Esempio n. 1
0
def test_visual():
    """ Test 2-D basis func visualization. """
    kernel = gaussian_kernel
    normalization=False
    domain = InfiniteTrackCartPole.InfTrackCartPole() #2 continuous dims
    discretization = 20 # not used
    num = 1 # number of basis functions to use
    resolution_min=1
    resolution_max=5
    rep = RandomLocalBases(domain, kernel, num, resolution_min,
                           resolution_max,
                           seed=1, normalization=normalization,
                           discretization=discretization)
    rep.plot_2d_feature_centers()
Esempio n. 2
0
def test_visual():
    """ Test 2-D basis func visualization. """
    kernel = gaussian_kernel
    normalization=False
    domain = InfiniteTrackCartPole.InfTrackCartPole() #2 continuous dims
    discretization = 20 # not used
    num = 1 # number of basis functions to use
    resolution_min=1
    resolution_max=5
    rep = RandomLocalBases(domain, kernel, num, resolution_min,
                           resolution_max,
                           seed=1, normalization=normalization,
                           discretization=discretization)
    rep.plot_2d_feature_centers()
Esempio n. 3
0
def test_parametric_rep():
    """
    For fixed representations: test successful kernel function use, using
    varying number of features.
    Ensure get expected result.  Test normalization, ensure expected result.
    """
    for normalization in [False, True]:  # verify everything with/out norm

        kernel = gaussian_kernel
        domain = InfiniteTrackCartPole.InfTrackCartPole()  #2 continuous dims
        discretization = 20  # not used
        num = 1  # number of basis functions to use IN EACH DIMENSION
        resolution_min = 1
        resolution_max = 5
        rep = RandomLocalBases(domain,
                               kernel,
                               num,
                               resolution_min,
                               resolution_max,
                               seed=1,
                               normalization=normalization,
                               discretization=discretization)
        assert rep.features_num == num  # in reality, theres one in each dim.

        # Center lies within statespace limits
        assert np.all(domain.statespace_limits[:, 0] <= rep.centers[0])
        assert np.all(rep.centers[0] <= domain.statespace_limits[:, 1])

        # width lies within resolution bounds
        statespace_range = domain.statespace_limits[:,
                                                    1] - domain.statespace_limits[:,
                                                                                  0]
        assert np.all(statespace_range / resolution_max <=
                      rep.widths[0])  # widths[0] has `state_space_dims` cols
        assert np.all(rep.widths[0] <= statespace_range / resolution_min)

        phiVecOrigin = rep.phi(np.array([0, 0], dtype=np.float),
                               terminal=False)
        assert np.all(phiVecOrigin >= 0)  # nonnegative feat func values

        # feature func only dependent on own dimension
        phiVec2 = rep.phi(np.array([0, 1], dtype=np.float), terminal=False)

        if normalization:
            assert sum(phiVecOrigin) == 1
            assert sum(phiVec2) == 1
Esempio n. 4
0
def make_experiment(exp_id=1,
                    path="./Results/Temp",
                    initial_learn_rate=.40,
                    lambda_=0.,
                    resolution=25,
                    num_rbfs=300):
    """
    Each file specifying an experimental setup should contain a
    make_experiment function which returns an instance of the Experiment
    class with everything set up.
    @param id: number used to seed the random number generators
    @param path: output directory where logs and results are stored
    """
    # import sys
    # import os
    # cur_dir = os.path.expanduser("~/work/clipper/models/rl/")
    # sys.path.append(cur_dir)
    # from Domains import RCCarModified
    # from Policies import RCCarGreedy

    # Experiment variables
    opt = {}
    opt["path"] = path
    opt["exp_id"] = exp_id
    opt["max_steps"] = 200000
    opt["num_policy_checks"] = 15
    opt["checks_per_policy"] = 2
    # Logging

    domain = RCCarLeftTurn(noise=0.)
    opt["domain"] = domain

    # Representation
    kernel = gaussian_kernel
    representation = RandomLocalBases(domain,
                                      gaussian_kernel,
                                      num=int(num_rbfs),
                                      normalization=True,
                                      resolution_max=resolution,
                                      seed=exp_id)

    policy = eGreedy(representation, epsilon=0.15)
    # if biasedaction > -1:
    #     print "No Random starts with biasing {}".format(i % 4)
    #     policy = BiasedGreedy(representation, epsilon=0.5, biasedaction=biasedaction)

    # Agent

    opt["agent"] = Q_Learning(policy,
                              representation,
                              domain.discount_factor,
                              initial_learn_rate=initial_learn_rate,
                              lambda_=lambda_,
                              learn_rate_decay_mode="const")

    experiment = Experiment(**opt)

    return experiment
Esempio n. 5
0
def test_parametric_rep():
    """
    For fixed representations: test successful kernel function use, using
    varying number of features.
    Ensure get expected result.  Test normalization, ensure expected result.
    """
    for normalization in [False, True]: # verify everything with/out norm

        kernel = gaussian_kernel
        domain = InfiniteTrackCartPole.InfTrackCartPole() #2 continuous dims
        discretization = 20 # not used
        num = 1 # number of basis functions to use IN EACH DIMENSION
        resolution_min=1
        resolution_max=5
        rep = RandomLocalBases(domain, kernel, num, resolution_min,
                               resolution_max,
                               seed=1, normalization=normalization,
                               discretization=discretization)
        assert rep.features_num == num # in reality, theres one in each dim.

        # Center lies within statespace limits
        assert np.all(domain.statespace_limits[:,0] <= rep.centers[0])
        assert np.all(rep.centers[0] <= domain.statespace_limits[:,1])

        # width lies within resolution bounds
        statespace_range = domain.statespace_limits[:, 1] - domain.statespace_limits[:, 0]
        assert np.all(statespace_range / resolution_max <= rep.widths[0]) # widths[0] has `state_space_dims` cols
        assert np.all(rep.widths[0] <= statespace_range / resolution_min)

        phiVecOrigin = rep.phi(np.array([0,0], dtype=np.float), terminal=False)
        assert np.all(phiVecOrigin >= 0) # nonnegative feat func values

        # feature func only dependent on own dimension
        phiVec2 = rep.phi(np.array([0,1], dtype=np.float), terminal=False)

        if normalization:
            assert sum(phiVecOrigin) == 1
            assert sum(phiVec2) == 1