Esempio n. 1
0
    def reinforce_train_cem(self,
                            steps=60000,
                            visualize=False,
                            verbose=1,
                            nb_steps_warmup=10000,
                            save_path=r"D:\Data\markets\weights",
                            save_weights_name="cem_CADJPY_weights.h5f",
                            log_interval=1000):
        memory = EpisodeParameterMemory(limit=200, window_length=1)
        nb_actions = self.env.action_space.n

        agent = CEMAgent(
            model=self.model,
            nb_actions=nb_actions,
            memory=memory,
            nb_steps_warmup=nb_steps_warmup,
            processor=MultiInputProcessor(nb_inputs=len(self.model.inputs)))
        agent.compile()
        agent.fit(self.env,
                  nb_steps=steps,
                  visualize=visualize,
                  verbose=verbose,
                  log_interval=log_interval)

        pathlib.Path(save_path).mkdir(parents=True, exist_ok=True)
        file_path = os.path.join(save_path, save_weights_name)
        agent.save_weights(filepath=file_path, overwrite=True)
Esempio n. 2
0
def main(env_name, nb_steps):
    # Get the environment and extract the number of actions.
    env = gym.make(env_name)
    np.random.seed(123)
    env.seed(123)

    nb_actions = env.action_space.n
    input_shape = (1, ) + env.observation_space.shape
    model = create_nn_model(input_shape, nb_actions)

    # Finally, we configure and compile our agent.
    memory = EpisodeParameterMemory(limit=450, window_length=1)

    agent = CEMAgent(model=model,
                     nb_actions=nb_actions,
                     memory=memory,
                     batch_size=50,
                     nb_steps_warmup=2000,
                     train_interval=50,
                     elite_frac=0.05)
    agent.compile()
    agent.fit(env, nb_steps=nb_steps, visualize=False, verbose=1)

    # After training is done, we save the best weights.
    agent.save_weights('cem_{}_params.h5f'.format(env_name), overwrite=True)

    # Finally, evaluate the agent
    history = agent.test(env, nb_episodes=100, visualize=False)
    rewards = np.array(history.history['episode_reward'])
    print(("Test rewards (#episodes={}): mean={:>5.2f}, std={:>5.2f}, "
           "min={:>5.2f}, max={:>5.2f}").format(len(rewards), rewards.mean(),
                                                rewards.std(), rewards.min(),
                                                rewards.max()))
Esempio n. 3
0
def main(env_name, nb_steps):
    # Get the environment and extract the number of actions.
    env = gym.make(env_name)
    np.random.seed(123)
    env.seed(123)

    nb_actions = env.action_space.n
    input_shape = (1,) + env.observation_space.shape
    model = create_nn_model(input_shape, nb_actions)

    # Finally, we configure and compile our agent.
    memory = EpisodeParameterMemory(limit=450, window_length=1)

    agent = CEMAgent(model=model, nb_actions=nb_actions, memory=memory,
                     batch_size=50, nb_steps_warmup=2000, train_interval=50,
                     elite_frac=0.05)
    agent.compile()
    agent.fit(env, nb_steps=nb_steps, visualize=False, verbose=1)

    # After training is done, we save the best weights.
    agent.save_weights('cem_{}_params.h5f'.format(env_name), overwrite=True)

    # Finally, evaluate the agent
    history = agent.test(env, nb_episodes=100, visualize=False)
    rewards = np.array(history.history['episode_reward'])
    print(("Test rewards (#episodes={}): mean={:>5.2f}, std={:>5.2f}, "
           "min={:>5.2f}, max={:>5.2f}")
          .format(len(rewards),
                  rewards.mean(),
                  rewards.std(),
                  rewards.min(),
                  rewards.max()))
class KerasCEMAgent(object):
	'''
	The cross-entropy method Learning Agent as described in http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.81.6579&rep=rep1&type=pdf
	'''

	def __init__(self, opts):
		self.metadata = {
			'discrete_actions': True,
		}

		self.opts = opts

	def configure(self, observation_space_shape, nb_actions):
		if self.opts.model_type == 1:
			# Option 1 : Simple model
			model = Sequential()
			model.add(Flatten(input_shape=(1,) + observation_space_shape))
			model.add(Dense(nb_actions))
			model.add(Activation('softmax'))
			print(model.summary())
		elif self.opts.model_type == 2:
			# Option 2: deep network
			model = Sequential()
			model.add(Flatten(input_shape=(1,) + observation_space_shape))
			model.add(Dense(16))
			model.add(Activation('relu'))
			model.add(Dense(16))
			model.add(Activation('relu'))
			model.add(Dense(16))
			model.add(Activation('relu'))
			model.add(Dense(nb_actions))
			model.add(Activation('softmax'))
			print(model.summary())

		# Finally, we configure and compile our agent. You can use every built-in Keras optimizer and
		# even the metrics!
		memory = EpisodeParameterMemory(limit=1000, window_length=1)

		self.agent = CEMAgent(model=model, nb_actions=nb_actions, memory=memory,
							  batch_size=50, nb_steps_warmup=2000, train_interval=50, elite_frac=0.05)
		self.agent.compile()

	def train(self, env, nb_steps, visualize, verbosity):
		# Okay, now it's time to learn something! We visualize the training here for show, but this
		# slows down training quite a lot. You can always safely abort the training prematurely using
		# Ctrl + C.
		self.agent.fit(env, nb_steps=nb_steps, visualize=visualize, verbose=verbosity)

	def test(self, env, nb_episodes, visualize):
		# Finally, evaluate our algorithm for 5 episodes.
		self.agent.test(env, nb_episodes=nb_episodes, visualize=visualize)

	def load_weights(self, load_file):
		self.agent.load_weights(load_file)

	def save_weights(self, save_file, overwrite):
		# After training is done, we save the best weights.
		self.agent.save_weights(save_file, overwrite=overwrite)
Esempio n. 5
0
def main():
    """Build model and train on environment."""
    env = MarketEnv(("ES", "FUT", "GLOBEX", "USD"), obs_xform=xform.BinaryDelta(3), episode_steps=STEPS_PER_EPISODE, client_id=3)
    #env = MarketEnv(("AAPL", "STK", "SMART", "USD"), obs_xform=xform.BinaryDelta(3), episode_steps=STEPS_PER_EPISODE, client_id=4)
    nb_actions = 3      # Keras-RL CEM is a discrete agent

    # Option 1 : Simple model
    model = Sequential([
        Flatten(input_shape=(1,) + env.observation_space.shape),
        Dense(nb_actions),
        Activation('softmax')
    ])

    # Option 2: deep network
    # hidden_nodes = reduce(operator.imul, env.observation_space.shape, 1)
    # model = Sequential([
    #     Flatten(input_shape=(1,) + env.observation_space.shape),
    #     Dense(hidden_nodes),
    #     Activation('relu'),
    #     Dense(hidden_nodes),
    #     Activation('relu'),
    #     Dense(hidden_nodes),
    #     Activation('relu'),
    #     Dense(nb_actions),
    #     Activation('softmax')
    # ])

    print(model.summary())

    param_logger = CEMParamLogger('cem_{}_params.json'.format(env.instrument.symbol))
    callbacks = [
        param_logger,
        FileLogger('cem_{}_log.json'.format(env.instrument.symbol), interval=STEPS_PER_EPISODE)
    ]

    theta_init = param_logger.read_params()     # Start with last saved params if present
    if theta_init is not None:
        print('Starting with parameters from {}:\n{}'.format(param_logger.params_filename, theta_init))

    memory = EpisodeParameterMemory(limit=EPISODES, window_length=1)        # Remember the parameters and rewards for the last `limit` episodes.
    cem = CEMAgent(model=model, nb_actions=nb_actions, memory=memory, batch_size=EPISODES, nb_steps_warmup=WARMUMP_EPISODES * STEPS_PER_EPISODE, train_interval=TRAIN_INTERVAL_EPISODES, elite_frac=0.2, theta_init=theta_init, processor=DiscreteProcessor(), noise_decay_const=0, noise_ampl=0)
    """
    :param memory: Remembers the parameters and rewards for the last `limit` episodes.
    :param int batch_size: Randomly sample this many episode parameters from memory before taking the top `elite_frac` to construct the next gen parameters from.
    :param int nb_steps_warmup: Run for this many steps (total) to fill memory before training
    :param int train_interval: Train (update parameters) every this many episodes
    :param float elite_frac: Take this top fraction of the `batch_size` randomly sampled parameters from the episode memory to construct new parameters.
    """
    cem.compile()
    cem.fit(env, nb_steps=STEPS_PER_EPISODE * EPISODES, visualize=True, verbose=2, callbacks=callbacks)
    cem.save_weights('cem_{}_weights.h5f'.format(env.instrument.symbol), overwrite=True)
Esempio n. 6
0
import numpy as np
import gym
from keras.models import Sequential
from keras.layers import Dense, Activation, Flatten
from keras.optimizers import Adam
from rl.agents.cem import CEMAgent
from rl.memory import EpisodeParameterMemory

ENV_NAME = 'CartPole-v0'
env = gym.make(ENV_NAME)
np.random.seed(123)
env.seed(123)
nb_actions = env.action_space.n
obs_dim = env.observation_space.shape[0]
model = Sequential()
model.add(Flatten(input_shape=(1, ) + env.observation_space.shape))
model.add(Dense(nb_actions))
model.add(Activation('softmax'))
print(model.summary())
memory = EpisodeParameterMemory(limit=1000, window_length=1)
cem = CEMAgent(model=model,
               nb_actions=nb_actions,
               memory=memory,
               batch_size=50,
               nb_steps_warmup=2000,
               train_interval=50,
               elite_frac=0.05)
cem.compile()
cem.fit(env, nb_steps=100000, visualize=False, verbose=2)
cem.save_weights('cem_{}_params.h5f'.format(ENV_NAME), overwrite=True)
cem.test(env, nb_episodes=5, visualize=True)
model.add(Reshape(env.observation_space.shape))
model.add(
    Conv2D(32, (3, 3),
           activation='relu',
           input_shape=env.observation_space.shape))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(Flatten())
model.add(Dense(16))
model.add(Activation('relu'))
model.add(Dense(nb_actions))
model.add(Activation('softmax'))
print(model.summary())

memory = EpisodeParameterMemory(limit=10000, window_length=1)

cem = CEMAgent(model=model,
               nb_actions=nb_actions,
               memory=memory,
               nb_steps_warmup=1000,
               batch_size=50,
               train_interval=50,
               elite_frac=0.1)
cem.compile()

cem.fit(env, nb_steps=100000000, visualize=False)

#dqn.load_weights('dqn_test_run_weights.h5f')
cem.save_weights('cem_{}_weights.h5f'.format('test_run'), overwrite=True)

#dqn.test(env, nb_episodes=5, visualize=True)
model = Sequential()
model.add(Dense(128, input_shape=(8, )))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dense(32))
model.add(Activation('relu'))
model.add(Dense(16))
model.add(Activation('relu'))
model.add(Dense(nb_actions))
model.add(Activation('softmax'))

print(model.summary())

memory = EpisodeParameterMemory(limit=1000, window_length=1)

cem = CEMAgent(model=model,
               nb_actions=nb_actions,
               memory=memory,
               batch_size=50,
               nb_steps_warmup=2000,
               train_interval=50,
               elite_frac=0.05)
cem.compile()

cem.fit(env, nb_steps=100000, visualize=False, verbose=2)

cem.save_weights('cem_{}_params.h5f'.format("citizen-0"), overwrite=True)
Esempio n. 9
0
def main(options):
    # store args
    model_type = options.model_type
    train_interval_cem = options.train_interval_cem
    batch_size_cem = options.batch_size_cem
    steps_cem = options.steps_cem
    batch_size_props = options.batch_size_props
    steps_props = options.steps_props
    trunc_thres = options.trunc_thres
    Lmax = options.Lmax
    delta = options.delta

    # CEM
    # init environment
    env = gym.make(ENV_NAME)
    np.random.seed(123)
    env.seed(123)

    nb_actions = env.action_space.n
    obs_dim = env.observation_space.shape[0]

    model = initModel(model_type, nb_actions, env.observation_space.shape)
    memory = initMemory()

    cem = CEMAgent(model=model,
                   nb_actions=nb_actions,
                   memory=memory,
                   batch_size=batch_size_cem,
                   nb_steps_warmup=1000,
                   train_interval=train_interval_cem,
                   elite_frac=0.05)
    cem.compile()
    callback_cem = cem.fit(env, nb_steps=steps_cem, visualize=False, verbose=0)
    cem.save_weights('cem_dumps/cem_{}_{}_ti_{}_bs_{}_steps_{}.h5f'.format(
        ENV_NAME, model_type, train_interval_cem, batch_size_cem, steps_cem),
                     overwrite=True)
    #cem.test(env, nb_episodes=1, visualize=False)

    # PROPS
    # init environment
    env = gym.make(ENV_NAME)
    np.random.seed(123)
    env.seed(123)

    nb_actions = env.action_space.n
    obs_dim = env.observation_space.shape[0]

    model = initModel(model_type, nb_actions, env.observation_space.shape)
    memory = initMemory()

    bound_opts = {
        'analytic_jac': True,
        'normalize_weights': True,
        'truncate_weights': True,
        'truncate_thresh': trunc_thres
    }

    props = PROPSAgent(model=model,
                       nb_actions=nb_actions,
                       memory=memory,
                       Lmax=Lmax,
                       delta=delta,
                       bound_opts=bound_opts,
                       batch_size=batch_size_props)
    props.compile()
    callback_props = props.fit(env,
                               nb_steps=steps_props,
                               visualize=False,
                               verbose=0)
    props.save_weights(
        'props_dumps/props_{}_{}_bs_{}_steps_{}_thres_{}_Lmax_{}_delta_{}.h5f'.
        format(ENV_NAME, model_type, batch_size_props, steps_props,
               trunc_thres, Lmax, delta),
        overwrite=True)
    #props.test(env, nb_episodes=1, visualize=False)

    df_cem = pd.DataFrame({'data': callback_cem.history['episode_reward']})
    #plt.plot(callback_cem.history['episode_reward'])
    plt.plot(df_cem.rolling(window=train_interval_cem).mean())

    df_props = pd.DataFrame({'data': callback_props.history['episode_reward']})
    #plt.plot(callback_props.history['episode_reward'])
    plt.plot(df_props.rolling(window=batch_size_props).mean())

    plt.legend(['cem', 'props'], loc='upper left')
    #plt.show()
    plt.savefig('plots/{}_{}_bs_{}_thres_{}_Lmax_{}_delta_{}.jpeg'.format(
        ENV_NAME, model_type, batch_size_props, trunc_thres, Lmax, delta))
Esempio n. 10
0
# model.add(Dense(16))
# model.add(Activation('relu'))
# model.add(Dense(nb_actions))
# model.add(Activation('softmax'))

print(model.summary())

# Finally, we configure and compile our agent. You can use every built-in tensorflow.keras optimizer and
# even the metrics!
memory = EpisodeParameterMemory(limit=1000, window_length=1)

cem = CEMAgent(model=model,
               nb_actions=nb_actions,
               memory=memory,
               batch_size=50,
               nb_steps_warmup=2000,
               train_interval=50,
               elite_frac=0.05)
cem.compile()

# Okay, now it's time to learn something! We visualize the training here for show, but this
# slows down training quite a lot. You can always safely abort the training prematurely using
# Ctrl + C.
cem.fit(env, nb_steps=100000, visualize=False, verbose=2)

# After training is done, we save the best weights.
cem.save_weights(f'cem_{ENV_NAME}_params.h5f', overwrite=True)

# Finally, evaluate our algorithm for 5 episodes.
cem.test(env, nb_episodes=5, visualize=True)
Esempio n. 11
0
# print(model.summary())

memory = EpisodeParameterMemory(limit=1000, window_length=1)

cem = CEMAgent(model=model,
               nb_actions=se.action_space,
               memory=memory,
               batch_size=50,
               nb_steps_warmup=2000,
               train_interval=50,
               elite_frac=0.05)
cem.compile()

# Okay, now it's time to learn something! We visualize the training here for show, but this
# slows down training quite a lot. You can always safely abort the training prematurely using
# Ctrl + C.
history = cem.fit(se, nb_steps=50000, visualize=False, verbose=2)

rewards = [x for x in history.history['episode_reward'] if x > 0]

import matplotlib.pyplot as plt

plt.plot(np.convolve(np.ones(100), rewards, 'valid'))
plt.show()

# After training is done, we save the best weights.
cem.save_weights('cem_{}_params.h5f'.format('Student2'), overwrite=True)

# Finally, evaluate our algorithm for 5 episodes.
cem.test(se, nb_episodes=5, visualize=False)
Esempio n. 12
0
def train():
    # Get the environment and extract the number of actions.
    env = gym.make(ENV_NAME)
    np.random.seed(123)
    env.seed(123)

    nb_actions = env.action_space.n
    obs_dim = env.observation_space.shape[0]

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)
    from keras import backend as K
    K.set_session(sess)

    # Option 1 : Simple model
    # model = Sequential()
    # model.add(Flatten(input_shape=(1,) + env.observation_space.shape))
    # model.add(Dense(nb_actions))
    # model.add(Activation('softmax'))

    # Option 2: deep network
    model = Sequential()
    model.add(Flatten(input_shape=(1,) + env.observation_space.shape))
    model.add(Dense(16))
    model.add(Activation('relu'))
    model.add(Dense(16))
    model.add(Activation('relu'))
    model.add(Dense(16))
    model.add(Activation('relu'))
    model.add(Dense(nb_actions))
    model.add(Activation('softmax'))

    model.summary()

    # Finally, we configure and compile our agent. You can use every built-in Keras optimizer and
    # even the metrics!
    memory = EpisodeParameterMemory(limit=1000, window_length=1)

    if REWARD == "normal":
        cem = CEMAgent(model=model, nb_actions=nb_actions, memory=memory,
                       batch_size=50, nb_steps_warmup=2000, train_interval=50, elite_frac=0.05)
        cem.compile()
        history_normal = cem.fit(env, nb_steps=100000, visualize=False, verbose=2)
        cem.save_weights(os.path.join(LOG_DIR, 'cem_normal_{}_params.h5f'.format(ENV_NAME)), overwrite=True)
        cem.test(env, nb_episodes=5, visualize=False)

        pandas.DataFrame(history_normal.history).to_csv(os.path.join(LOG_DIR, "normal.csv"))

    elif REWARD == "noisy":
        if not SMOOTH:
            processor_noisy = CartpoleProcessor(e_=ERR_N, e=ERR_P, smooth=False, surrogate=False)
        else:
            processor_noisy = CartpoleProcessor(e_=ERR_N, e=ERR_P, smooth=True, surrogate=False)

        # processor_surrogate = CartpoleSurrogateProcessor(e_=ERR_N, e=ERR_P, surrogate=False)
        cem = CEMAgent(model=model, nb_actions=nb_actions, memory=memory,
                       batch_size=50, nb_steps_warmup=2000, train_interval=50, elite_frac=0.05,
                       processor=processor_noisy)
        cem.compile()
        history_noisy = cem.fit(env, nb_steps=100000, visualize=False, verbose=2)
        if not SMOOTH:
            cem.save_weights(os.path.join(LOG_DIR, 'cem_noisy_{}_params.h5f'.format(ENV_NAME)), overwrite=True)
            pandas.DataFrame(history_noisy.history).to_csv(os.path.join(LOG_DIR, "noisy.csv"))

        else:
            cem.save_weights(os.path.join(LOG_DIR, 'cem_noisy_smooth_{}_params.h5f'.format(ENV_NAME)), overwrite=True)
            pandas.DataFrame(history_noisy.history).to_csv(os.path.join(LOG_DIR, "noisy_smooth.csv"))

        cem.test(env, nb_episodes=5, visualize=False)

    elif REWARD == "surrogate":
        if not SMOOTH:
            processor_surrogate = CartpoleProcessor(e_=ERR_N, e=ERR_P, smooth=False, surrogate=True)
        else:
            processor_surrogate = CartpoleProcessor(e_=ERR_N, e=ERR_P, smooth=True, surrogate=True)

        # processor_surrogate = CartpoleSurrogateProcessor(e_=ERR_N, e=ERR_P, surrogate=True)
        cem = CEMAgent(model=model, nb_actions=nb_actions, memory=memory,
                       batch_size=50, nb_steps_warmup=2000, train_interval=50, elite_frac=0.05,
                       processor=processor_surrogate)
        cem.compile()
        history_surrogate = cem.fit(env, nb_steps=100000, visualize=False, verbose=2)
        if not SMOOTH:
            cem.save_weights(os.path.join(LOG_DIR, 'cem_surrogate_{}_params.h5f'.format(ENV_NAME)), overwrite=True)
            pandas.DataFrame(history_surrogate.history).to_csv(os.path.join(LOG_DIR, "surrogate.csv"))
        else:
            cem.save_weights(os.path.join(LOG_DIR, 'cem_surrogate_smooth_{}_params.h5f'.format(ENV_NAME)), overwrite=True)
            pandas.DataFrame(history_surrogate.history).to_csv(os.path.join(LOG_DIR, "surrogate_smooth.csv"))

        cem.test(env, nb_episodes=5, visualize=False)

    else:
        raise NotImplementedError
Esempio n. 13
0
model.add(Dense(nb_actions))
model.add(Activation('softmax'))

print(model.summary())

# Finally, we configure and compile our agent. You can use every built-in Keras optimizer and
# even the metrics!
memory = EpisodeParameterMemory(limit=10000, window_length=1)

cem = CEMAgent(model=model,
               nb_actions=nb_actions,
               memory=memory,
               batch_size=1000,
               nb_steps_warmup=2000,
               train_interval=50,
               elite_frac=0.05,
               noise_decay_const=0.0,
               noise_ampl=1.0,
               processor=MujocoProcessor())
cem.compile()

# Okay, now it's time to learn something! We visualize the training here for show, but this
# slows down training quite a lot. You can always safely abort the training prematurely using
# Ctrl + C.
cem.fit(env, nb_steps=100000, visualize=False, verbose=2)

# After training is done, we save the best weights.
cem.save_weights('cem_CAV_params.h5f', overwrite=True)

# Finally, evaluate our algorithm for 5 episodes.
cem.test(env, nb_episodes=5, visualize=True)