Esempio n. 1
0
def search_text(data):
    documents, dictionary, lsi, index = load_docs('linkedin', APP_DATA)

    sims = query_docs(data, dictionary, lsi, index)

    #get 10 best matches
    idx = [sims[s][0] for s in range(0, 13)]

    results = index_lookup(idx)
    # clean results
    results = [r for r in results if "Contractor" not in r]
    results = [r for r in results if "Intern" not in r]
    results = [r for r in results if "Hourly" not in r]
    results = [r for r in results if "Monthly" not in r]
    results = [r for r in results if "Visiting" not in r]
    rtokens = [r.split('/') for r in results]
    #results = pull_linkedidx(idx)

    clean_res = [{
        'Company': r[2],
        'Title': r[3].split('.')[0]
    } for r in rtokens]
    jobs = getSalary(clean_res)
    min_sal, max_sal, avg_sal = calc_salary([r['Salary'] for r in jobs])
    results = {}
    results['status'] = "ok"
    results['jobs'] = jobs
    results['max_salary'] = '$' + locale.format("%d", max_sal, grouping=True)
    results['min_salary'] = '$' + locale.format("%d", min_sal, grouping=True)
    results['ave_salary'] = '$' + locale.format("%d", avg_sal, grouping=True)
    return results
Esempio n. 2
0
def search_text(data):
    documents, dictionary, lsi, index = load_docs('linkedin',APP_DATA)

    sims = query_docs(data, dictionary, lsi, index)

    #get 10 best matches
    idx = [sims[s][0] for s in range(0,13)]

    results = index_lookup(idx)
    # clean results
    results = [r for r in results if "Contractor" not in r]
    results = [r for r in results if "Intern" not in r]
    results = [r for r in results if "Hourly" not in r]
    results = [r for r in results if "Monthly" not in r]
    results = [r for r in results if "Visiting" not in r]
    rtokens = [r.split('/') for r in results]
    #results = pull_linkedidx(idx)

    clean_res = [{'Company':r[2],'Title':r[3].split('.')[0]} for r in rtokens]
    jobs = getSalary(clean_res)
    min_sal, max_sal, avg_sal = calc_salary([r['Salary'] for r in jobs])
    results = {}
    results['status'] = "ok"
    results['jobs'] = jobs
    results['max_salary'] = '$' + locale.format("%d", max_sal, grouping=True) 
    results['min_salary'] = '$' + locale.format("%d", min_sal, grouping=True) 
    results['ave_salary'] = '$' + locale.format("%d", avg_sal, grouping=True) 
    return results
Esempio n. 3
0
def search_query(url):
    data = pull_profile(url)
    documents, dictionary, lsi, index = load_docs('linkedin')

    sims = query_docs(data, dictionary, lsi, index)

    #get 10 best matches
    idx = [sims[s][0] for s in range(0,10)]

    results = index_lookup(idx)
    rtokens = [r.split('/') for r in results]
    #results = pull_linkedidx(idx)

    clean_res = [{'Company':r[2],'Title':r[3].split('.')[0]} for r in rtokens]
    jobs = getSalary(clean_res)
    min_sal, max_sal, avg_sal = calc_salary([r['Salary'] for r in jobs])
    results = {}
    results['jobs'] = jobs
    results['max_salary'] = '$' + locale.format("%d", max_sal, grouping=True) 
    results['min_salary'] = '$' + locale.format("%d", min_sal, grouping=True) 
    results['ave_salary'] = '$' + locale.format("%d", avg_sal, grouping=True) 
    return results