Esempio n. 1
0
def get_overfeat_features(imgs, weights_path, typ, layer=None, cache=None):
    """Returns features at layer for given image(s) from OverFeat model.

    Small (fast) network: 22 layers
    Large (accurate) network: 25 layers

    Args:
        imgs:         Iterable of images each of shape (h,w,c)
        weights_path: Path to the OverFeat weights
        typ:          0 for small, 1 for large version of OverFeat
        layer:        The layer to extract features from
        cache:        Dict containing descs/other cached values
    """
    if cache is None:
        cache = {}
    if 'overfeat_descs' not in cache:
        # Initialize network
        print('Loading OverFeat ({}) model...'.format(typ))
        overfeat.init(weights_path, typ)
        # Determine feature layer if none specified
        if layer is None:
            if overfeat.get_n_layers() == 22:  # small
                layer = 19  # 16 also recommended
            else:  # large
                # Layer used by Zhang et al.
                layer = 22
        # Determine resize dim
        if typ == 0:
            resize = 231  # small network
        else:
            resize = 221  # large network
        # Allocate for feature descriptors
        descs = []
        # Run images through network
        print('Running images through OverFeat, extracting features '
              'at layer {}.'.format(layer))

        for idx, img in enumerate(imgs):
            if (idx + 1) % 100 == 0:
                print('Processing image {}...'.format(idx + 1))
            # Preprocess image
            img = overfeat_preprocess(img, resize)
            # Run through model
            _ = overfeat.fprop(img)
            # Retrieve feature output
            desc = overfeat.get_output(layer)
            descs.append(desc)
        # Free network
        overfeat.free()
        # NumPy-ify
        descs = np.asarray(descs)
        cache.update(overfeat_descs=descs)
    else:
        descs = cache['overfeat_descs']
    return descs, cache
Esempio n. 2
0
	def extract_feat(self, imgs, ftype):
		'''
			extract features
		'''
		if ftype is 'hog':
			
			from skimage.feature import hog
			L = np.sqrt(len(imgs[0])).astype(int)
			X_im = [imresize(arr.reshape((L, L)), (64, 64)) for arr in imgs]	
			pool = Pool(processes=8)
			X = pool.map(hog, X_im)
			pool.close()	
			return np.asarray(X)

		elif ftype is 'overfeat':

			overfeat.init('OverFeat/data/default/net_weight_0', 1)

			L = np.sqrt(len(imgs[0])).astype(int)
			imgs_color = [imresize(arr.reshape((L, L)), (231, 231)) for arr in imgs]

			if len(imgs_color[0].shape) != 3:
				cmap = pl.get_cmap('jet')
				imgs_color = [np.delete(cmap(im/255.), 3, 2) for im in imgs_color]

			imgs_roll = [im.transpose((2, 0, 1)).astype(np.float32) for im in imgs_color]

			feats = np.zeros((len(imgs_roll), 4096), dtype = float)
			for i in range(len(imgs_roll)):
				b = overfeat.fprop(imgs_roll[i])
				f22 = overfeat.get_output(22)
				f22 = np.asarray(f22).squeeze().astype(np.float)
				feats[i, :] = f22
			return feats 

		elif ftype is 'pix':

			return imgs 

		else:

			raise NameError('{0} is not implemented!'.format(ftype))
from sklearn.externals import joblib
from scipy.ndimage import imread
from scipy.misc import imresize

LAYER = 6
X = None
L = []
with open('data/train_outputs.csv', 'rb') as f:
    reader = csv.reader(f, delimiter=',')
    next(reader, None)
    for data in reader:
        L.append(data)

# quick network: layers 17, 19
# slow network: layers 20, 22
overfeat.init('/Users/npow/code/OverFeat/data/default/net_weight_0', 0)


def extract_features(layer, file_name):
    global X

    image = imread(file_name)
    image.resize((image.shape[0], image.shape[1], 1))

    # overfeat expects rgb, so replicate the grayscale values twice
    image = np.repeat(image, 3, 2)
    image = imresize(image, (231, 231)).astype(np.float32)

    # numpy loads image with colors as last dimension, so transpose tensor
    h = image.shape[0]
    w = image.shape[1]
        if filename == ".directory":
            continue
        image = imread(os.path.join(directory, filename)).astype(numpy.float32)
        # numpy loads image with colors as last dimension, transpose tensor
        h = image.shape[0]
        w = image.shape[1]
        c = image.shape[2]
        image = image.reshape(w * h, c)
        image = image.transpose()
        image = image.reshape(c, h, w)
        # run overfeat on the image
        overfeat.fprop(image)
        features = overfeat.get_output(19)
        d[filename] = features.copy()
    pickle.dump(d, open(dirname + "_full.txt", "w"))
    return d


overfeat.init('/home/juanjo/U/overfeat/data/default/net_weight_0', 0)
rootDir = "/home/juanjo/U/Búsqueda por Contenido en Imágenes y Videos/Proyecto/ResizedImages_6/"
# dTotal = {}

for subdir in os.listdir(rootDir):
    print subdir
    if os.path.exists(subdir + "_full.txt"):
        continue
    d = getDictOfFeatures(os.path.join(rootDir, subdir), subdir)
    # dTotal[subdir] = d

# pickle.dump(dTotal, open("features_full.txt", "w"))
Esempio n. 5
0
# resize and crop into a 231x231 image
h0 = image.shape[0]
w0 = image.shape[1]
d0 = float(min(h0, w0))
image = image[int(round((h0-d0)/2.)):int(round((h0-d0)/2.)+d0),
              int(round((w0-d0)/2.)):int(round((w0-d0)/2.)+d0), :]
image = imresize(image, (231, 231)).astype(numpy.float32)

# numpy loads image with colors as last dimension, transpose tensor
h = image.shape[0]
w = image.shape[1]
c = image.shape[2]
image = image.reshape(w*h, c)
image = image.transpose()
image = image.reshape(c, h, w)
print "Image size :", image.shape

# initialize overfeat. Note that this takes time, so do it only once if possible
overfeat.init('../../data/default/net_weight_0', 0)

# run overfeat on the image
b = overfeat.fprop(image)

# display top 5 classes
b = b.flatten()
top = [(b[i], i) for i in xrange(len(b))]
top.sort()
print "\nTop classes :"
for i in xrange(5):
    print(overfeat.get_class_name(top[-(i+1)][1]))
Esempio n. 6
0
  
  # OverFeat has 22 layers, including original image
  num_layers = 22
  
  # For filename purposes
  layer = 'all'
  layer = 10
  
  if layer == 'all':
    # Put all layers into one stacked confusion matrix
    confusion_matrix = np.zeros((num_layers, len(training_images), len(testing_images)))
  else:
    # Make the confusion matrix for a single layer
    confusion_matrix = np.zeros((len(training_images), len(testing_images)))

  overfeat.init(overfeat_root + 'data/default/net_weight_0', 0)
  
  for i in range(len(training_images)):

    print("Training Image %s of %s" % (i, len(training_images)))

    if smush:
      image = smush_overfeat_images(training_images[i])
    else:
      image = load_overfeat_image(training_images[i])

    b = overfeat.fprop(image)
    
    if layer == 'all':
      # Calculate features for all layers at once
      features = []
Esempio n. 7
0
from datetime import datetime
from multiprocessing import Process, Pool

from sensor_msgs.msg import Image
from rospy.numpy_msg import numpy_msg
from scipy.misc import imresize, imsave
from sklearn import svm
from sklearn.cross_validation import StratifiedKFold, cross_val_score
from skimage.feature import hog

OVERFEAT_DIM = 231
KINECT_WIDTH = 640
KINECT_HEIGHT = 480

# initialize overfeat. 0 = fast net, 1 = accurate net.
overfeat.init("../data/weights/net_weight_0", 0)

# list of unique classes as strings.
# indices correspond to the 'target' of each 'classification'.
classes = []

# list of training samples.
training = []

# each Sample is features data and the target of a classification.
Sample = namedtuple('Sample',
                    ['features', 'depth', 'classification', 'time', 'image'])

# will train svm classifier on features extracted using overfeat
svm_clf = svm.LinearSVC()
Esempio n. 8
0
 def fit(self, X=None, y=None):
     import overfeat  # soft dep
     overfeat.init(self.pretrained_params, self.network_size)
     return self
from PIL import Image
import numpy
import skimage
from skimage.feature import daisy, hog
import subprocess
import overfeat
import numpy
from scipy.ndimage import imread
from scipy.misc import imresize
import database_file
import time
from find_obj import init_feature
from asift import affine_detect

print "Initializing overfeat"
overfeat.init('overfeat/overfeat/data/default/net_weight_0', 0)


#overfeat_initialized = False
def extract_overfeat(image_path):
    # if overfeat_initialized == None or not overfeat_initialized:

    #   overfeat_initialized = True
    print "Overfeat: ", image_path
    image = imread(image_path)
    print "Image shape: ", image.shape
    if len(image.shape) == 2 or image.shape[2] == 2:
        image = skimage.color.gray2rgb(image)
    elif image.shape[2] == 4:
        image_rgb = numpy.zeros((image.shape[0], image.shape[1], 3),
                                numpy.uint8)
Esempio n. 10
0
	def initialize(self):
		# initialize overfeat. Note that this takes time, so do it only once if possible
		if self.debug == True:
			pdb.set_trace()
		overfeat.init('../../data/default/net_weight_'+str(self.network), self.network)
Esempio n. 11
0
w0 = image.shape[1]
d0 = float(min(h0, w0))
h1 = int(round(231*h0/d0))
w1 = int(round(231*w0/d0))
image = imresize(image, (h1, w1)).astype(numpy.float32)
image = image[int(round((h0-d0)/2.)):int(round((h0-d0)/2.)+231),
              int(round((w0-d0)/2.)):int(round((w0-d0)/2.)+231), :]

# numpy loads image with colors as last dimension, transpose tensor
h = image.shape[0]
w = image.shape[1]
c = image.shape[2]
image = image.reshape(w*h, c)
image = image.transpose()
image = image.reshape(c, h, w)
print "Image size :", image.shape

# initialize overfeat. Note that this takes time, so do it only once if possible
overfeat.init('../../data/default/net_weight_0', 0)

# run overfeat on the image
b = overfeat.fprop(image)

# display top 5 classes
b = b.flatten()
top = [(b[i], i) for i in xrange(len(b))]
top.sort()
print "\nTop classes :"
for i in xrange(5):
    print(overfeat.get_class_name(top[-(i+1)][1]))
Esempio n. 12
0
		# numpy loads image with colors as last dimension, transpose tensor
		h = image.shape[0]
		w = image.shape[1]
		c = image.shape[2]
		image = image.reshape(w*h, c)
		image = image.transpose()
		image = image.reshape(c, h, w)
	except:
		return None
	return image

def print_features(image_path, features):
	line = image_path + '\t' + '\t'.join(map(str,features))
	print(line) 
	

# initialize overfeat. Note that this takes time, so do it only once if possible
overfeat.init(network_path, 0)

for image_path in sys.stdin:
 	image_path = image_path[:-1] # remove \n char
	image = read_image(image_path)
	# run overfeat on the image
	features = []
	if not image is None:
		b = overfeat.fprop(image)
		features = overfeat.get_output(layer_index).flatten()
		print_features(image_path, features)

Esempio n. 13
0
    '''train and test scikit.svm on photo features extracted using overfeat.'''
    # read in and reshape photos
    photo_files = get_photo_files(get_photo_path())
    photos = [read_in_photo(path) for path in photo_files]

    # split photos into training and test
    test_photo   = photos.pop(-2)
    train_photos = photos
    # (TODO don't hard code targets)
    test_target   = np.array([1])
    train_targets = np.array([0,0,0,0,0,0,0,0,1,1,1,1,1,1,1])
    # TODO make this cleaner
    photo_files.pop(-2)

    # initialize overfeat weights. fast net: 0. large net: 1.
    overfeat.init("./data/default/net_weight_0", 0)

    # concurrently extract photo features and predictions using overfeat
    pool = Pool()
    likelihoods, train_features = [np.array(tup) for tup in zip(*pool.map(process_through_net, train_photos))]
    pool.close()
    pool.join()

    # print overfeat predictions
    print_overfeat_predictions(photo_files, likelihoods)

    # train svm on extracted photo features
    classifier = svm.SVC()
    classifier.fit(train_features, train_targets)

    # test classification
Esempio n. 14
0
from datetime import datetime
from multiprocessing import Process, Pool

from sensor_msgs.msg import Image
from rospy.numpy_msg import numpy_msg
from scipy.misc import imresize, imsave
from sklearn import svm
from sklearn.cross_validation import StratifiedKFold, cross_val_score
from skimage.feature import hog

OVERFEAT_DIM = 231
KINECT_WIDTH  = 640
KINECT_HEIGHT = 480

# initialize overfeat. 0 = fast net, 1 = accurate net.
overfeat.init("../data/weights/net_weight_0", 0)

# list of unique classes as strings. 
# indices correspond to the 'target' of each 'classification'.
classes  = []

# list of training samples.
training = []

# each Sample is features data and the target of a classification.
Sample = namedtuple('Sample', ['features','depth','classification','time','image'])

# will train svm classifier on features extracted using overfeat
svm_clf = svm.LinearSVC()

# use `image` and `depth` in other functions to access kinect frames.
Esempio n. 15
0
            testing_images.append(index_mat[i][0, j][0])

#net_types = ["OverFeat", "GoogLeNet", "CaffeNet", "Cifar10"]
net_types = ["GoogLeNet", "CaffeNet", "Cifar10"]
num_images = [10, 50, 100, 500, 1000]
timing_data = {}

for net_type in net_types:
    timing_data[net_type] = {}
    for num_image in num_images:
        print("Timing %s for %s images" % (net_type, num_image))

        # OverFeat does not use caffe
        if net_type == 'OverFeat':

            overfeat.init(overfeat_root + 'data/default/net_weight_0', 0)

            start = time.clock()
            for i in range(num_image):

                image = smush_overfeat_images(training_images[i])

                b = overfeat.fprop(image)

            end = time.clock()
            elapsed = end - start
            print(elapsed)
            timing_data[net_type][num_image] = elapsed

        # Use caffe for all other models
        else:
Esempio n. 16
0
 def fit(self, X=None, y=None):
     import overfeat  # soft dep
     overfeat.init(self.pretrained_params, self.network_size)
     return self
from PIL import Image
import numpy
import skimage
from skimage.feature import daisy, hog
import subprocess
import overfeat
import numpy
from scipy.ndimage import imread
from scipy.misc import imresize
import database_file
import time
from find_obj import init_feature
from asift import affine_detect

print "Initializing overfeat"
overfeat.init('overfeat/overfeat/data/default/net_weight_0', 0)


#overfeat_initialized = False
def extract_overfeat(image_path):
  # if overfeat_initialized == None or not overfeat_initialized:
    
  #   overfeat_initialized = True
  print "Overfeat: ", image_path
  image = imread(image_path)
  print "Image shape: ", image.shape
  if len(image.shape) == 2 or image.shape[2] == 2:
    image = skimage.color.gray2rgb(image)
  elif image.shape[2] == 4:
    image_rgb = numpy.zeros((image.shape[0],image.shape[1], 3), numpy.uint8)
    image_rgb[:,:,0] = image[:,:,0]