Esempio n. 1
0
def parakeet_update_centroids(X, assignments, k):
  d = X.shape[1]

  new_centroids = np.zeros((k,d), dtype=X.dtype)
  for i in xrange(k):
    mask = (assignments == i)
    count = np.sum(mask)
    assigned_data = X[mask]
    if count == 1:
      new_centroids[i, :] = assigned_data[0]
    elif count > 1:
      new_centroids[i,:] = parakeet.mean(assigned_data)
  return new_centroids
Esempio n. 2
0
def parakeet_update_centroids(X, assignments, k):
  d = X.shape[1]

  new_centroids = np.zeros((k,d), dtype=X.dtype)
  for i in xrange(k):
    mask = (assignments == i)
    count = np.sum(mask)
    assigned_data = X[mask]
    if count == 1:
      new_centroids[i, :] = assigned_data[0]
    elif count > 1:
      new_centroids[i,:] = parakeet.mean(assigned_data)
  return new_centroids
Esempio n. 3
0
def test_mean():
  x = np.random.randn(1000) 
  true_mean = np.mean(x)
  parakeet_mean = par.mean(x)
  print "Numpy mean = %s, Parakeet mean = %s" % (true_mean, parakeet_mean)
  assert abs(true_mean - parakeet_mean) < 0.00001
Esempio n. 4
0
def calc_centroid(X, a, i):
    return par.mean(X[a == i], axis=0)