Esempio n. 1
0
    def get_confidence_interval_for_mean(self,X=[]):
        """

        Calculates the confidence interval for each datapoint, given a model fit
        This is the confidence interval of the model, not the prediction interval


        """
        if isinstance(X,pd.core.frame.DataFrame):
            X=X[self.independent_]
        df_results=pd.DataFrame({'y_hat':numpy.zeros(X.shape[0])})
        y_hat=self.predict(X)
        w=numpy.matrix(X)

     
        # XT_X=numpy.matrix(X).T*\
        #     numpy.matrix(X) 
        #print "X_XT"
        #print X_XT
        
    #    print "w"
    #    print numpy.shape(w)
    #    print "XT_T"
    #    print numpy.shape(XT_X)
        #logging.debug(numpy.shape(s_2*inv(XT_X)))
        s_c_2=numpy.array(w*numpy.power(self.s_y,2)*inv(self.X_dash_X)*w.T)
        #logging.debug("s_c_2: {}".format(s_c_2))
        #we only want the diagonal
        s_c_2=numpy.diagonal(s_c_2)
        #logging.debug("s_c_2 diag: {}".format(s_c_2))
        #tau=df_new.apply(lambda x:numpy.matrix(x[est.params.index.values].values),axis=1)
    #        X_XT*numpy.matrix(x[est.params.index.values].values).T)
    #    tau=numpy.matrix(df_new[est.params.index.values].values[])*X_XT*\
    #        numpy.matrix(df_new[est.params.index.values].values).T
        #print "tau"
        #print numpy.shape(numpy.squeeze(tau))
        #95% confidence interval so alpha =0.95
        alpha=0.05
        t_val=stats.t.ppf(1-alpha/2,self.df_resid+1)
        upper=y_hat+t_val*numpy.sqrt(s_c_2)
        lower=y_hat-t_val*numpy.sqrt(s_c_2)
        

        # df_orig['s_c_2']=s_c_2
        # #df_orig['sigma_tilde']=sigma_tilde
        # df_orig['t']=t_val
        
        # df_orig['upper_y_hat']=upper
        # df_orig['lower_y_hat']=lower
        df=pd.DataFrame({'y_hat':y_hat,'upper_mean':upper,'lower_mean':lower})
        return (df)
Esempio n. 2
0
def get_RMSE_pc(y=[],y_hat=[]):
	"""

	Get the mean absolute percentage error
	$RMSE_pc\frac{100}{\bar{y}}\sqrt{\frac{1}{n}\sum_{i=0}^{n-1} ( y_i-\hat{y_i} )^2}$

	"""
	
	rmse=numpy.sqrt(skmetrics.mean_squared_error(y,y_hat))
	rmse_pc=100*rmse/numpy.mean(y)
	return rmse_pc
Esempio n. 3
0
	def confidence_interval(self):
		#get sample std
		N=len(self.X)
		S=statistics.stdev(self.X)
		logging.debug(S)
		se=S/numpy.sqrt(self.X)

		#get t statistic
		pctile=stats.t.ppf(0.975,df=N-1)

		x_bar=numpy.mean(self.X)

		return (x_bar-pctile*se,x_bar+pctile*se)
Esempio n. 4
0
    def get_prediction_interval(self,X=[]):
        """

        Chuck out the 95% prediction interval for the data passed

        Note that if X is a dataframe it may contain more columns than there are in the original data,
        therefore just pull out what we're after

        """
        #need to get the idempotent matrix
        i_n=numpy.matrix(numpy.ones(X.shape[0]))
        n_obs=X.shape[0]
        # M_0=numpy.matrix(numpy.eye(n_obs))-numpy.power(n_obs,-1)*i_n*i_n.T

        #Z is the X's without the offset
        # logging.debug(X.head())
        if isinstance(X,pd.core.frame.DataFrame):
            #assume its' called alpha
            X=X[self.independent_]



        df_pred=pd.DataFrame({'upper_pred':numpy.zeros(X.shape[0]),'lower_pred':numpy.zeros(X.shape[0])})
        df_pred['y_hat']=self.predict(X)
        df_pred['percent_ci']=0.0
        alpha=0.05
        t_val=stats.t.ppf(1-alpha/2,self.df_resid+1)
        for indx in df_pred.index:
            # print(df_pred.ix[indx].values[1:])
            # logging.debug(self.X_bar)
            # logging.debug(X.head())
            if "alpha" in self.independent_:
                x_0_x_bar=numpy.matrix(X.ix[indx].values[1:]-self.X_bar)
            else:
                x_0_x_bar=numpy.matrix(X.ix[indx].values-self.X_bar)
            
            
            # print(numpy.shape(x_0_x_bar))
            # print("************")
            # logging.debug(self.Z_M_Z)
            # logging.debug(x_0_x_bar)
            se_e = self.s_y*numpy.sqrt(1 + (1/self.nobs) +
                x_0_x_bar*inv(self.Z_M_Z)*x_0_x_bar.T)

            df_pred.loc[indx,'upper_pred']=df_pred.loc[indx,'y_hat']+t_val*se_e
            df_pred.loc[indx,'lower_pred']=df_pred.loc[indx,'y_hat']-t_val*se_e

            df_pred.loc[indx,'percent_ci']=100*2*t_val*se_e/numpy.abs(df_pred.loc[indx,'y_hat'])
        return df_pred
Esempio n. 5
0
    def fit(self, X, y, n_jobs=1):
        """
        y can be series or array
        X can be dataframe or ndarry (N datapoints x M features)
        """
        self = super(LinModel, self).fit(X, y, n_jobs)


        self.nobs=X.shape[0]
        self.nparams=X.shape[1]
        #remove an extra 1 for the alpha (k-1)
        self.df_model=X.shape[1]-1
        #(n-k-1) - we always assume an alpha is present
        self.df_resid=self.nobs-X.shape[1]-1
        #standard error of the regression 
        y_bar=y.mean()
        y_hat=self.predict(X)

        self.raw_data=X
        self.training=y
        # logging.debug(X)
        self.fittedvalues=y_hat
        #explained sum of squares
        SSE=numpy.sum([numpy.power(val-y_bar,2) for val in y_hat])
        e=numpy.matrix(y-y_hat).T
        self.resid=numpy.ravel(e)
        # logging.debug(y_bar)
        # logging.debug(y)
        SST=numpy.sum([numpy.power(val-y_bar,2) for val in y])
        SSR=numpy.sum([numpy.power(x,2) for x in e])
        self.ssr=SSR
        #print(SSR)
        
        #mean squared error of the residuals (unbiased)
        #square root of this is the standard error of the regression
        s_2 = SSR / (self.df_resid+1)
        self.s_y=numpy.sqrt(s_2)
        self.RMSE_pc=metrics.get_RMSE_pc(y,y_hat)
        # logging.debug("s_y = {}".format(self.s_y))

        #Also get the means of the independent variables
        if isinstance(X,pd.core.frame.DataFrame):
            #assume its' called alpha
            self.X_bar=X[X.columns[X.columns!='alpha']].mean()
            Z=numpy.matrix(X[X.columns[X.columns!='alpha']])
        else:
            #assume its the first column
            self.X_bar=numpy.mean(X.values,axis=0)[1:]
            Z=numpy.matrix(X[:,1:])
        
        i_n=numpy.matrix(numpy.ones(self.nobs))
        M_0=numpy.matrix(numpy.eye(self.nobs))-numpy.power(self.nobs,-1)*i_n*i_n.T
        self.Z_M_Z=Z.T*M_0*Z
        # #print(numpy.sqrt(numpy.diagonal(sse * numpy.linalg.inv(numpy.dot(X.T, X)))))
        # #standard error of estimator bk
        X_mat=numpy.matrix(X.values)
        #print(X_mat)
        self.X_dash_X=X_mat.T*X_mat
        # we get nans using this approach so calculate each one separately
        # se=numpy.zeros(self.nparams)
        # for ii in range(self.nparams):
        #     se[ii]=numpy.sqrt(X_dash_X[ii,ii]*s_2)
        # logging.debug(s_2)
        # logging.debug(numpy.linalg.inv(X_dash_X))
        # #se = numpy.sqrt(numpy.diagonal(s_2 * numpy.linalg.inv(numpy.matrix(X.T, X))))
        se=numpy.sqrt(numpy.diagonal(s_2 * numpy.linalg.inv(self.X_dash_X)))

        self.se= se
        self.t = self.coef_ / se
        self.p = 2 * (1 - stats.t.cdf(numpy.abs(self.t), y.shape[0] - X.shape[1]))

        self.independent_ = []
        if isinstance(X,pd.DataFrame):
            self.independent_=X.columns.values
        #t_val=stats.t.ppf(1-0.05/2,y.shape[0] - X.shape[1])

        
        
        #R2 - 1-SSR/SST
        self.rsquared=1-SSR/SST
        #adjusted r2
        #1-[(1-R2)(n-1)/(n-k-1)]
        self.rsquared_adj=1-(((1-self.rsquared)*(self.nobs-1))/self.df_resid)
        #f-value
        f_value=(self.rsquared/(self.df_model))/\
            ((1-self.rsquared)/(self.df_resid+1))
        self.f_stat=f_value
        self.f_pvalue=stats.f.pdf(f_value,self.df_model,self.df_resid+1)