([0.06, 0.073, 0.93, 0.45])

        # force tick labels to be absolute rather than relative

        pylab.gca().xaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))

        # rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        pylab.setp(labels, 'rotation', 90, fontsize=12)

        pylab.plot(ptime, pout, color=lcolor, linestyle='-', linewidth=lwidth)
        pylab.fill(ptime, pout, color=fcolor, linewidth=0.0, alpha=falpha)
        pylab.xlim(xmin - xr * 0.01, xmax + xr * 0.01)
        if ymin > 0.0:
            pylab.ylim(omin - oo * 0.01, omax + oo * 0.01)
        else:
            pylab.ylim(1.0e-10, omax + oo * 0.01)
        pylab.xlabel(xlab, {'color': 'k'})
        try:
            pylab.ylabel(ylab, {'color': 'k'})
        except:
            ylab = '10**%d e-/s' % nrm
            pylab.ylabel(ylab, {'color': 'k'})

# render plot

    if status == 0:
        if cmdLine:
            pylab.show()
        else:
            pylab.ion()
            pylab.plot([])
            pylab.ioff()

# write output file
    if status == 0 and popnans:
        instr[1].data.field(datacol)[good_data] = outdata
        instr[1].data.field(errcol)[good_data] = outerr
        instr[1].data.field(datacol)[bad_data] = None
        instr[1].data.field(errcol)[bad_data] = None
        instr.writeto(outfile)
    elif status == 0 and not popnans:
        for i in range(len(outdata)):
            instr[1].data.field(datacol)[i] = outdata[i]
            if errcol.lower() != 'none':
                instr[1].data.field(errcol)[i] = outerr[i]
        instr.writeto(outfile)

# close input file

    if status == 0:
        status = kepio.closefits(instr, logfile, verbose)

## end time

    if (status == 0):
        message = 'KEPDETREND completed at'
    else:
        message = '\nKEPDETREND aborted at'
    kepmsg.clock(message, logfile, verbose)
Esempio n. 26
0
def kepstddev(infile,outfile,datacol,timescale,clobber,verbose,logfile,status,cmdLine=False): 

# startup parameters

    status = 0
    labelsize = 44
    ticksize = 36
    xsize = 16
    ysize = 6
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#ffff00'
    falpha = 0.2

# log the call

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPSTDDEV -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'datacol='+str(datacol)+' '
    call += 'timescale='+str(timescale)+' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

# start time

    kepmsg.clock('KEPSTDDEV started at',logfile,verbose)

# test log file

    logfile = kepmsg.test(logfile)

# clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
        message = 'ERROR -- KEPSTDDEV: ' + outfile + ' exists. Use clobber=yes'
        status = kepmsg.err(logfile,message,verbose)

# open input file

    if status == 0:
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

# read table structure

    if status == 0:
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)

# filter input data table

    if status == 0:
        work1 = numpy.array([table.field('time'), table.field(datacol)])
        work1 = numpy.rot90(work1,3)
        work1 = work1[~numpy.isnan(work1).any(1)]            
 
# read table columns

    if status == 0:
        intime = work1[:,1] + bjdref
        indata = work1[:,0]

# calculate STDDEV in units of ppm

    if status == 0:
        stddev = running_frac_std(intime,indata,timescale/24) * 1.0e6
        astddev = numpy.std(indata) * 1.0e6
        cdpp = stddev / sqrt(timescale * 3600.0 / cadence)

# filter cdpp

    if status == 0:
        for i in range(len(cdpp)):
            if cdpp[i] > median(cdpp) * 10.0: cdpp[i] = cdpp[i-1]

# calculate median STDDEV

    if status == 0:
        medcdpp = ones((len(cdpp)),dtype='float32') * median(cdpp[:])
#        print '\nMedian %.1fhr standard deviation = %d ppm' % (timescale, median(stddev[:]))
        print '\nStandard deviation = %d ppm' % astddev

# calculate median STDDEV

    if status == 0:
        medcdpp = ones((len(cdpp)),dtype='float32') * median(cdpp[:])
        print 'Median %.1fhr CDPP = %d ppm' % (timescale, median(cdpp[:]))

# calculate RMS STDDEV

    if status == 0:
        rms, status = kepstat.rms(cdpp,zeros(len(stddev)),logfile,verbose)
        rmscdpp = ones((len(cdpp)),dtype='float32') * rms
        print '   RMS %.1fhr CDPP = %d ppm\n' % (timescale, rms)

# clean up x-axis unit

    if status == 0:
	intime0 = float(int(tstart / 100) * 100.0)
	ptime = intime - intime0
	xlab = 'BJD $-$ %d' % intime0

# clean up y-axis units

    if status == 0:
        pout = copy(cdpp)
        nrm = math.ceil(math.log10(median(cdpp))) - 1.0
#	pout = pout / 10**nrm
#	ylab = '%.1fhr $\sigma$ (10$^%d$ ppm)' % (timescale,nrm)
	ylab = '%.1fhr $\sigma$ (ppm)' % timescale

# data limits

	xmin = ptime.min()
	xmax = ptime.max()
	ymin = pout.min()
	ymax = pout.max()
	xr = xmax - xmin
	yr = ymax - ymin
        ptime = insert(ptime,[0],[ptime[0]]) 
        ptime = append(ptime,[ptime[-1]])
        pout = insert(pout,[0],[0.0]) 
        pout = append(pout,0.0)

# plot style

    if status == 0:
        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': 36,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 12,
                      'legend.fontsize': 12,
                      'xtick.labelsize': 32,
                      'ytick.labelsize': 36}
            pylab.rcParams.update(params)
        except:
            pass

# define size of plot on monitor screen

	pylab.figure(figsize=[xsize,ysize])

# delete any fossil plots in the matplotlib window

        pylab.clf()

# position first axes inside the plotting window

        ax = pylab.axes([0.07,0.15,0.92,0.83])

# force tick labels to be absolute rather than relative

        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        ax.yaxis.set_major_locator(MaxNLocator(5))

# rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        pylab.setp(labels, 'rotation', 90,fontsize=36)

# plot flux vs time

        ltime = array([],dtype='float64')
        ldata = array([],dtype='float32')
        dt = 0
        work1 = 2.0 * cadence / 86400
        for i in range(1,len(ptime)-1):
            dt = ptime[i] - ptime[i-1]
            if dt < work1:
                ltime = append(ltime,ptime[i])
                ldata = append(ldata,pout[i])
            else:
                pylab.plot(ltime,ldata,color='#0000ff',linestyle='-',linewidth=1.0)
                ltime = array([],dtype='float64')
                ldata = array([],dtype='float32')
        pylab.plot(ltime,ldata,color='#0000ff',linestyle='-',linewidth=1.0)

# plot the fill color below data time series, with no data gaps

	pylab.fill(ptime,pout,fc='#ffff00',linewidth=0.0,alpha=0.2)

# plot median CDPP

#        pylab.plot(intime - intime0,medcdpp / 10**nrm,color='r',linestyle='-',linewidth=2.0)
#        pylab.plot(intime - intime0,medcdpp,color='r',linestyle='-',linewidth=2.0)

# plot RMS CDPP

#        pylab.plot(intime - intime0,rmscdpp / 10**nrm,color='r',linestyle='--',linewidth=2.0)

# define plot x and y limits

	pylab.xlim(xmin - xr * 0.01, xmax + xr * 0.01)
	if ymin - yr * 0.01 <= 0.0:
            pylab.ylim(1.0e-10, ymax + yr * 0.01)
	else:
            pylab.ylim(ymin - yr * 0.01, ymax + yr * 0.01)
           
# plot labels

	pylab.xlabel(xlab, {'color' : 'k'})
        pylab.ylabel(ylab, {'color' : 'k'})

# make grid on plot

	pylab.grid()

# render plot

    if status == 0:
        if cmdLine: 
            pylab.show(block=True)
        else: 
            pylab.ion()
            pylab.plot([])
            pylab.ioff()

# add NaNs back into data

    if status == 0:
        n = 0
        work1 = array([],dtype='float32')
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)
        for i in range(len(table.field(0))):
            if isfinite(table.field('time')[i]) and isfinite(table.field(datacol)[i]):
                work1 = append(work1,cdpp[n])
                n += 1
            else:
                work1 = append(work1,nan)

# write output file
                
    if status == 0:
        status = kepkey.new('MCDPP%d' % (timescale * 10.0),medcdpp[0],
                            'Median %.1fhr CDPP (ppm)' % timescale,
                            instr[1],outfile,logfile,verbose)
        status = kepkey.new('RCDPP%d' % (timescale * 10.0),rmscdpp[0],
                            'RMS %.1fhr CDPP (ppm)' % timescale,
                            instr[1],outfile,logfile,verbose)
        colname = 'CDPP_%d' % (timescale * 10)
	col1 = pyfits.Column(name=colname,format='E13.7',array=work1)
	cols = instr[1].data.columns + col1
	instr[1] = pyfits.new_table(cols,header=instr[1].header)
	instr.writeto(outfile)
	
# comment keyword in output file

    if status == 0:
        status = kepkey.history(call,instr[0],outfile,logfile,verbose)

# close FITS

    if status == 0:
        status = kepio.closefits(instr,logfile,verbose)	    

# end time

    if (status == 0):
	    message = 'KEPSTDDEV completed at'
    else:
	    message = '\nKEPSTDDEV aborted at'
    kepmsg.clock(message,logfile,verbose)
Esempio n. 27
0
def kepoutlier(infile,outfile,datacol,nsig,stepsize,npoly,niter,
               operation,ranges,plot,plotfit,clobber,verbose,logfile,status, cmdLine=False): 

# startup parameters

    status = 0
    labelsize = 24
    ticksize = 16
    xsize = 16
    ysize = 6
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#ffff00'
    falpha = 0.2

# log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPOUTLIER -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'datacol='+str(datacol)+' '
    call += 'nsig='+str(nsig)+' '
    call += 'stepsize='+str(stepsize)+' '
    call += 'npoly='+str(npoly)+' '
    call += 'niter='+str(niter)+' '
    call += 'operation='+str(operation)+' '
    call += 'ranges='+str(ranges)+' '
    plotit = 'n'
    if (plot): plotit = 'y'
    call += 'plot='+plotit+ ' '
    plotf = 'n'
    if (plotfit): plotf = 'y'
    call += 'plotfit='+plotf+ ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

# start time

    kepmsg.clock('KEPOUTLIER started at',logfile,verbose)

# test log file

    logfile = kepmsg.test(logfile)

# clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
	    message = 'ERROR -- KEPOUTLIER: ' + outfile + ' exists. Use clobber=yes'
	    status = kepmsg.err(logfile,message,verbose)

# open input file

    if status == 0:
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

# read table structure

    if status == 0:
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)

# filter input data table

    if status == 0:
        try:
            nanclean = instr[1].header['NANCLEAN']
        except:
            naxis2 = 0
            try:
                for i in range(len(table.field(0))):
                    if numpy.isfinite(table.field('barytime')[i]) and \
                            numpy.isfinite(table.field(datacol)[i]):
                        table[naxis2] = table[i]
                        naxis2 += 1
                        instr[1].data = table[:naxis2]
            except:
                for i in range(len(table.field(0))):
                    if numpy.isfinite(table.field('time')[i]) and \
                            numpy.isfinite(table.field(datacol)[i]):
                        table[naxis2] = table[i]
                        naxis2 += 1
                        instr[1].data = table[:naxis2]
            comment = 'NaN cadences removed from data'
            status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose)
 
# read table columns

    if status == 0:
	try:
            intime = instr[1].data.field('barytime') + 2.4e6
	except:
            intime, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose)
	indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose)
    if status == 0:
        intime = intime + bjdref
        indata = indata / cadenom

# time ranges for region to be corrected

    if status == 0:
        t1, t2, status = kepio.timeranges(ranges,logfile,verbose)
        cadencelis, status = kepstat.filterOnRange(intime,t1,t2)

# find limits of each time step

    if status == 0:
        tstep1 = []; tstep2 = []
        work = intime[0]
        while work < intime[-1]:
            tstep1.append(work)
            tstep2.append(array([work+stepsize,intime[-1]],dtype='float64').min())
            work += stepsize

# find cadence limits of each time step

    if status == 0:
        cstep1 = []; cstep2 = []
        work1 = 0; work2 = 0
        for i in range(len(intime)):
            if intime[i] >= intime[work1] and intime[i] < intime[work1] + stepsize:
                work2 = i
            else:
                cstep1.append(work1)
                cstep2.append(work2)
                work1 = i; work2 = i
        cstep1.append(work1)
        cstep2.append(work2)

        outdata = indata * 1.0

# comment keyword in output file

    if status == 0:
        status = kepkey.history(call,instr[0],outfile,logfile,verbose)

# clean up x-axis unit

    if status == 0:
	intime0 = float(int(tstart / 100) * 100.0)
	ptime = intime - intime0
	xlab = 'BJD $-$ %d' % intime0

# clean up y-axis units

    if status == 0:
        pout = indata * 1.0
	nrm = len(str(int(pout.max())))-1
	pout = pout / 10**nrm
	ylab = '10$^%d$ e$^-$ s$^{-1}$' % nrm

# data limits

	xmin = ptime.min()
	xmax = ptime.max()
	ymin = pout.min()
	ymax = pout.max()
	xr = xmax - xmin
	yr = ymax - ymin
        ptime = insert(ptime,[0],[ptime[0]]) 
        ptime = append(ptime,[ptime[-1]])
        pout = insert(pout,[0],[0.0]) 
        pout = append(pout,0.0)

# plot light curve

    if status == 0 and plot:
        plotLatex = True
        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': labelsize,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 12,
                      'legend.fontsize': 12,
                      'xtick.labelsize': ticksize,
                      'ytick.labelsize': ticksize}
            rcParams.update(params)
        except:
            plotLatex = False
    if status == 0 and plot:
        pylab.figure(figsize=[xsize,ysize])
        pylab.clf()

# plot data

        ax = pylab.axes([0.06,0.1,0.93,0.87])

# force tick labels to be absolute rather than relative

        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))

# rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90, fontsize=12)

        pylab.plot(ptime,pout,color=lcolor,linestyle='-',linewidth=lwidth)
        fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha)
	xlabel(xlab, {'color' : 'k'})
        if not plotLatex:
            ylab = '10**%d electrons/sec' % nrm
        ylabel(ylab, {'color' : 'k'})
        grid()

# loop over each time step, fit data, determine rms

    if status == 0:
        masterfit = indata * 0.0
        mastersigma = zeros(len(masterfit))
        functype = 'poly' + str(npoly)
        for i in range(len(cstep1)):
            pinit = [indata[cstep1[i]:cstep2[i]+1].mean()]
            if npoly > 0:
                for j in range(npoly):
                    pinit.append(0.0)
            pinit = array(pinit,dtype='float32')
            try:
                coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \
                    kepfit.lsqclip(functype,pinit,intime[cstep1[i]:cstep2[i]+1]-intime[cstep1[i]],
                                   indata[cstep1[i]:cstep2[i]+1],None,nsig,nsig,niter,logfile,
                                   verbose)
                for j in range(len(coeffs)):
                    masterfit[cstep1[i]:cstep2[i]+1] += coeffs[j] * \
                        (intime[cstep1[i]:cstep2[i]+1] - intime[cstep1[i]])**j
                for j in range(cstep1[i],cstep2[i]+1):
                    mastersigma[j] = sigma
                if plotfit:
                    pylab.plot(plotx+intime[cstep1[i]]-intime0,ploty / 10**nrm,
                               'g',lw='3')
            except:
                for j in range(cstep1[i],cstep2[i]+1):
                    masterfit[j] = indata[j]
                    mastersigma[j] = 1.0e10               
                message  = 'WARNING -- KEPOUTLIER: could not fit range '
                message += str(intime[cstep1[i]]) + '-' + str(intime[cstep2[i]])
                kepmsg.warn(None,message)

# reject outliers

    if status == 0:
        rejtime = []; rejdata = []; naxis2 = 0
        for i in range(len(masterfit)):
            if abs(indata[i] - masterfit[i]) > nsig * mastersigma[i] and i in cadencelis:
                rejtime.append(intime[i])
                rejdata.append(indata[i])
                if operation == 'replace':
                    [rnd] = kepstat.randarray([masterfit[i]],[mastersigma[i]])
                    table[naxis2] = table[i]
                    table.field(datacol)[naxis2] = rnd
                    naxis2 += 1
            else:
                table[naxis2] = table[i]
                naxis2 += 1
        instr[1].data = table[:naxis2]
        rejtime = array(rejtime,dtype='float64')
        rejdata = array(rejdata,dtype='float32')
        pylab.plot(rejtime-intime0,rejdata / 10**nrm,'ro')

# plot ranges

        xlim(xmin-xr*0.01,xmax+xr*0.01)
        if ymin >= 0.0: 
            ylim(ymin-yr*0.01,ymax+yr*0.01)
        else:
            ylim(1.0e-10,ymax+yr*0.01)

# render plot

        if cmdLine: 
            pylab.show()
        else: 
            pylab.ion()
            pylab.plot([])
            pylab.ioff()
	
# write output file

    if status == 0:
        instr.writeto(outfile)
    
# close input file

    if status == 0:
        status = kepio.closefits(instr,logfile,verbose)	    

## end time

    if (status == 0):
	    message = 'KEPOUTLIER completed at'
    else:
	    message = '\nKEPOUTLIER aborted at'
    kepmsg.clock(message,logfile,verbose)
Esempio n. 28
0
def keptransitmodel(inputfile,datacol,errorcol,period_d,rprs,T0,
    Ecc,ars,inc,omega,LDparams,sec,norm=False,
    verbose=0,logfile='logfile.dat',status=0,cmdLine=False):
    

    #write to a logfile
    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPTRANSIT -- '
    call += 'inputfile='+inputfile+' '
    call += 'datacol='+str(datacol)+' '
    call += 'errorcol='+str(errorcol)+' '
    call += 'period_d='+str(period_d)+' '
    call += 'rprs='+str(rprs)+' '
    call += 'T0='+str(T0)+' '
    call += 'Ecc='+str(Ecc)+' '
    call += 'ars='+str(ars)+' '
    call += 'inc='+str(inc)+' '
    call += 'omega='+str(omega)+' '
    call += 'LDparams='+str(LDparams)+' '
    call += 'sec='+str(sec)+' '
    #to finish


    # open input file

    if status == 0:
        instr, status = kepio.openfits(inputfile,'readonly',logfile,verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,
            inputfile,logfile,verbose,status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence


    # fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

# read table structure

    if status == 0:
        table, status = kepio.readfitstab(inputfile,instr[1],logfile,verbose)

# filter input data table

    if status == 0:
        try:
            nanclean = instr[1].header['NANCLEAN']
        except:
            naxis2 = 0
            try:
                for i in range(len(table.field(0))):
                    if np.isfinite(table.field('barytime')[i]) and \
                            np.isfinite(table.field(datacol)[i]):
                        table[naxis2] = table[i]
                        naxis2 += 1
                        instr[1].data = table[:naxis2]
            except:
                for i in range(len(table.field(0))):
                    if np.isfinite(table.field('time')[i]) and \
                            np.isfinite(table.field(datacol)[i]):
                        table[naxis2] = table[i]
                        naxis2 += 1
                        instr[1].data = table[:naxis2]
#            comment = 'NaN cadences removed from data'
#            status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose)
 
# read table columns

    if status == 0:
        try:
            intime = instr[1].data.field('barytime') + 2.4e6
        except:
            intime, status = kepio.readfitscol(inputfile,instr[1].data,'time',logfile,verbose)
        
        indata, status = kepio.readfitscol(inputfile,instr[1].data,datacol,logfile,verbose)
        inerr, status = kepio.readfitscol(inputfile,instr[1].data,errorcol,logfile,verbose)
    if status == 0:
        intime = intime + bjdref
        indata = indata / cadenom
        inerr = inerr / cadenom

    if status == 0 and norm:
        #first remove outliers before normalizing
        threesig = 3.* np.std(indata)
        mask = np.logical_and(indata< indata + threesig,indata > indata - threesig)
        #now normalize
        indata = indata / np.median(indata[mask])

    if status == 0:
        #need to check if LD params are sensible and in right format
        LDparams = [float(i) for i in LDparams.split()]

        inc = inc * np.pi / 180.


    if status == 0:
        modelfit = tmod.lightcurve(intime,period_d,rprs,T0,Ecc,
            ars,inc,omega,LDparams,sec)

    if status == 0:
        phi, fluxfold, modelfold, errorfold, phiNotFold = fold_data(intime, 
            modelfit,indata,inerr,period_d,T0)

    if status == 0:
        do_plot(intime,modelfit,indata,inerr,period_d,T0,cmdLine)