def test_ax(self): axspec = ax(sptrue()) self.assertEqual(axspec.type, parser.AX) self.assertIsNotNone(axspec.car) self.assertIsNone(axspec.cdr) with self.assertRaises(ValueError): axspec = ax(None)
def test_ctl(self): fsm = self.init_model() # EF admin = alice is True efaa = prop.ef(prop.atom("admin = alice")) self.assertTrue(fsm.init <= eval_ctl(fsm, efaa)) # EG admin != alice is True egana = prop.eg(prop.atom("admin != alice")) self.assertTrue(fsm.init <= eval_ctl(fsm, egana)) # AF admin != none is True afann = prop.af(prop.atom("admin != none")) self.assertTrue(fsm.init <= eval_ctl(fsm, afann)) # AG admin in {alice, bob, none} is True aga = prop.ag(prop.atom("admin in {alice, bob, none}")) self.assertTrue(fsm.init <= eval_ctl(fsm, aga)) # AG (admin != none -> AG admin != none) is True aganniann = prop.ag( prop.imply(prop.atom("admin != none"), prop.ag(prop.atom("admin != none")))) self.assertTrue(fsm.init <= eval_ctl(fsm, aganniann)) # AG (admin = alice -> AX admin = alice) is True agaaiaxaa = prop.ag( prop.imply(prop.atom("admin = alice"), prop.ax(prop.atom("admin = alice")))) self.assertTrue(fsm.init <= eval_ctl(fsm, agaaiaxaa)) # AX admin = alice is False axaa = prop.ax(prop.atom("admin = alice")) self.assertFalse(fsm.init <= eval_ctl(fsm, axaa)) # EX admin != none is False exann = prop.ex(prop.atom("admin != none")) self.assertFalse(fsm.init <= eval_ctl(fsm, exann)) # AG admin = none is False agan = prop.ag(prop.atom("admin = none")) self.assertFalse(fsm.init <= eval_ctl(fsm, agan)) # EG admin = none is False egan = prop.eg(prop.atom("admin = none")) self.assertFalse(fsm.init <= eval_ctl(fsm, egan))
def test_ctl(self): fsm = self.init_model() # EF admin = alice is True efaa = prop.ef(prop.atom("admin = alice")) self.assertTrue(fsm.init <= eval_ctl(fsm, efaa)) # EG admin != alice is True egana = prop.eg(prop.atom("admin != alice")) self.assertTrue(fsm.init <= eval_ctl(fsm, egana)) # AF admin != none is True afann = prop.af(prop.atom("admin != none")) self.assertTrue(fsm.init <= eval_ctl(fsm, afann)) # AG admin in {alice, bob, none} is True aga = prop.ag(prop.atom("admin in {alice, bob, none}")) self.assertTrue(fsm.init <= eval_ctl(fsm, aga)) # AG (admin != none -> AG admin != none) is True aganniann = prop.ag(prop.imply(prop.atom("admin != none"), prop.ag(prop.atom("admin != none")))) self.assertTrue(fsm.init <= eval_ctl(fsm, aganniann)) # AG (admin = alice -> AX admin = alice) is True agaaiaxaa = prop.ag(prop.imply(prop.atom("admin = alice"), prop.ax(prop.atom("admin = alice")))) self.assertTrue(fsm.init <= eval_ctl(fsm, agaaiaxaa)) # AX admin = alice is False axaa = prop.ax(prop.atom("admin = alice")) self.assertFalse(fsm.init <= eval_ctl(fsm, axaa)) # EX admin != none is False exann = prop.ex(prop.atom("admin != none")) self.assertFalse(fsm.init <= eval_ctl(fsm, exann)) # AG admin = none is False agan = prop.ag(prop.atom("admin = none")) self.assertFalse(fsm.init <= eval_ctl(fsm, agan)) # EG admin = none is False egan = prop.eg(prop.atom("admin = none")) self.assertFalse(fsm.init <= eval_ctl(fsm, egan))
def test_namecheR1(self): # activate bdd dynamic reordering nsopt.set_dynamic_reorder(nsopt.OptsHandler_get_instance()) fsm = self.nameche_model() # AG (T_04BM.st = o & TRP_CM.krc = s -> AX (!R1.L_CS)) to = prop.atom("T_04BM.st = o") trps = prop.atom("TRP_CM.krc = s") nr1lcs = prop.atom("!R1.L_CS") p = prop.imply(to & trps, prop.ax(nr1lcs)) self.assertTrue(fsm.reachable_states <= eval_ctl(fsm, p)) # AG (EF R1.L_CS) r1lcs = prop.atom("R1.L_CS") p = prop.ef(r1lcs) self.assertTrue(fsm.reachable_states <= eval_ctl(fsm, p))
def countex(fsm, state, spec, context): """ Return a TLACE node explaining why state of fsm violates spec. fsm -- a pynusmv.fsm.BddFsm representing the system. state -- a pynusmv.dd.BDD representing a state of fsm. spec -- a pynusmv.spec.spec.Spec node representing the specification. context -- a pynusmv.spec.spec.Spec representing the context of spec in fsm. Return a tlacenode.Tlacenode explaining why state of fsm violates spec. """ if spec.type == parser.CONTEXT: return countex(fsm, state, spec.cdr, spec.car) elif spec.type == parser.FALSEEXP: newspec = sptrue() elif spec.type == parser.NOT: newspec = spec.car elif spec.type == parser.OR: newspec = (~spec.car) & (~spec.cdr) elif spec.type == parser.AND: newspec = (~spec.car) | (~spec.cdr) elif spec.type == parser.IMPLIES: newspec = spec.car & (~spec.cdr) elif spec.type == parser.IFF: newspec = (spec.car & (~spec.cdr)) | ((~spec.car) & spec.cdr) elif spec.type == parser.EX: newspec = ax(~spec.car) elif spec.type == parser.EF: newspec = ag(~spec.car) elif spec.type == parser.EG: newspec = af(~spec.car) elif spec.type == parser.EU: newspec = aw(~spec.cdr, (~spec.car) & (~spec.cdr)) elif spec.type == parser.EW: newspec = au(~spec.cdr, (~spec.car) & (~spec.cdr)) elif spec.type == parser.AX: newspec = ex(~spec.car) elif spec.type == parser.AF: newspec = eg(~spec.car) elif spec.type == parser.AG: newspec = ef(~spec.car) elif spec.type == parser.AU: newspec = ew(~spec.cdr, (~spec.car) & (~spec.cdr)) elif spec.type == parser.AW: newspec = eu(~spec.cdr, (~spec.car) & (~spec.cdr)) else: if spec.type == parser.NOT: newspec = spec.car else: newspec = ~spec return Tlacenode(state, (newspec,), None, None) return witness(fsm, state, newspec, context)
def countex(fsm, state, spec, context): """ Return a TLACE node explaining why state of fsm violates spec. fsm -- a pynusmv.fsm.BddFsm representing the system. state -- a pynusmv.dd.BDD representing a state of fsm. spec -- a pynusmv.spec.spec.Spec node representing the specification. context -- a pynusmv.spec.spec.Spec representing the context of spec in fsm. Return a tlacenode.Tlacenode explaining why state of fsm violates spec. """ if spec.type == parser.CONTEXT: return countex(fsm, state, spec.cdr, spec.car) elif spec.type == parser.FALSEEXP: newspec = sptrue() elif spec.type == parser.NOT: newspec = spec.car elif spec.type == parser.OR: newspec = (~spec.car) & (~spec.cdr) elif spec.type == parser.AND: newspec = (~spec.car) | (~spec.cdr) elif spec.type == parser.IMPLIES: newspec = spec.car & (~spec.cdr) elif spec.type == parser.IFF: newspec = (spec.car & (~spec.cdr)) | ((~spec.car) & spec.cdr) elif spec.type == parser.EX: newspec = ax(~spec.car) elif spec.type == parser.EF: newspec = ag(~spec.car) elif spec.type == parser.EG: newspec = af(~spec.car) elif spec.type == parser.EU: newspec = aw(~spec.cdr, (~spec.car) & (~spec.cdr)) elif spec.type == parser.EW: newspec = au(~spec.cdr, (~spec.car) & (~spec.cdr)) elif spec.type == parser.AX: newspec = ex(~spec.car) elif spec.type == parser.AF: newspec = eg(~spec.car) elif spec.type == parser.AG: newspec = ef(~spec.car) elif spec.type == parser.AU: newspec = ew(~spec.cdr, (~spec.car) & (~spec.cdr)) elif spec.type == parser.AW: newspec = eu(~spec.cdr, (~spec.car) & (~spec.cdr)) else: if spec.type == parser.NOT: newspec = spec.car else: newspec = ~spec return Tlacenode(state, (newspec, ), None, None) return witness(fsm, state, newspec, context)
def test_ax(self): axspec = ax(sptrue()) self.assertEqual(axspec.type, parser.AX) self.assertIsNotNone(axspec.car) self.assertIsNone(axspec.cdr)
def ast_to_spec(ast): """ Return a PyNuSMV specification representing `ast`. :param ast: an AST-based CTL formula :return: a PyNuSMV specification representing `ast` :rtype: :class:`pynusmv.prop.Spec` :raise: a :exc:`NotImplementedError` if an operator is not implemented """ if isinstance(ast, TrueExp): return true() elif isinstance(ast, FalseExp): return false() elif isinstance(ast, Atom): return atom(ast.value) elif isinstance(ast, Not): return not_(ast_to_spec(ast.child)) elif isinstance(ast, And): return and_(ast_to_spec(ast.left), ast_to_spec(ast.right)) elif isinstance(ast, Or): return or_(ast_to_spec(ast.left), ast_to_spec(ast.right)) elif isinstance(ast, Imply): return imply(ast_to_spec(ast.left), ast_to_spec(ast.right)) elif isinstance(ast, Iff): return iff(ast_to_spec(ast.left), ast_to_spec(ast.right)) elif isinstance(ast, AX): return ax(ast_to_spec(ast.child)) elif isinstance(ast, AF): return af(ast_to_spec(ast.child)) elif isinstance(ast, AG): return ag(ast_to_spec(ast.child)) elif isinstance(ast, AU): return au(ast_to_spec(ast.left), ast_to_spec(ast.right)) elif isinstance(ast, AW): return aw(ast_to_spec(ast.left), ast_to_spec(ast.right)) elif isinstance(ast, EX): return ex(ast_to_spec(ast.child)) elif isinstance(ast, EF): return ef(ast_to_spec(ast.child)) elif isinstance(ast, EG): return eg(ast_to_spec(ast.child)) elif isinstance(ast, EU): return eu(ast_to_spec(ast.left), ast_to_spec(ast.right)) elif isinstance(ast, EW): return ew(ast_to_spec(ast.left), ast_to_spec(ast.right)) # A(phi oU psi) <=> A(phi U (phi & psi)) elif isinstance(ast, AoU): return au(ast_to_spec(ast.left), and_(ast_to_spec(ast.left), ast_to_spec(ast.right))) # A(phi oW psi) <=> A(phi W (phi & psi)) elif isinstance(ast, AoW): return aw(ast_to_spec(ast.left), and_(ast_to_spec(ast.left), ast_to_spec(ast.right))) # A(phi dU psi) <=> A(phi U (!phi & psi)) elif isinstance(ast, AdU): return au(ast_to_spec(ast.left), and_(not_(ast_to_spec(ast.left)), ast_to_spec(ast.right))) # A(phi dW psi) <=> A(phi W (!phi & psi)) elif isinstance(ast, AdW): return aw(ast_to_spec(ast.left), and_(not_(ast_to_spec(ast.left)), ast_to_spec(ast.right))) # E(phi oU psi) <=> E(phi U (phi & psi)) elif isinstance(ast, EoU): return eu(ast_to_spec(ast.left), and_(ast_to_spec(ast.left), ast_to_spec(ast.right))) # E(phi oW psi) <=> E(phi W (phi & psi)) elif isinstance(ast, EoW): return ew(ast_to_spec(ast.left), and_(ast_to_spec(ast.left), ast_to_spec(ast.right))) # E(phi dU psi) <=> E(phi U (!phi & psi)) elif isinstance(ast, EdU): return eu(ast_to_spec(ast.left), and_(not_(ast_to_spec(ast.left)), ast_to_spec(ast.right))) # E(phi dW psi) <=> E(phi W (!phi & psi)) elif isinstance(ast, EdW): return ew(ast_to_spec(ast.left), and_(not_(ast_to_spec(ast.left)), ast_to_spec(ast.right))) else: raise NotImplementedError(NOT_IMPLEMENTED_MSG.format(op=type(ast)))