def main(_):
    hps = param()
    path_list = [hps.save_path, hps.img_save_path, hps.log_path]

    keys = ['run_name', 'epoch', 'batch_size', 'z_dim', 'lr']

    for k in keys:
        v = FLAGS[k].value
        if v is not None:
            print('{} value will be changed to; {}'.format(k, v))
            setattr(hps, k, v)
            if k is 'run_name':
                path_list.append(os.path.join(hps.log_path, v))
                path_list.append(os.path.join(hps.save_path, v))
                path_list.append(os.path.join(hps.img_save_path, v))

    make_path(path_list)

    train_data, train_size, _, _, test_data, test_labels = mnist_data.prepare_MNIST_data(
    )

    train_img = train_data[:, :-mnist_data.NUM_LABELS]
    train_label = train_data[:, -mnist_data.NUM_LABELS:]
    print("INFO: Loaded MNIST data, shape: {}".format(train_data.shape))

    with tf.Session() as sess:
        model = AdversarialAutoEncoder((train_img, train_label), train_size,
                                       hps, sess)

        tf.logging.info("Start Training")
        trainer = Trainer((train_img, train_label), train_size, hps, sess,
                          model)
        trainer.learn()
Esempio n. 2
0
def crossPGA(parentA,parentB,children=2):
    #Creating Child Param
    childParam=param.param()
    #Locking abundance ratios
    if lockTiCr:
        childParam.comp.lockTiCr=True
    if lockScTi:
        childParam.comp.lockScTi=True
    if lockVCr:
        childParam.comp.lockVCr=True
    #Initialising mutation counter
    childParam.mutations=0
    
    selParameters=selElements+['lum','vph']
    selParamLen=len(selParameters)
    
    #Checking crossOverProbability
    crossOverPoint=random.uniform(1,selParamLen-1)
    paramChoice=random.permutation(selParameters)
    #Crossover Selecting from both parents
    for paramName in paramChoice[:crossOverPoint]:
        childParam[paramName]=parentA[paramName]
        
    for paramName in paramChoice[crossOverPoint:]:
        childParam[paramName]=parentB[paramName]
            
    childParam=mutateUniform(childParam)
    childParam.comp.resetOxygen()
    if childParam['O']<0: raise dalekExceptions.geneticException('Crossover: Child has negative oxygen')
    return childParam
Esempio n. 3
0
def read_hp_values(file_location):

    # read folder_name
    f = open(constants.INFO_FOLDER + file_location)

    hp_values = param.param()
    folder_name = f.readline().strip()



    for line in f.readlines():
        s = line.strip().split(',')
        if s[0] == 'hp':
            to_add = []
            the_type = s[2]
            the_name = s[1]
            for i in range(3,len(s)):
                if the_type == 'f':
                    to_add.append(float(s[i]))
                elif the_type == 'i':
                    to_add.append(int(s[i]))
                elif the_type == 's':
                    to_add.append(s[i])
            hp_values.set_param(the_name, to_add)

    return hp_values
Esempio n. 4
0
def getFicaModel(conn, modelID, origSpecID=None):
    curs = conn.cursor()
    
    #retrieving origSpec:
    if origSpecID != None:
        origSpec = curs.execute('select spectrum from sn_spectra where id=%s' % origSpecID)
    
    #Retrieving the Model
    (machineName, execTime, wFactor, errorString,
    abundanceID, dicaID,
    lumVphID, spectrumID) = curs.execute('select MACHINE, TIME, W, ERROR, '
                 'ABUNDANCE_ID, DICA_ID, LUMVPH_ID, SPECTRUM_ID '
                 'from FICA_MODEL where FICA_MODEL.ID=%s' % modelID).fetchall()[0]
    #getting dica params
    colNames = zip(*curs.execute('PRAGMA table_info(fica_dica)').fetchall())[1]
    colNames = map(str, colNames)
    colValues = curs.execute('select * from fica_dica where id=%s' % dicaID).fetchall()[0]
    dicaDict = dict(zip([convertFields2Dica[item] for item in colNames[1:]], colValues[1:]))
    lum, vph = curs.execute('select LUM, VPH from FICA_LUMVPH where FICA_LUMVPH.ID=%s' % lumVphID).fetchall()[0]
    dicaDict['log_lbol'] = lum
    dicaDict['v_ph'] = vph
    
    dica = param.dica(initDica=dicaDict, mode='fromDict')
    return dica
    
    #getting abundances
    colNames = zip(*curs.execute('PRAGMA table_info(fica_abundance)').fetchall())[1]
    colNames = map(str, colNames)
    colValues = curs.execute('select * from fica_abundance where id=%s' % abundanceID).fetchall()[0]
    compDict = dict(zip(colNames[1:], colValues[1:]))
    comp = param.comp(initComp=compDict, t=dica['t'])
    comp._setNiDecay()
    
    curParam = param.param(initDica=dica, initComp=comp)
Esempio n. 5
0
def read_param(file_location):
    
    # read folder_name
    f = open(constants.INFO_FOLDER + file_location)
    the_params = param.param({})
    hp_values = param.param()
    folder_name = f.readline().strip()

    global_stuff.RESULTS_FOLDER = global_stuff.RESULTS_BASE_FOLDER + folder_name + '/'

    for line in f.readlines():
        print line
        if line[0] != '#':
            s = line.strip().split(',')
            if s[0] != 'hp':
                the_name = s[0]
                if the_name == 'n':
                    node_features = []
                    for i in range(1, len(s)):
                        node_features.append(constants.get_master_node_feature_list()[int(s[i])])
                    the_params.set_param('n', node_features)
                if the_name == 'e':
                    edge_features = []
                    for i in range(1, len(s)):
                        edge_features.append(constants.get_master_edge_feature_list()[int(s[i])])
                    the_params.set_param('e', edge_features)
                try:
                    the_type = s[1]
                    if the_type == 'f':
                        the_params.set_param(the_name, float(s[2]))
                    elif the_type == 'i':
                        the_params.set_param(the_name, int(s[2]))
                    elif the_type == 's':
                        the_params.set_param(the_name, s[2])
                except:
                    pass

    # hp values file happens to be the same as info file, so set that

    the_params.set_param('hpvf', file_location)


    if len(the_params.get_param('e')) != 0:
        assert the_params.get_param('wif') != 2

    
    return folder_name, the_params
Esempio n. 6
0
 def __init__(self, ctr):
     super().__init__(ctr)
     self.bspread = 20
     self.aspread = 20
     self.eblean = 0
     self.ealean = 0
     self.olean = 0  # used in b,a for option spot calculation. OptionSpot = (b+a)/2+olean
     self.par = param.param('spread.DAS', self.on_spread)
Esempio n. 7
0
def createOptions():
    option.pvol = param.param('option.vol', option.on_vol)
    for i, j in ledx.market.contract.contracts.items():
        try:
            if 'option' in j.msg['derivative_type'] and j.msg['active']:
                x = option(j.msg, j)
        except Exception as e:
            logging.warning(e)
    logging.info('options created ' + str(len(option.options)))
Esempio n. 8
0
def crossArith(parentA,parentB,mutationRate=0.2):
    childParam=param.param()
    rChoice=random.permutation(selElements)
    for element in rChoice:
        childParam[element]=np.mean([parentA[element],parentB[element]])
    if childParam['O']<0: raise Exception('Crossover: Child has negative oxygen')
    if any(np.array(childParam.comp.data.values())<0):
        raise dalekExceptions.geneticException('Negative values: %s'%childParam.comp.data.values())
    childParam['lum']=np.mean([parentA['lum'],parentB['lum']])
    childParam['vph']=np.mean([parentA['vph'],parentB['vph']])
    return childParam
Esempio n. 9
0
File: SSC.py Progetto: metocean/SSC
def set_params(options, param_file):
    ## default ##
    options['params']['unit'] = 'second'
    options['params']['dt'] = 162
    options['params']['hotstart'] = 2
    options['params']['rnday'] = 59
    options['params']['output dt'] = 486
    options['params']['file length'] = 44712  #12.42 hours in seconds
    options['params']['hotstart dt'] = 44712  # in seconds

    p = param()
    p.pass_values(options['params'])
    p.write(fileout=param_file)
Esempio n. 10
0
def get_param():
    import param






    p = param.param({'ev':.05, 'uniprot_id':'REVERSE', 'avg_deg':1, 'n_cutoff':0, 'f_cutoff':15, 'which_msa':0, 'which_weight':1, 'which_dist':3, 'pseudo_c':0.1, 'which_blast':2, 'blmax':999999, 'which_impute':0, 'filter_co':0.35, 'psicov_sep':6, 'psicov_gap':0.5, 'psicov_r':.001, 'psiblast_iter':1, 'hhblits_iter':2, 'co':5.0, 'which_dataset':'hemo_stone', 'which_neighbors':1, 'protein_list_file':'rascalled_completed', 'to_leon':0, 'to_cluster':1, 'to_rascal':1, 'to_normd':0, 'norm_co':9.0, 'mut_freq':15})




    return p
Esempio n. 11
0
def crossSingle(parentA,parentB):
    #Creating Child Param
    childParam=param.param()
    #Locking abundance ratios
    if config.GAConfDict['lockTiCr']:
        childParam.comp.lockTiCr=True
    if config.GAConfDict['lockScTi']:
        childParam.comp.lockScTi=True
    if config.GAConfDict['lockVCr']:
        childParam.comp.lockVCr=True
    
    #Initialising mutation counter
    childParam.mutations=0
    
    #selParameters=selElements+['lum','vph']
    
    selParameters=config.GAConfDict['selParameters']
    
    #closedGAParameters = list(set(config.GAConfDict['openGAParametersDefault'])
    #                          - set(config.GAConfDict['openGAParameters']))
    
    closedGAParameters = []
    selParamLen = len(selParameters)
    
    #Checking crossOverProbability
    if random.random()<config.GAConfDict['crossOverProbability']:
        crossOverPoint=random.uniform(1,selParamLen-1)
        paramChoice=random.permutation(selParameters)
        
        #Crossover Selecting from both parents
        for paramName in paramChoice[:crossOverPoint]:
            childParam[paramName]=parentA[paramName]
            
        for paramName in paramChoice[crossOverPoint:]:
            childParam[paramName]=parentB[paramName]
    else:
        #No crossover, selecting parameters from ParentA
        for paramName in selParameters:
            childParam[paramName]=parentA[paramName]
            
    if closedGAParameters != []:
        for paramName in selParameters:
            childParam[paramName] = parentA[paramName]
            
    childParam=mutateUniform(childParam)
    childParam.comp.resetOxygen()
    if childParam['O']<0: raise dalekExceptions.geneticException('Crossover: Child has negative oxygen')
    
    return childParam
Esempio n. 12
0
    def fromPath(cls, basePath=".", machineName=None, param=None, origSpec=None, fitFunc=None, t=None, execTime=None):
        if param == None:
            dicaData = fileio.dicafile(os.path.join(basePath, "dica.dat")).read_data()
            compData = fileio.compfile(os.path.join(basePath, "comp.ind")).read_data()
            dica = paramMod.dica(dicaData, mode="fromPath", t=t)
            comp = paramMod.comp(compData, t=dica["t"])
            param = paramMod.param(initDica=dica, initComp=comp)

        aSpecPath = os.path.join(basePath, "spct.dat")
        try:
            aSpec = spectrum(aSpecPath, usecols=(0, 2))
            sbib = fileio.sbibfile(os.path.join(basePath, "sbib.dat")).read_data()
            llist = sbib["llist"]
            wParams = fileio.ststfile(os.path.join(basePath, "stst.dat")).getWParams()
            specFlag = 0
        except:
            print "Creating fake Spectrum @%s" % basePath
            aSpec = spectrum(zip(np.linspace(2000, 20000, 20), range(1, 21)))
            sbib = {"llist": []}
            llist = sbib["llist"]
            wParams = []
            specFlag = -1

        log = list(file(os.path.join(basePath, "fica.log")))
        # error=list(file(os.path.join(basePath,'error.log')))

        if wParams != []:
            w = wParams[-1][0][-1]
        else:
            w = -1

        return cls(
            aSpec,
            param,
            w,
            machineName=None,
            execTime=execTime,
            wParam=wParams,
            error=None,
            ficaLog=log,
            llist=llist,
            origSpec=origSpec,
            specFlag=specFlag,
            fitFunc=fitFunc,
        )
Esempio n. 13
0
def initTriCycle(IGEElement,doPickle=True,samples=10):
    fitHist=param.fitHistory()
    lumInterval=runLumCycle(maxIter=5)
    curParam=param.param()
    curParam['lum']=lumInterval['suggestValue']
    intervals={'luminterval':lumInterval['interval'],
               'vphinterval':initialize.getVphBounds(),
                #make sure that no other metal really shoots up
                'igeinterval':initialize.getElementBounds(IGEElement,curParam.comp)}
    #pdb.set_trace()
    lumRange=np.linspace(intervals['luminterval'][0],intervals['luminterval'][1],num=samples)
    vphRange=np.linspace(intervals['vphinterval'][0],intervals['vphinterval'][1],num=samples)
    IGERange=np.linspace(intervals['igeinterval'][0],intervals['igeinterval'][1],num=samples)
    lumMG,vphMG,IGEMG,curParamMG=launcherSteps.launchTriCycle(lumRange,vphRange,IGERange,IGEElement,initParam=curParam)
    if doPickle:
        pickle.dump(lumMG,file('lumMG0.pkl','w'))
        pickle.dump(vphMG,file('vphMG0.pkl','w'))
        pickle.dump(IGEMG,file('igeMG0.pkl','w'))
    
    evalTriCycle(lumMG,vphMG,IGEMG,curParamMG,curParam,intervals,fitHist,IGEElement,mode='init')
    return fitHist,curParam,intervals
Esempio n. 14
0
def createRandomParam(randomParamFunc=None):
    #creating new paramObject
    lumLimits = config.GAConfDict['lumLimits']
    vphLimits = config.GAConfDict['vphLimits']
    randomParam=param.param()
    if config.GAConfDict['lockTiCr']:
        randomParam.comp.lockTiCr=True
    if config.GAConfDict['lockScTi']:
        randomParam.comp.lockScTi=True
    if config.GAConfDict['lockVCr']:
        randomParam.comp.lockVCr=True
    if randomParamFunc==createRandomLogNormalValueBestFit:
        fname=glob('*.bf.pkl')[0]
        bestFitParam=cPickle.load(file(fname))
        #Limiting luminosity and photospheric velocity near best fit value, commented out atm
        #randomParam['lum']=random.uniform(bestFitParam['lum']-0.1,bestFitParam['lum']+0.1)
        #no limit for lum parameter
        #randomParam['lum']=bestFitParam['lum']
        randomParam['lum']=random.uniform(*lumLimits)
    else:
        randomParam['lum']=random.uniform(*lumLimits)
    
    randomParam['vph']=random.uniform(*vphLimits)
    
    
    rChoice=random.permutation(config.GAConfDict['selElements'])
    for element in rChoice:
        bounds=initialize.getElementBounds(element,randomParam.comp)
        curAbundance=randomParam[element]
        #newAbundance=random.uniform(bounds[0],bounds[1])
        newAbundance=randomParamFunc(curAbundance,element,bounds)
        if any(np.array(bounds)<0): raise Exception('Negative Bounds')
        randomParam[element]=newAbundance
        randomParam.comp.resetOxygen()
        if randomParam['O']<0: pdb.set_trace()
        if randomParam[element]<0: pdb.set_trace()
        if randomParam.comp.data.has_key('element'): raise Exception()
    #randomParam['Ca']=0.01
    #randomParam['vph']=11700
    return randomParam
Esempio n. 15
0
 def human_classify(self, record):
     import wc
     import param
     p = param.param({'pid':record.pid, 'rec_idx':record.idx})
     stored_qa = wc.get_stuff(side_effect_human_input_report_labels, p)
     import quesions
     the_q = questions.urinary_incontinence
     try:
         ans = stored_qa[the_q]
     except KeyError:
         raise my_exceptions.NoFxnValueException
     else:
         if ans == 0:
             raise my_exceptions.NoFxnValueException
         else:
             if ans in [1,2]:
                 return 1
             elif ans in [3,4]:
                 return 0
             else:
                 pdb.set_trace()
                 raise
Esempio n. 16
0
 def __init__(self, maker, params=param({})):
     #        pdb.set_trace()
     maker, params = self.before_init(maker, params)
     self.other_init(maker, params)
     self.basic_init(maker, params)
Esempio n. 17
0
import global_stuff

import wc
import param
import objects
import sys

which_job = int(sys.argv[1])
total_jobs = int(sys.argv[2])

which_object = objects.pairwise_dist

f = open(global_stuff.protein_list_file, "r")

i = 0
for line in f:
    if i % total_jobs == which_job:
        protein_name = line.strip()
        wc.get_stuff(which_obj, param.param({"uniprot_id": protein_name}), True, True, False)
Esempio n. 18
0
from glob import glob
import os
import random

import cv2
import imageio
from tensorflow.keras import backend as K
# from keras.applications.vgg16 import VGG16, preprocess_input, decode_predictions
from tensorflow.keras.preprocessing import image
from tensorflow.keras.models import load_model
from matplotlib import pyplot as plt
import numpy as np

import param

p = param.param()
rand = random.Random(42)

assert K.image_data_format() == 'channels_last'


def preprocess_input(imgs):
    batch = []
    for img in imgs:
        img = np.array(img, dtype=float)
        img -= np.amin(img)
        img /= np.amax(img)
        batch.append(img)

    batch = np.array(batch)
    return batch
Esempio n. 19
0
Exps = collections.defaultdict(list)
Labels = {}
Ids = {}
for i, j in contracts.items():
    if j['derivative_type'] == 'options_contract':
        Ids[j['label']] = i
        Labels[i] = j['label']
        exp = dateutil.parser.parse(
            j['date_expires']).replace(tzinfo=None).date()
        Exps[exp].append(j)

NamesS = set(Ids.keys())
ExpS = set([i.isoformat() for i in Exps.keys()])

p = param.param('option.vol')

rex1 = re.compile('(\d+[\.]?\d*)')
rex2 = re.compile('([+-]?\d+[\.]?\d*),([+-]?\d+[\.]?\d*)')
rex3 = re.compile('(\d+),(\d+)')
rex1 = re.compile('(\d+[\.]?\d*)')
rex1n = re.compile('([+-]?\d+[\.]?\d*)')
rexb = re.compile('True|False')
rexday = re.compile('(BTC|ETH)-Day$')
rexdayK = re.compile('(BTC|ETH)-Day-(Call|Put)-\$([0-9,]*)$')


def getSize(x):
    name = input("What's your " + x + " bsize/asize? ")
    res = rex3.match(name)
    if res:
Esempio n. 20
0
import param
import math
import functools

#Puntos
P = [(-3, 0), (-1, 4), (2, 3), (4, 1)]
n = 4
param.points(*zip(*P))


# Calcular polinomio
def a(i, t):
    # Productoria
    factors = ((t - k) / (i - k) for k in range(n) if k != i)
    return functools.reduce(lambda x, y: x * y, factors)


def L(t):
    X, Y = zip(*P)
    return \
    sum(X[i]*a(i,t) for i in range(n)), \
    sum(Y[i]*a(i,t) for i in range(n))


param.param(L, 0, n - 1, 100)
for line in f:
    name = line.strip()
    folder = global_stuff.base_folder + name + '/'
    files = os.listdir(folder)
    has_easy = False
    has_dist = False
    enough_rows = False
    for a_file in files:
        if 'easy' in a_file:
            has_easy = True
            subprocess.call(['cp', folder+a_file, folder+'msa'])
        if 'pairwise' in a_file:
            has_dist = True
            subprocess.call(['cp', folder+a_file, folder+'dists'])

            # copy to better file_name
    msa = wc.get_stuff(objects.agW, param.param({'uniprot_id':name, 'ev':evalue}), False, False, False)
    if len(msa) > 50:
        enough_rows = True

    if has_easy and has_dist and enough_rows:
        completed.append(name)

g = open(global_stuff.completed_list_file, 'w')
for name in completed:
    g.write(name + '\n')

f.close
g.close()
pdb_folders = os.listdir(home)

f = open(pdb_list_file, 'w')

new_folders = []



for folder in pdb_folders:

    s = folder.strip().split('_')


    pdb_name = s[0]
    params = param.param({'p':pdb_name})

    while 1:
        try:
            g = wc.get_stuff(objects.fW, params, False, False, False)
        except Exception, err:
            print err
            import time
            time.sleep(20)
        else:
            break

    structure = Bio.PDB.PDBParser().get_structure(params.get_param('p'), g)
    if s[1] == '':
        letter = structure[0].child_dict.keys()[0]
    else:
Esempio n. 23
0
    `plot.show()`
'''


# __MATH MODULES__________________________
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy import stats
import seaborn as sns

# __USER MODULES__________________________
import read_table as rt
import param

param = param.param()
path = param['in']
freq_start = param['freq_start']
freq_stop = param['freq_stop']
freq_num = param['number_of_rows']
freq_index = np.linspace(freq_start, freq_stop, freq_num)   # 周波数範囲


# __DATA__________________________
df = rt.dataframe(path, regex='20160201_00')  # regexが空のときはdataglob()によって入力が施される


def plt_setting(plot_element):
    '''
    引数:
            plot_element:プロットする要素数(value)
Esempio n. 24
0
import param
import math

#Puntos
P = [(-1, 0), (1, 4), (3, -2), (4, 3), (6, 1)]
n = 5
k = 3
param.points(*zip(*P))


# Algoritmo de De Boore
def S(t):
    d_x, d_y = zip(*(P + [(0, 0)]))
    a = int(t)
    for j in range(1, k + 1):
        temp_x, temp_y = [0] * (n + 1), [0] * (n + 1)
        for i in range(a - 3 + j, a + 1):
            a_ir = (t - i) / (k - j + 1)
            temp_x[i] = (1 - a_ir) * d_x[i - 1] + a_ir * d_x[i]
            temp_y[i] = (1 - a_ir) * d_y[i - 1] + a_ir * d_y[i]
        d_x, d_y = temp_x, temp_y
    return d_x[a], d_y[a]


param.param(S, 3., 5., 100)
Esempio n. 25
0
import param

#Puntos
P = [(-3, 0), (-1, 4), (2, 3), (4, 1)]
n = 4
param.points(*zip(*P))


# Polinomio hallado en el examen
def B(t):
    return \
    -3 + 6*t + 3*t**2 - 2*t**3, \
    12*t - 15*t**2 + 4*t**3


param.param(B, 0., 1., 100)
def get_param():
    import param
    p = param.param({'ev':1e-10, 'protein_list_file':'mf_done', 'uniprot_id':'Q8WXA2', 'avg_deg':3, 'n_cutoff':0, 'f_cutoff':15, 'which_msa':1, 'which_weight':1, 'which_dist':1, 'pseudo_c':1})
    return p
Esempio n. 27
0
    def __init__(self, maker, params = param({})):
#        pdb.set_trace()
        maker, params = self.before_init(maker, params)
        self.base_folder = global_stuff.base_folder
        self.other_init(maker, params)
        self.basic_init(maker, params)
import random 

random.seed(111)


EPS = 1e-6
nVariables = 10
nCassures = 60
xMin = -10*np.arange(nVariables)-10
xMax = +10*np.arange(nVariables)+10
ITERATIONS = []
nIterations = len(ITERATIONS)
CUT_RHS = np.empty(len(ITERATIONS))
CUT_COEFF = np.empty((nVariables, nIterations), dtype = object)
CUT_POINT = np.empty((nVariables, nIterations), dtype = object)

parametres = param(EPS, nVariables, nCassures, nIterations, xMin, xMax, ITERATIONS, CUT_RHS, CUT_COEFF, CUT_POINT)
X = X_generator(parametres)
r = Modele(parametres).resultats()
m = Modele

final_result = cutting_plane(parametres, m, X)

#Print solution

print("x* = %s " %final_result['x'])

#Check : final_result['pb'].status : optimal = 1
        

Esempio n. 29
0
from __future__ import division

import scipy.misc

import tensorflow as tf
from param import param
import numpy as np
import os

hps = param()


def load_dataset(data, label=None):
    try:
        _, _ = data.shape
    except:
        raise ValueError("Data type should be ndarray")

    if label is None:
        label = np.zeros_like(data)

    dataset = tf.data.Dataset.from_tensor_slices((data, label))
    dataset = dataset.map(parse_img)
    dataset = dataset.shuffle(100000).repeat()
    dataset = dataset.batch(hps.batch_size)

    return dataset


def parse_img(img, label):
    img = tf.cast(img, tf.float32)
Esempio n. 30
0
class twosided(object):
    Out = {}
    market = None
    lastb = None
    lasta = None
    last_spot = None
    orders = {}
    pstatus = param.param('quoting.status', order.on_status)

    def __init__(self, ctr):
        self.contract = ctr
        self.bspread = 500.
        self.aspread = 500.
        self.espread = 0.
        self.bsize = 2
        self.asize = 2
        self.lastac = None
        self.lastbc = None
        self.lastao = order(ctr)
        self.lastbo = order(ctr)
        self.lastao.quoting = True
        self.lastbo.quoting = True
        self.ok = True
        self.option = None
        twosided.Out[ctr] = self
        twosided.orders[ctr.id] = {
            True: self.lastao,
            False: self.lastbo
        }  # 'is_ask': True is an offer

    @staticmethod
    async def cancel():
        for i, j in twosided.Out.items():
            await j.lastao.cancel()
            await j.lastbo.cancel()
            j.lastac = None
            j.lastbc = None

    async def canceltwo(self):
        await self.lastao.cancel()
        await self.lastbo.cancel()
        self.lastac = None
        self.lastbc = None

    def on_fill(self, msg):
        self.lastac = None
        self.lastbc = None
        if self.option is not None:
            self.option.on_fill(msg)

    async def on_spot(self, prb, pra=None):
        if pra is None:
            if prb is None: return
            pra = prb
        twosided.lastb = prb
        twosided.lasta = pra
        twosided.last_spot = (prb + pra) / 2.

    async def on_quote(self, prb, pra):
        self.ok = False
        prbc = order.cents(prb)
        prac = order.cents(pra + 0.25)
        if prbc != self.lastbc and prac != self.lastac:
            bf = prbc < self.lastbc if self.lastbc is not None else True
            self.lastbc = prbc
            self.lastac = prac
            if bf:
                res = await self.lastbo.send(self.bsize, prb)
                res = await self.lastao.send(-self.asize, pra)
            else:
                res = await self.lastao.send(-self.asize, pra)
                res = await self.lastbo.send(self.bsize, prb)
            self.ok = True
            return
        if prbc != self.lastbc:
            self.lastbc = prbc
            res = await self.lastbo.send(self.bsize, prb)
        elif prac != self.lastac:
            self.lastac = prac
            res = await self.lastao.send(-self.asize, pra)
        self.ok = True

    async def on_spread(self, cmd):
        logging.info('spread update ' + str(cmd))
        if 'bspread' in cmd: self.bspread = float(cmd['bspread'])
        if 'bsize' in cmd: self.bsize = int(cmd['bsize'])
        if 'aspread' in cmd: self.aspread = float(cmd['aspread'])
        if 'asize' in cmd: self.asize = int(cmd['asize'])
        self.espread = 0
Esempio n. 31
0
import f as features
import new_new_objects as objects
import param

# import try_svm

# [features.xW, features.akW]

# the_dict = {'data_list_file':'q.pl', 'edge_feature_list':[features.xW, features.akW], 'node_feature_list':[features.ayW, features.xW, features.vW, features.uW, features.wW, features.zW], 'dist_cut_off':5, 'pdb_name':'1b6b', 'chain_letter':'B', 'reg':10, 'mfmi':100, 'wif':0, 'wfld':0, 'nfld':2, 'ns':2, 'wob':0, 'evalue':1e-10, 'pos1':1, 'pos2':2, 'wreg':1, 'trun':99, 'wclf':objects.pW, 'svmC':10}

# the_dict = {'hp':param.param(), 'd':'cw.pl', 'e':[features.xW, features.akW], 'n':[features.beW, features.bbW, features.ayW, features.xW, features.vW, features.uW, features.wW, features.zW], 'co':5, 'pdb_name':'12as', 'chain_letter':'A', 'reg':100, 'mfmi':20, 'wif':0, 'wfld':0, 'nfld':2, 'ns':2, "wob":0, 'wob2':2, 'evalue':1e-10, 'pos1':1, 'pos2':2, 'wreg':1, 'trun':99, 'wclf':objects.pW, 'svmC':10, 'lgn':9, 'lgc':5, 'pos':45, 'nwc':-1.0, 'micut':5, 'wtpr':0, 'posw':150, 'sfc':1, 'self':False, 'mx':50, 'ok':3, 'ik':2, 'md':1, 'tj':1, 'wj':0, 'hpvf':'test_hp'}

the_dict = {
    "hp": param.param(),
    "d": "cw.pl",
    "e": [],
    "n": [features.beW, features.bbW, features.ayW, features.xW, features.vW, features.uW, features.wW, features.zW],
    "co": 5,
    "pdb_name": "12as",
    "chain_letter": "A",
    "reg": 100,
    "mfmi": 20,
    "wif": 2,
    "wfld": 0,
    "nfld": 2,
    "ns": 2,
    "wob": 0,
    "wob2": 2,
    "evalue": 1e-10,
    "pos1": 1,
    "pos2": 2,
Esempio n. 32
0
    def fromDB(cls, conn, modelID, GARunID=None):
        curs = conn.cursor()

        # retrieving origSpec:
        if GARunID != None:
            origSpec = curs.execute("select SN_SPECTRUM from GA_RUN where id=%s" % GARunID).fetchall()[0][0]

        else:
            origSpec = None

        # Retrieving the Model
        (
            machineName,
            execTime,
            wFactor,
            errorString,
            ficaLog,
            abundanceID,
            dicaID,
            lumVphID,
            spectrumID,
        ) = curs.execute(
            "select MACHINE, TIME, W, ERROR, FICA_LOG, "
            "ABUNDANCE_ID, DICA_ID, LUMVPH_ID, SPECTRUM_ID "
            "from FICA_MODEL where FICA_MODEL.ID=%s" % modelID
        ).fetchall()[
            0
        ]
        if spectrumID == "None":
            specFlag = -1
        else:
            specFlag = 0
        # getting dica params
        colNames = zip(*curs.execute("PRAGMA table_info(fica_dica)").fetchall())[1]
        colNames = map(str, colNames)
        colValues = curs.execute("select * from fica_dica where id=%s" % dicaID).fetchall()[0]
        dicaDict = dict(zip([dalekDB.convertFields2Dica[item] for item in colNames[1:]], colValues[1:]))
        lum, vph = curs.execute("select LUM, VPH from FICA_LUMVPH where FICA_LUMVPH.ID=%s" % lumVphID).fetchall()[0]
        dicaDict["log_lbol"] = lum
        dicaDict["v_ph"] = vph

        dica = paramMod.dica(initDica=dicaDict, mode="fromDict")

        # getting abundances
        colNames = zip(*curs.execute("PRAGMA table_info(fica_abundance)").fetchall())[1]
        colNames = map(str, colNames)
        colValues = curs.execute("select * from fica_abundance where id=%s" % abundanceID).fetchall()[0]
        compDict = dict(zip(colNames[1:], colValues[1:]))
        comp = paramMod.comp(initComp=compDict, t=dica["t"])
        comp._setNiDecay()

        # getting aSpec
        if specFlag == 0:
            wl = dalekDB.createWLGrid(dicaDict["wl"] * 1e4, dicaDict["grid"] * 1e4, dicaDict["mu"])
            intens = curs.execute("select spectrum from fica_spectrum where id=%s" % abundanceID).fetchall()[0][0]
            aSpec = spectrum(wl, intens)
        elif specFlag == -1:
            aSpec = spectrum(zip(np.linspace(2000, 20000, 20), range(1, 21)))
            sbib = {"llist": []}
            llist = sbib["llist"]
            wParam = []

        # getting llist
        colValues = curs.execute(
            "select eqw, shift, rest, atom, ion, param1, param2, param3 " "from FICA_LLIST where model_id=%d" % modelID
        ).fetchall()
        # checking if llist exists for current model
        if colValues == []:
            llist = None
        else:
            colNames = zip(*curs.execute("PRAGMA table_info(fica_llist)").fetchall())[1]
            colNames = [
                (str(item.lower()), "|S2") if item == "ATOM" else (str(item.lower()), float) for item in colNames[2:]
            ]

            llist = np.array(colValues, dtype=colNames)

        """ Commented out until wParams becomes important, W is safed none the less    
        #getting wParams
        colValues = curs.execute('select XS, VS, LOGRH, TE, TR, W '
                                 'from FICA_WPARAM where FICA_WPARAM.model_id=%d' % model_id).fetchall()
        #checking if WParams exists for current model
        if colValues == []: llist = None
        else:
            colNames = zip(*curs.execute('PRAGMA table_info(fica_WPARAM)').fetchall())[1]
            colNames = [(item.lower(), '|S2') if item=='ATOM' else (item.lower(), float)
                for item in colNames[2:]]
            llist = np.array(colValues, dtype=colNames)
        """
        wParam = None

        curParam = paramMod.param(initDica=dica, initComp=comp)

        return cls(
            aSpec,
            curParam,
            wFactor,
            machineName=machineName,
            execTime=execTime,
            wParam=wParam,
            error=errorString,
            ficaLog=ficaLog,
            llist=None,
            origSpec=origSpec,
            specFlag=specFlag,
        )
from wrapper_decorator import dec
import wrapper
import param
import pdb

# will contain registry of wrappers.  if it is a wrapper, in constructor will obtain current constructor's number.  the constructor returns wrappers.  make it a wrapper even though not taking advantage of pickling, still need caching (wrappers string to idx doesn't store actual wrappers).  if you want to create a wrapper with parameters, would pass that in as a parameter in params  

class wrapper_catalog(wrapper.obj_wrapper, wrapper.indexing_wrapper):

    # since there is no maker, hackishly set it to self
    def __init__(self, maker, params):
        #pdb.set_trace()
        maker = self
        self.basic_init(maker, params)
        self.maker.set_param(params, "source_instance", self)
        self.cache = caches.object_cache_for_wrapper(maker, params)


    def is_indexed(self):
        return False

    # params contains which_wrapper, and if which_wrapper is a generic_dumper_wrapper, contains 
    @dec
    def constructor(self, params, recalculate = False, to_pickle = False, to_filelize = False):
        wrapper_instance = self.get_param(params, "which_wrapper_class")(self, params)
        return wrapper_instance
    
#pdb.set_trace()
wc = wrapper_catalog(None, param.param({}))
Esempio n. 34
0
import wc
import objects
import param
import pdb

p = param.param()
A = set(wc.get_stuff(objects.PID_with_SS_info, p))
B = set(wc.get_stuff(objects.PID_with_shared_MRN, p))
C = set(wc.get_stuff(objects.PID_with_several_tumors, p))

PID_to_use = A - B - C

PID_to_MRN = wc.get_stuff(objects.PID_to_MRN_dict,p)


i = 0

lengths = []

for PID in PID_to_use:

    
    p.set_param('pid',PID)
    texts = wc.get_stuff(objects.raw_medical_text,p)
    lengths.append(len(texts))
    print i, PID, len(texts)
    i += 1

pdb.set_trace()

Esempio n. 35
0
def uhgs(minSol, maxSol, omega, muelite, itDiv):

    minSol = int(minSol)
    maxSol = int(maxSol)
    instance = "X-n101-k25.dat"
    itMax = 2000
    prep = 0.5
    near = 0.2
    muclose = 0.8
    resultfile = instance + "_results.txt"
    try:
        p = param("./instances/" + instance, minSol, maxSol, omega,
                  muelite, prep, itMax, itDiv, near, muclose)
        possol = []
        while(len(possol) == 0):
            possol, negsol = mc.initializepop(p)
            if len(possol) == 0:
                p.omega += 10
        mc.recomputesimilarity(negsol, p)
        mc.recomputefitness(negsol, p)
        mc.recomputesimilarity(possol, p)
        mc.recomputefitness(possol, p)
        start = time.time()
        it = 0
        itDivCount = 0
        best = copy.deepcopy(min(possol, key=utils.takecost))
        besttime = 0
        while it < p.itMax and (time.time() - start)/60 < 30:
            args = []
            for _ in range(10):
                args.append([possol, negsol, p])
            with ProcessPoolExecutor() as executor:
                result = executor.map(mc.crossandedu, args)
            solutions = list(result)
            solutions = [item for sublist in solutions for item in sublist]
            for sol in solutions:
                if sol.feas:
                    possol.append(sol)
                else:
                    negsol.append(sol)

            it += int(10)
            itDivCount += int(10)
            if min(possol, key=utils.takecost).costo < best.costo:
                it = 0
                itDivCount = 0
                best = copy.deepcopy(min(possol, key=utils.takecost))
                besttime = time.time() - start
            if len(possol) > p.maxSol:
                mc.recomputesimilarity(possol, p)
                mc.recomputefitness(possol, p)

                del possol[p.minSol:]
                if best.costo < min(possol, key=utils.takecost).costo:
                    possol.append(best)
            if len(negsol) > p.maxSol:
                mc.recomputesimilarity(negsol, p)
                mc.recomputefitness(negsol, p)
                del negsol[p.minSol:]
            if itDivCount > p.itDiv*p.itMax:
                possol.sort(key=utils.takefitness, reverse=True)
                negsol.sort(key=utils.takefitness, reverse=True)
                del possol[int(p.minSol/3):]
                del negsol[int(p.minSol/3):]
                possol, negsol = mc.fillpop(possol, negsol, p)
                mc.recomputesimilarity(possol, p)
                mc.recomputefitness(possol, p)
                mc.recomputesimilarity(negsol, p)
                mc.recomputefitness(negsol, p)
                itDivCount = 0

        p.printonfile(resultfile)
        best.printonfile(resultfile)
        file = open(resultfile, 'a')
        file.write("\nBest founded after ")
        file.write(str(besttime/60))
        file.write(" min\nProgram ended in: ")
        file.write(str((time.time() - start)/60))
        file.write(" min\n\n\n\n")
        file.close()
        return -best.costo
    except Exception:
        print("error")
        traceback.print_exc()
        return -999999999
Esempio n. 36
0
import re, param
import gnureadline

gnureadline.parse_and_bind('tab: complete')
gnureadline.parse_and_bind('set editing-mode vi')

p = param.param('spread.DAS')

rex2 = re.compile('(\d+)@([+-]?\d+[\.]?\d*),(\d+)@([+-]?\d+[\.]?\d*)')
rex3 = re.compile('(\d+)@([+-]?\d+[\.]?\d*),(\d+)@([+-]?\d+[\.]?\d*),([+-]?\d+[\.]?\d*)')
rex1 = re.compile('(\d+)@([+-]?\d+[\.]?\d*)')
rexf = re.compile('(\d+[\.]?\d*)')

x = p.get()

if x is not None:
   olean = x['olean'] if 'olean' in x else 0

while True:
    x = p.get()
    print(x)
    if x is not None:
        olean = x['olean'] if 'olean' in x else 0
    else:
        olean = 0
    name = input("What's your spread? ")
    res = rex3.match(name)
    if res:
        bsz = int(res.groups()[0])
        bspr = float(res.groups()[1])
        asz = int(res.groups()[2])
Esempio n. 37
0
def PID_to_MRN(pid):
    import wc, objects
    m = wc.get_stuff(objects.PID_to_MRN_dict, param.param())
    return m[pid]
Esempio n. 38
0
import wrapper

#import f as features
import param
import pdb
import objects
import global_stuff
import my_exceptions


#pdb.set_trace()
useless = wrapper.famished_wrapper()
wc = wrapper.wrapper_catalog(useless, param.param({}))

def get_stuff(wrapper_class, params, recalculate=False, to_pickle=False, to_filelize=False, always_recalculate = False):

    params.set_param('which_wrapper_class', wrapper_class)
    wc_used_keys, wc_all_keys, wrapper_instance, all_keys_key_key_set = wc.constructor(params, True, False, False)
    try:

        stuff_used_keys, stuff_all_keys, stuff, stuff_all_keys_key_key_set = wrapper_instance.constructor(params, recalculate, to_pickle, to_filelize, always_recalculate = always_recalculate)
    except Exception, err:
        print 'ERROR when calling get_stuff with this error', err
        import traceback, sys

        for frame in traceback.extract_tb(sys.exc_info()[2]):
            fname, lineno,fn,text = frame
            print "Error in %s on line %d" % (fname, lineno)
        print sys.exc_traceback.tb_lineno
        raise my_exceptions.WCFailException
    else:
Esempio n. 39
0
from keras.preprocessing.image import ImageDataGenerator

from models import models
from param import param

p = param()

vgg = models().vgg_net_v2()
vgg.summary()

train_data_generator = ImageDataGenerator(
    rescale=1./255,
    shear_range=.2,
    zoom_range=.2,
    horizontal_flip=True
)

train_generator = train_data_generator.flow_from_directory(
    p.train_fold,
    target_size=(150, 150),
    batch_size=p.batch_size,
    class_mode='binary'
)

test_generator = ImageDataGenerator(rescale=1./255).flow_from_directory(
    p.test_fold,
    target_size=(150, 150),
    batch_size=p.batch_size,
    class_mode='binary'
)
Esempio n. 40
0
 def testParam(self):
   p1 = param(self.api, ht.COLUMN1)
   self.assertEqual(p1, 'one')
   p2 = param(self.api, ht.COLUMN1, row_num=2)
   self.assertEqual(p2, 'two')
Esempio n. 41
0
 def testParam(self):
     p1 = param(self.api, ht.COLUMN1)
     self.assertEqual(p1, 'one')
     p2 = param(self.api, ht.COLUMN1, row_num=2)
     self.assertEqual(p2, 'two')
Esempio n. 42
0
import wc
import param
import objects
p = param.param({'ev':1e-10, 'protein_list_file':'hum_var_msa_dist_completed', 'uniprot_id':'P80075', 'avg_deg':20, 'n_cutoff':0, 'f_cutoff':15})
m = wc.get_stuff(objects.pairwise_dist, p, False, False, False)
Esempio n. 43
0
def get_wrapper_instance(wrapper):
    import param
    temp = param.param()
    temp.set_param('which_wrapper_class', wrapper)
    a,b,c,d = wc.constructor(temp, True, False, False)
    return c
Esempio n. 44
0
import wc
import param
import objects
import global_stuff
import helper
import wrapper
import sys

name = sys.argv[1]
which_msa = int(sys.argv[2])
try:
    itera = int(sys.argv[3])
except:
    pass

p = param.param({'pdb':'1JOS', 'chain':'A', 'which_dataset':'CBS', 'uniprot_id':name, 'co':7.0, 'which_blast':0, 'which_msa':which_msa, 'ev':.05, 'blmax':999999,'hhblits_iter':itera, 'which_neighbors':1, 'protein_list_file':'rascalled_completed', 'to_leon':0, 'to_cluster':1, 'to_rascal':0, 'to_normd':0, 'norm_co':9.0, 'psiblast_iter':itera})

wc.get_stuff(wrapper.my_msa_obj_wrapper, p)

p.set_param('to_rascal', 1)

wc.get_stuff(wrapper.my_msa_obj_wrapper, p)

p.set_param('to_normd', 1)

wc.get_stuff(wrapper.my_msa_obj_wrapper, p)

Esempio n. 45
0
import param
p = param.param('quoting.status')
p.send({'status': False})
Esempio n. 46
0
import f as features
import new_new_objects as objects
import param

the_dict = {'data_list_file':'e.pl', 'edge_feature_list':[features.xW, features.akW], 'node_feature_list':[features.beW, features.bbW, features.ayW, features.xW, features.vW, features.uW, features.wW, features.zW], 'dist_cut_off':5, 'pdb_name':'2jcw', 'chain_letter':'A', 'reg':100, 'mfmi':100, 'wif':0, 'wfld':0, 'nfld':2, 'ns':2, "wob":0, 'wob2':2, 'evalue':1e-10, 'pos1':1, 'pos2':2, 'wreg':1, 'trun':99, 'wclf':objects.pW, 'svmC':10, 'lgn':9, 'lgc':5, 'pos':45, 'nwc':-1.0, 'micut':5, 'wtpr':0, 'posw':150, 'sfc':1, 'self':False}

the_params = param.param(the_dict)