Esempio n. 1
0
    def __mul__(self, other):
        """interpret other and call one of the following

        self._mul_scalar()
        self._mul_vector()
        self._mul_multivector()
        self._mul_sparse_matrix()
        """

        M,N = self.shape

        if isscalarlike(other):
            # scalar value
            return self._mul_scalar(other)

        if issparse(other):
            if self.shape[1] != other.shape[0]:
                raise ValueError('dimension mismatch')
            return self._mul_sparse_matrix(other)

        try:
            other.shape
        except AttributeError:
            # If it's a list or whatever, treat it like a matrix
            other = np.asanyarray(other)

        other = np.asanyarray(other)

        if other.ndim == 1 or other.ndim == 2 and other.shape[1] == 1:
            # dense row or column vector
            if other.shape != (N,) and other.shape != (N,1):
                raise ValueError('dimension mismatch')

            result = self._mul_vector(np.ravel(other))

            if isinstance(other, np.matrix):
                result = np.asmatrix(result)

            if other.ndim == 2 and other.shape[1] == 1:
                # If 'other' was an (nx1) column vector, reshape the result
                result = result.reshape(-1,1)

            return result

        elif other.ndim == 2:
            ##
            # dense 2D array or matrix ("multivector")

            if other.shape[0] != self.shape[1]:
                raise ValueError('dimension mismatch')

            result = self._mul_multivector(np.asarray(other))

            if isinstance(other, np.matrix):
                result = np.asmatrix(result)

            return result
        else:
            raise ValueError('could not interpret dimensions')
Esempio n. 2
0
 def sum(self, axis=None):
     """Sum the matrix over the given axis.  If the axis is None, sum
     over both rows and columns, returning a scalar.
     """
     # We use multiplication by an array of ones to achieve this.
     # For some sparse matrix formats more efficient methods are
     # possible -- these should override this function.
     m, n = self.shape
     if axis == 0:
         # sum over columns
         return np.asmatrix(np.ones((1, m), dtype=self.dtype)) * self
     elif axis == 1:
         # sum over rows
         return self * np.asmatrix(np.ones((n, 1), dtype=self.dtype))
     elif axis is None:
         # sum over rows and columns
         return ( self * np.asmatrix(np.ones((n, 1), dtype=self.dtype)) ).sum()
     else:
         raise ValueError, "axis out of bounds"
Esempio n. 3
0
 def todense(self):
     return np.asmatrix(self.toarray())