Esempio n. 1
0
def monthly_create_multi_bar(config):
    """
    Creates the bar charts that uses data from
    multiple months.
    
    Arguments:
    config     -- configuration dictionary
    """
    file_paths = config['file_paths']
    year = config['year']
    month = config['month']
    months = [month_string_format(year, month-2), month_string_format(year, month-1), month_string_format(year, month)]
    output_dir = config['output_dir']
    
    ssfiles = map(lambda x: x + 'serverSummary.csv', file_paths)
    create_server_summary(ssfiles, config)
    
    bot_data = []   
    ccfiles = map(lambda x: x + 'C&CServers.csv', file_paths)
    for ccf in ccfiles:
        with open(ccf) as csv_file:
            dreader = csv.DictReader(csv_file)
            hold = []
            for row in dreader:
                if row['ip'] not in hold:
                   hold.append(row['ip'])        
            bot_data.append(len(hold))
    plot_url = rutil.plotly_bar_chart(months, [(bot_data, 'Botnet (C&C)s')], 'Botnet (C&Cs) security event distribution')
    rutil.plotly_download_png(plot_url, output_dir + 'BotCCDis.png')
    
    cc_data = [0,0,0]
    with open(ccfiles[2]) as csv_file:
        dreader = csv.DictReader(csv_file)
        hold = []
        for row in dreader:
            if row['ip'] not in hold:
                if row['channel'] == '-': #HTTP
                    cc_data[1] += 1 
                else:                     #IRC
                    cc_data[0] += 1  
                hold.append(row['ip'])   
    plot_url = rutil.plotly_bar_chart(['IRC', 'HTTP', 'P2P'], [(cc_data, 'Count')], 'Botnet (C&Cs) by communication type')
    rutil.plotly_download_png(plot_url, output_dir + 'BotCCType.png')

    bot_data = []
    bnfiles = map(lambda x: x + 'botnetDailyMax.csv', file_paths)
    for bnf in bnfiles:
        with open(bnf) as csv_file:
            dreader = csv.DictReader(csv_file)
            total_count = 0
            for row in dreader:
                if row['Count'] != '':
                    total_count += int(row['Count'])
            bot_data.append(total_count)
    plot_url = rutil.plotly_bar_chart(months,
                                      [(bot_data, 'Botnet (Bots)')],
                                      'Botnet (Bots) security event distribution')
    rutil.plotly_download_png(plot_url, output_dir + 'BotBotsDis.png')
Esempio n. 2
0
def monthly_create_bar_charts(config):
    """
    Create bar charts that use data from current month
    [N.B. Bar charts that use data from multiple months are generated
    in monthly_create_multi_bar]
    
    Arguments:
    config     -- configuration dictionary
    """
    print('Creating bar charts...')
    print('  Downloading bar charts...')
    bar_chart_dir = os.path.join(os.getcwd(), config["file_paths"][2])
    bar_charts = [('ISPServerAll', 'Top 10 ISPs by server related event types'),
                  ('ISPBotnets', 'Top 10 ISPs by non-server event type'),
                  ('ISPAll', 'Top 10 ISPs for all events')]
    for file, title in bar_charts:
        shutil.copyfile(bar_chart_dir + file + '.csv', bar_chart_dir + file + 'Pie.csv')
        header, data = rutil.read_csv(bar_chart_dir + file + '.csv', max_row=10)
        plot_url = rutil.plotly_bar_chart(data[0][:10], zip(data[1:], header[1:]), title, 'stack')
        rutil.plotly_download_png(plot_url, config['output_dir'] + file + '.png')

    # Create bar charts that use data from multiple months
    monthly_create_multi_bar(config)
Esempio n. 3
0
def create_server_summary(file_paths, config):
    """
    Creates the summary bar charts:
    Defacement/Phishing/Malware Summary/(URL/IP)
    
    Arguments:
    file_paths -- folder paths for the three months of csv files
    config     -- configuration dictionary
    """
    month = config['month']
    year = config['year']
    months = [month_string_format(year, month-2), month_string_format(year, month-1), month_string_format(year, month)]
    output_dir = config['output_dir']
    
    data = []
    for file in file_paths:
        _, csv_data = rutil.read_csv(file, [1,2,3])
        data.append(csv_data)
    server_dis_headers = ['Defacement','Phishing','Malware']                
    server_dis = [[],[],[]]
    for i in range(3):
        for j in range(3):
            server_dis[i].append(data[j][i][1])
    plot_url = rutil.plotly_bar_chart(months, 
                           zip(server_dis, server_dis_headers), 
                           'Server Related security events distribution', 
                           bar_mode='stack')
    rutil.plotly_download_png(plot_url, output_dir + 'ServerRelated.png')

    gen = [(1,'Defacement',config['defce_color']),(2,'Phishing',config['phish_color']),(3,'Malware',config['malwr_color'])]
    gen_headers = ['URL','Domain','IP']                
    gen_data = [[],[],[]]
    for index, type, colors in gen:
        for i in range(3):
            gen_data[i] = []
            for j in range(3):
                gen_data[i].append(data[j][index-1][i+1])    
        plot_url = rutil.plotly_bar_chart(months,
                                          zip(gen_data, gen_headers),
                                          type + ' General Statistics', color=colors)
        rutil.plotly_download_png(plot_url, output_dir + type + 'Gen.png')
    
    url_ip_headers = ['URL/IP Ratio']

    for index, type, colors in gen:
        url_data = []
        for j in range(3):
            url_data.append(round(float(data[j][index-1][1]) / float(data[j][index-1][3]),2))  
        plot_url = rutil.plotly_bar_chart(months, [(url_data, 'URL/IP Ratio')], type + ' URL/IP Ratio', color=colors)
        rutil.plotly_download_png(plot_url, output_dir + type + 'URLIP.png')
def quarterly_create_charts(config):
    """
    Generates charts for the quarterly security watch report 
    using Plotly and Google Charts.
    """
    yyqq, year, qrtr, qrtr_label, data_paths = config['params']
    output = config['output']
    print('Generating Security Watch Report for ' + qrtr_label[4])
    print('Creating charts:')
    
    # Lambda function to use qrtr_labels as the labels for the x-axis
    qrtr_bar = lambda x,y: rutil.plotly_bar_chart(qrtr_label,x,y)
     
    
    # Defacement, Phishing and Malware Trend and URL/IP
    url_ip_col = [('Defacement', 1, u'網頁塗改',config['defce_color']), 
                  ('Phishing', 2, u'釣魚網站',config['phish_color']), 
                  ('Malware',3,u'惡意程式寄存',config['malwr_color'])]
    for type, index, type_c, clr in url_ip_col:
        url_ip_unique_data, url_ip_ratio_data = config[type + '_url_data']
        plot_url = rutil.plotly_bar_chart(qrtr_label, zip(url_ip_unique_data, ['Unique URL', 'Unique IP']), 
                       'Trend of ' + type + ' security events',color=clr)  
        rutil.plotly_download_png(plot_url, output + type + 'UniqueBar.png')        
        plot_url = rutil.plotly_bar_chart(qrtr_label, [(url_ip_ratio_data[0],'URL/IP ratio')], 
                       'URL/IP ratio of ' + type + ' security events',color=clr)        
        rutil.plotly_download_png(plot_url, output + type + 'RatioBar.png')  
        plot_url = rutil.plotly_bar_chart(qrtr_label, zip(url_ip_unique_data, ['唯一網址', '唯一IP']), 
                       type_c + u'安全事件趨勢',color=clr)  
        rutil.plotly_download_png(plot_url, output + type + 'UniqueBarChi.png')        
        plot_url = rutil.plotly_bar_chart(qrtr_label, [(url_ip_ratio_data[0],'唯一網址/IP比')], 
                       type_c + u'安全事件唯一網址/IP比',color=clr)        
        rutil.plotly_download_png(plot_url, output + type + 'RatioBarChi.png')         
    
    # Botnet (C&C) Distribution and Trend
    cc_data = config['cc_data']
    plot_url = rutil.plotly_bar_chart(qrtr_label,
                    zip(cc_data[0:2], ['IRC','HTTP']),
                   'Trend and Distribution of Botnet (C&Cs) security events',
                   'stack')
    rutil.plotly_download_png(plot_url, output + 'BotnetCCDisBar.png')                   
    plot_url = rutil.plotly_bar_chart(qrtr_label,
                    zip(cc_data[0:2], ['IRC','HTTP']),
                   u'殭屍網絡控制中心安全事件的趨勢和分佈',
                   'stack')
    rutil.plotly_download_png(plot_url, output + 'BotnetCCDisBarChi.png')  
    plot_url = qrtr_bar([(cc_data[2], 'Botnet C&Cs')],
                   'Trend of Botnet (C&C) security events')  
    rutil.plotly_download_png(plot_url, output + 'BotnetCCBar.png')   
    plot_url = qrtr_bar([(cc_data[2], u'殭屍網絡控制中心(C&C)')],
                   u'殭屍網絡控制中心(C&C)安全事件趨勢')  
    rutil.plotly_download_png(plot_url, output + 'BotnetCCBarChi.png')
    
    # Unique Botnet (Bots) Trend
    bn_data = config['bn_data']
    plot_url = qrtr_bar([(bn_data,'Botnet (Bots)')],
                   'Trend of Botnet (Bots) security events')
    rutil.plotly_download_png(plot_url, output + 'BotnetBotsBar.png')   
    plot_url = qrtr_bar([(bn_data,u'殭屍電腦')],
                   u'殭屍網絡(殭屍電腦)安全事件趨勢')
    rutil.plotly_download_png(plot_url, output + 'BotnetBotsBarChi.png')          
           
    # Top 5 Botnets 
    top_bn_data, top_bn_name, top_bn_curr = config['top_bn']
    plot_url = rutil.plotly_line_chart(qrtr_label,
                   zip(top_bn_data, top_bn_name),
                   'Trend of 5 Botnet Families in Hong Kong Network')      
    rutil.plotly_download_png(plot_url, output + 'BotnetFamTopLine.png')   
    plot_url = rutil.plotly_line_chart(qrtr_label,
                   zip(top_bn_data, top_bn_name),
                   u'五大主要殭屍網絡趨勢')      
    rutil.plotly_download_png(plot_url, output + 'BotnetFamTopLineChi.png')   
    
    # Server-related Events
    url_data = config['url_data']
    plot_url = rutil.plotly_bar_chart(qrtr_label,
                   zip(url_data, ['Defacement','Phishing','Malware hosting']),
                   'Trend and Distribution of server related security events',
                   'stack')
    rutil.plotly_download_png(plot_url, output + 'ServerDisBar.png')   
    plot_url = rutil.plotly_bar_chart(qrtr_label,
                   zip(url_data, [u'網頁塗改',u'釣魚網站',u'惡意程式寄存']),
                   u'與伺服器有關的安全事件的趨勢和分佈',
                   'stack')
    rutil.plotly_download_png(plot_url, output + 'ServerDisBarChi.png')   

    # Total Events

    serv_events = config['serv_events']
    plot_url = qrtr_bar([(serv_events, 'Unique security events')],
                   'Trend of Security events')      
    rutil.plotly_download_png(plot_url, output + 'TotalEventBar.png')   
    plot_url = qrtr_bar([(serv_events, u'唯一安全事件')],
                   u'安全事件趨勢')      
    rutil.plotly_download_png(plot_url, output + 'TotalEventBarChi.png')   
    
    # Botnet Family Pie Chart (Google Charts)
    rutil.google_pie_chart([('botnetDailyMax','BotnetFamPie')], 
                            data_paths[len(data_paths) - 1], 
                            output)