Esempio n. 1
1
 def calc_ff(self,Q_VAL):
     for q in Q_VAL:
         muz = np.cos(self.theta)
         mul = np.cos(self.phi)
         fz = integrate.quad(lambda x: cos(q*muz*x)*self.rho(x), -self.L/2, self.L/2)
         fzi = integrate.quad(lambda x: sin(q*muz*x)*rho_L(x),-self.L/2, self.L/2)
         fl = integrate.dblquad(lambda x,y: x*cos(q*(1-mul**2)**.5*cos(y)*x)*self.rho_theta(y)*self.rho_R(R), 0, 2*3.14, 0, self.R)	
         fli = integrate.dblquad(lambda x,y: x*sin(q*(1-mul**2)**.5*cos(y)*x), 0,2*3.14, 0, self.R)
         pq = (fl[0]-1j*fli[0])*(fz[0]-1j*flz[0])*(1/(self.L*3.14*self.R**2))
         yield pq		 
Esempio n. 2
0
def funcbG(E,verbose,prereqs):
    """
    functional form of mathcalG
    relies on Ginterior
    returns mathcalG(E)
    """
    model,psigood,ggood = prereqs
    tolerance = 1.49e-8
    try:
        t = E.shape
        Gans = []
        problems = []
        for i in range(len(E)):
            print i+1, 'of', len(E)
            rapoval = rapo(E[i],psigood)
            try:
                temp = intg.dblquad(bGinterior,0,rapoval,lambda r: 1e-4, lambda r: 1,args = (E[i],prereqs),epsabs = tolerance,epsrel = tolerance)
            except UserWarning as e:
                if verbose == True:
                    print 'G, E = ', E[i], 'message = ', e
                problems.append(i)
            Gans.append(temp[0])
        return array(Gans),problems
    except AttributeError:
        rapoval = rapo(E,psigood)
        problem = []
        try:
            temp = intg.dblquad(bGinterior,0,rapoval,lambda r: 0, lambda r: 1,args = (E,prereqs))
        except UserWarning as e:
            if verbose == True:
                print 'G, E = ', E, 'message = ', temp[3]
            problem = [E]
        return temp[0],problem
Esempio n. 3
0
 def funcbG(E,verbose = False):
     tolerance = 1.49e-8
     try:
         t = E.shape
         Gans = []
         problems = []
         for i in range(len(E)):
             print i+1, 'of', len(E)
             rapoval = rapo(E[i])
             try:
                 temp = intg.dblquad(bGinterior,0,rapoval,lambda r: 1e-4, lambda r: 1,args = (E[i],),epsabs = tolerance,epsrel = tolerance)
             except UserWarning as e:
                 if verbose == True:
                     print 'G, E = ', E[i], 'message = ', e
                     problems.append(i)
             Gans.append(temp[0])
         return array(Gans),problems
     except AttributeError:
         rapoval = rapo(E)
         problem = []
         try:
             temp = intg.dblquad(bGinterior,0,rapoval,lambda r: 0, lambda r: 1,args = (E,verbose))
         except UserWarning as e:
             if verbose == True:
                 print 'G, E = ', E, 'message = ', temp[3]
             problem = [E]
         return temp[0],problem
Esempio n. 4
0
def test2():
    D = [[0,2], [2,4], [4,6], [6,8]]

    f = lambda x,y: np.exp(-x)*np.exp(-y)*(y-x)

    I1 = dblquad(f, 0, 8, lambda l:0, lambda l:l)[0]

    I3 = 0
    for i in np.arange(1,4):
        for j in np.arange(0,i):
            I3 += dblquad(f, D[i][0], D[i][1], lambda l:D[j][0], lambda l:D[j][1])[0]

    for i in range(4):
        I3 += dblquad(f, D[i][0], D[i][1], lambda l:D[i][0], lambda l:l)[0]

    I2 = 0
    for i in np.arange(1,4):
        for j in np.arange(0,i):
            tmp1 = gp.gintegral_seg(1,1,D[i][0],D[i][1])*gp.gintegral_seg(0,1,D[j][0],D[j][1])
            tmp2 = gp.gintegral_seg(0,1,D[i][0],D[i][1])*gp.gintegral_seg(1,1,D[j][0],D[j][1])
            I2 += tmp1-tmp2

    for i in range(4):
        I2 += dblquad(f, D[i][0], D[i][1], lambda l:D[i][0], lambda l:l)[0]

    print I1
    print I2
    print I3

    return
def over1(i,j,B,B_func,w_vec):
    """
    Calculates the first overlap integral. If it is found that it is with itself then the
    inverse effective area is returned otherwise the integrals are calculated. For the mode calculations
    the hermit-gaussian approximation is taken.
    Also the calculation is done in terms of microns^2 and is transformed in to m^2 in calc_overlaps
    Inputs::
        i,j (int,int): Integer on what whave the overlap is calculated for
        B(str vec shape[4]): Holding the mode for each wave. (lp01 or lp11)
        B_func( function vec shape[4]) : Points to what function is used to calculate each mode(field0 or field1)
        w_vec(float vec shape[2]) : The width of the lp01 or the lp11 modes. (calculated in other script)
    Local::
        fieldi,fieldj (function): Holds the ith and jth wave mode function calculator
        r(float): The radius of the fibre (there is no need to calculate infinities as the definition might give you)
        int1,int2,int3,top bottom (float vectors [4,4]): Integrals (look at Agrawal for the integrals themselves)
    Returns::
        The first overlap integrals
    """
    if i == j:

        if  B[i] == 'LP01':
            return 1/161
        elif B[i] == 'LP11':
            return 1/170
    r = 62.45
    fieldi = B_func[i]
    fieldj = B_func[j]
    int1 = lambda y,x : np.abs(fieldi(y,x,w_vec))**2 * np.abs(fieldj(y,x,w_vec))**2
    top = dblquad(int1,-r,r,lambda x : -r,lambda x: r)[0]

    int2 = lambda y,x : np.abs(fieldi(y,x,w_vec))**2
    int3 = lambda y,x : np.abs(fieldj(y,x,w_vec))**2
    bottom = dblquad(int2,-r,r,lambda x : -r,lambda x: r)[0]*\
            dblquad(int3,-r,r,lambda x : -r,lambda x: r)[0]
    return top/bottom
def bunchlength(bunch, cavity, sigma_dz):

    print 'Iterative evaluation of bunch length...'

    counter = 0
    eps = 1

    R = cavity.circumference / (2 * np.pi)
    eta = cavity.eta(bunch)
    Qs = cavity.Qs(bunch)

    zmax = np.pi * R / cavity.h
    Hmax = cavity.hamiltonian(zmax, 0, bunch)

    # Initial values
    z0 = sigma_dz
    p0 = z0 * Qs / eta / R            #Matching condition
    H0 = eta * bunch.beta * c * p0 ** 2

    z1 = z0
    while abs(eps)>1e-6:
        # cf1 = 2 * Qs ** 2 / (eta * h) ** 2
        # dplim = lambda dz: np.sqrt(cf1 * (1 + np.cos(h / R * dz) + (h / R * dz - np.pi) * np.sin(cavity.phi_s)))
        # dplim = lambda dz: np.sqrt(2) * Qs / (eta * h) * np.sqrt(np.cos(h / R * dz) - np.cos(h / R * zmax))
        # Stationary distribution
        # psi = lambda dz, dp: np.exp(cavity.hamiltonian(dz, dp, bunch) / H0) - np.exp(Hmax / H0)

        # zs = zmax / 2.

        psi = stationary_exponential(cavity.hamiltonian, Hmax, H0, bunch)
        dplim = cavity.separatrix.__get__(cavity)
        N = dblquad(lambda dp, dz: psi(dz, dp), -zmax, zmax,
                    lambda dz: -dplim(dz, bunch), lambda dz: dplim(dz, bunch))
        I = dblquad(lambda dp, dz: dz ** 2 * psi(dz, dp), -zmax, zmax,
                    lambda dz: -dplim(dz, bunch), lambda dz: dplim(dz, bunch))

        # Second moment
        z2 = np.sqrt(I[0] / N[0])
        eps = z2 - z0

        # print z1, z2, eps
        z1 -= eps

        p0 = z1 * Qs / eta / R
        H0 = eta * bunch.beta * c * p0 ** 2

        counter += 1
        if counter > 100:
            print "\n*** WARNING: too many interation steps! There are several possible reasons for that:"
            print "1. Is the Hamiltonian correct?"
            print "2. Is the stationary distribution function convex around zero?"
            print "3. Is the bunch too long to fit into the bucket?"
            print "4. Is this algorithm not qualified?"
            print "Aborting..."
            sys.exit(-1)

    return z1
def CavityIntegral(a,b,t):
    
    # Integrate over the top and bottom half of the hexagonal chunk we are
    # trying to remove. 
    
    TopIntegral = dblquad(integrand, b, b + (np.sqrt(3.0)/2.0)*t, lambda y: y/np.sqrt(3.0) - b/np.sqrt(3.0) + a - t, lambda y: -y/np.sqrt(3.0) + b/np.sqrt(3.0) + a +t)
    BottomIntegral = dblquad(integrand,  b - (np.sqrt(3.0)/2.0)*t, b, lambda y: -y/np.sqrt(3.0) + b/np.sqrt(3.0) + a - t, lambda y: y/np.sqrt(3.0) - b/np.sqrt(3.0) + a +t)
    
    return TopIntegral[0] + BottomIntegral[0]
 def effective_area(self,lim):
     """
     Computes the effective area of mode
     """
     integrand1 = dblquad(self.Eabs2, -lim, lim, lambda x: -lim,lambda x: lim)
     integrand2 = dblquad(lambda y,x: self.Eabs2(y,x)**2, -lim, lim, lambda x: -lim,lambda x: lim)
     
     self.Aeff =  integrand1[0]**2/integrand2[0]
     return None
Esempio n. 9
0
    def H(self):
        """Calculates the integrated beam just over the horizon (pi/2 - 10*pi/180 <theta<pi/2). Assumes Peak power is directly overhead"""

        [O1,err1] = integrate.dblquad(self.beam_pattern_integrand,0,2*np.pi,self.H_gfun,self.H_hfun,([0,0,1],0))
        [O2,err2] = integrate.dblquad(self.beam_pattern_integrand,0,2*np.pi,self.H_gfun,self.H_hfun,([0,1,0],0))

        Peak_power = self.beam_pattern(0,0,[0,0,1]) + self.beam_pattern(0,0,[0,1,0])

        return (O1+O2)/Peak_power
Esempio n. 10
0
def integrate_circle(func, R, args = None):
    if args is None:
        result, _ = dblquad(func, -R, R,
                            lambda x: -np.sqrt(R**2 - x**2),
                            lambda x: np.sqrt(R**2 - x**2))
    else:
        result, _ = dblquad(func, -R, R,
                            lambda x: -np.sqrt(R**2 - x**2),
                            lambda x: np.sqrt(R**2 - x**2), args = args)
    return result
Esempio n. 11
0
def prob_decay_KsKs(t1a,t1e,t2a,t2e):
	def f(t1,t2):
		return exp(-Gamma_S*t1-Gamma_S*t2)
	Int = dblquad(f, 0, np.inf, # limits t2
                  lambda x : 0, # limits t1
                  lambda x: np.inf)[0]
	Part = dblquad(f, t1a, t1e, # limits t2
                  lambda x : t2a, # limits t1
                  lambda x: t2e)[0]
	return (BrKs)**2*Part/Int
Esempio n. 12
0
    def Omega(self):
        """Calculates the integrated beam (0<theta<pi/2). Assumes Peak power is directly overhead"""

        [O1,err1] = integrate.dblquad(self.beam_pattern_integrand,0,2*np.pi,self.Omega_gfun,self.Omega_hfun,([0,0,1],0))
        [O2,err2] = integrate.dblquad(self.beam_pattern_integrand,0,2*np.pi,self.Omega_gfun,self.Omega_hfun,([0,1,0],0))

        Peak_power = self.beam_pattern(0,0,[0,0,1]) + self.beam_pattern(0,0,[0,1,0])
    #        print O1,err1
    #        print O2,err2
    #        print Peak_power
        return (O1+O2)/Peak_power
Esempio n. 13
0
    def integrate(self, Q):

        rDispersion = RealDispersion(self.distribution, self.detuning, Q)
        iDispersion = ImaginaryDispersion(self.distribution, self.detuning, Q)

        realPart, realErr = dblquad(rDispersion,
                                    self.minJx, self.maxJx,
                                    self.minJy, self.maxJy)
        imagPart, imagErr = dblquad(iDispersion,
                                    self.minJx, self.maxJx,
                                    self.minJy, self.maxJy)

        return -1.0/complex(realPart, imagPart)
Esempio n. 14
0
def calc_theta_norm_2(theta_min, theta_max, dist_min, dist_max, dist_KDE_prior, region, alpha_1, alpha_2, s_crit):

    # args = dist_min, dist_max, dist_KDE_prior, region, alpha_1, alpha_2, s_crit
    args = dist_KDE_prior, region, alpha_1, alpha_2, s_crit

    if region == 1:
        norm = dblquad(calc_integrand, theta_min, theta_max, d_min_region_1, d_max_region_1, args=args)
    else:
        norm = dblquad(calc_integrand, theta_min, theta_max, d_min_region_2, d_max_region_2, args=args)

    # norm = quad(calc_integral, theta_min, theta_max, args=args)

    return norm[0]
def effective(omega,xmin,xmax,ymin,ymax,l,m):
    omega1,omega2 = omega    
    n =2
    a = dblquad(psi,xmin,xmax,lambda x : ymin,lambda x: ymax,args = (omega1,0,0,n))[0]
    n = 4
    eff1 = a**2 / dblquad(psi,x.min(),x.max(),lambda x : ymin,lambda x: ymax,args = (omega1,0,0,n))[0]

    n =2
    a = dblquad(psi,xmin,xmax,lambda x : ymin,lambda x: ymax,args = (omega2,0,1,n))[0]
    n = 4
    eff2 = a**2 / dblquad(psi,x.min(),x.max(),lambda x : ymin,lambda x: ymax,args = (omega2,0,1,n))[0]
    
    return (eff1 - 1.61e-10,eff2 - 1.70e-10)
Esempio n. 16
0
def checkdf(df,*args,**keywords):
	plt.clf()
	x = np.linspace(0,2,200)
	y = np.linspace(0,2,200)
	X,Y = np.meshgrid(x,y)
	plt.subplot(aspect='equal')
	plt.imshow(df(X,Y, (keywords)), origin='lower', extent=[0,2,0,2])
	plt.plot(x, np.sqrt(2-x**2),c='k', linewidth=3)
	plt.colorbar()
	if df==vel_func_benson: 
		print 'integral in bound region', dblquad(df, 0.,np.sqrt(2), lambda x:0, lambda x:np.sqrt(2.-x**2), args = (keywords['redshift'],))
	elif df==vel_func_gaussian:
		print 'integral in bound region',   dblquad(df, 0.,np.sqrt(2), lambda x:0, lambda x:np.sqrt(2.-x**2), args = (keywords,))
	else: print 'integral in bound region', dblquad(df, 0.,np.sqrt(2), lambda x:0, lambda x:np.sqrt(2.-x**2))
Esempio n. 17
0
def prob_decay_signal(t1a,t1e,t2a,t2e):
	Constant = BrKl*BrKs#propPiPiKs**2*eta**2
	def intensity(t1,t2):
		Part1 = exp(-Gamma_L*t1-Gamma_S*t2)
		Part2 = exp(-Gamma_L*t2-Gamma_S*t1)
		Part3 = -2*(1-zeta)*exp(-.5*(Gamma_L+Gamma_S)*(t1+t2))*cos(Delta_m*(t1-t2))
		return Part1+Part2+Part3
	Int = dblquad(intensity, 0, np.inf, # limits t2
                  lambda x : 0, # limits t1
                  lambda x: np.inf)[0]
	Part = dblquad(intensity, t1a, t1e, # limits t2
                  lambda x : t2a, # limits t1
                  lambda x: t2e)[0]
	return Constant*Part/Int
Esempio n. 18
0
def sca_xsect(scatterer, h_pol=True):
    """Scattering cross section for the current setup, with polarization.    

    Args:
        scatterer: a Scatterer instance.
        h_pol: If True (default), use horizontal polarization.
        If False, use vertical polarization.

    Returns:
        The scattering cross section.
    """

    if scatterer.psd_integrator is not None:
        return scatterer.psd_integrator.get_angular_integrated(
            scatterer.psd, scatterer.get_geometry(), "sca_xsect")

    old_geom = scatterer.get_geometry()    

    def d_xsect(thet, phi):
        (scatterer.phi, scatterer.thet) = (phi*rad_to_deg, thet*rad_to_deg)        
        Z = scatterer.get_Z()        
        I = sca_intensity(scatterer, h_pol)
        return I * np.sin(thet)

    try:
        xsect = dblquad(d_xsect, 0.0, 2*np.pi, lambda x: 0.0, 
            lambda x: np.pi)[0]
    finally:
        scatterer.set_geometry(old_geom)

    return xsect
Esempio n. 19
0
def asym(scatterer, h_pol=True):
    """Asymmetry parameter for the current setup, with polarization.    

    Args:
        scatterer: a Scatterer instance.
        h_pol: If True (default), use horizontal polarization.
        If False, use vertical polarization.

    Returns:
        The asymmetry parameter.
    """

    if scatterer.psd_integrator is not None:
        return scatterer.psd_integrator.get_angular_integrated(
            scatterer.psd, scatterer.get_geometry(), "asym")

    old_geom = scatterer.get_geometry()

    cos_t0 = np.cos(scatterer.thet0 * deg_to_rad)
    sin_t0 = np.sin(scatterer.thet0 * deg_to_rad)
    p0 = scatterer.phi0 * deg_to_rad
    def integrand(thet, phi):
        (scatterer.phi, scatterer.thet) = (phi*rad_to_deg, thet*rad_to_deg)
        cos_T_sin_t = 0.5 * (np.sin(2*thet)*cos_t0 + \
            (1-np.cos(2*thet))*sin_t0*np.cos(p0-phi))
        I = sca_intensity(scatterer, h_pol)
        return I * cos_T_sin_t

    try:
        cos_int = dblquad(integrand, 0.0, 2*np.pi, lambda x: 0.0, 
            lambda x: np.pi)[0]
    finally:
        scatterer.set_geometry(old_geom)

    return cos_int/sca_xsect(scatterer, h_pol)
Esempio n. 20
0
def water_area(d):
	waterline1 = fsolve(lambda x: hull_xz(x) - waterline_xz(x, d), -1)[0]
	waterline2 = fsolve(lambda x: hull_xz(x) - waterline_xz(x, d), 1)[0]
	if waterline2 <= 1 and waterline1 != waterline2:
		integral = integrate.dblquad(lambda x, y: 1, waterline1, waterline2, hull_xz, lambda x: waterline_xz(x, d))[0]
		return integral
	else:
		waterline3 = fsolve(lambda x: deck(x) - waterline_xz(x, d), 0)[0]
		if not -1 <= waterline1 <= 1:
			waterline1 = fsolve(lambda x: hull_xz(x) - waterline_xz(x, d), 0)[0]
			print 'waterline1: ' + str(waterline1)
			print 'waterline3: ' + str(waterline3)
		integral1 = integrate.dblquad(lambda x, y: 1, waterline1, waterline3, hull_xz, lambda x: waterline_xz(x, d))[0]
		integral2 = integrate.dblquad(lambda x, y: 1, waterline3, 1, hull_xz, deck)[0]
		print integral1, integral2
		return integral1 + integral2
def m_projection(graph_orig, members, prods, full_graph):
    logging.info('Projecting the graph on members')

    graph = graph_orig.subgraph(graph_orig.nodes())
    #considering only favorable edges
    graph.remove_edges_from([e for e in graph.edges(data=True) if e[2]['starRating'] < 4])
    assert set(graph) == (set(members) | set(prods))

    mg = nx.Graph()
    mg.add_nodes_from(members)

    prods_len = float(len(prods))
    last_pctg = 0
    prod_names = dict()
    for p_i, p in enumerate(prods):
        # first check whether two favorable reviews within a WINDOW is significant enough (p-value < 0.5)
        ts = [e['date'] for e in full_graph[p].values()]
        # In order for gkde to work, there should be more than one point value
        if len(ts) >= MIN_TS_LEN and min(ts) < max(ts):
            gkde = gaussian_kde(ts)
            p_value, err = dblquad(lambda u, v: gkde(u)*gkde(v), min(ts) - WINDOW/2.0, max(ts) + WINDOW/2.0,
                                   lambda v: v - WINDOW/2.0, lambda v: v + WINDOW/2.0)
            if p_value - EPS >= SIGNF_LEVEL and err < EPS:
                continue
        for m1, m2 in itertools.combinations(nx.neighbors(graph, p), 2):
            # order m1,m2 so the key (m1,m2) for prod_names works regardless of edge direction
            if m1 > m2:
                m1, m2 = m2, m1
                #assert m1 in members and m2 in members
            if abs(graph[p][m1]['date'] - graph[p][m2]['date']) < WINDOW:
                if mg.has_edge(m1, m2):
                    c = mg[m1][m2]['weight']
                else:
                    c = 0
                    prod_names[(m1, m2)] = []
                prod_names[(m1, m2)].append(p)
                mg.add_edge(m1, m2, weight=c + 1)
        pctg = int(p_i/prods_len*100)
        if pctg % 10 == 0 and pctg > last_pctg:
            last_pctg = pctg
            logging.info('%d%% Done' % pctg)

    logging.debug('Normalizing edge weights: meet/max')
    for e in mg.edges():
        u, v = e
        if mg[u][v]['weight'] <= 1:
            mg.remove_edge(u, v)
            del prod_names[(min(u, v), max(u, v))]
        else:
            norm = max(len(nx.neighbors(graph, u)), len(nx.neighbors(graph, v)))
            mg.add_edge(u, v, weight=float(mg[u][v]['weight']) / norm, denom=norm)
    # remove isolated nodes
    degrees = mg.degree()
    mg.remove_nodes_from([n for n in mg if degrees[n] == 0])
    # adding original graph metadata on nodes
    for m in mg:
        mg.node[m] = graph_orig.node[m]
    logging.debug(r'Projected Nodes = %d, Projected Edges = %d' % (mg.order(), len(mg.edges())))

    return mg, prod_names
Esempio n. 22
0
def _scipy_integrate(f,lb,ub):  
  """
Returns the integral of an n-dimensional function f from lb to ub
(where n = 1, 2, or 3), using scipy.integrate

Inputs:
    f -- a function that takes a list and returns a number.
    lb -- a list of lower bounds
    ub -- a list of upper bounds
"""
  from scipy.integrate import quad, dblquad, tplquad
  if len(lb) == 3:
    def func(z,y,x): return f([x,y,z])
    def qf(x,y): return lb[2]
    def rf(x,y): return ub[2]
    def gf(x): return lb[1]
    def hf(x): return ub[1]
    expectation,confidence = tplquad(func,lb[0],ub[0],gf,hf,qf,rf)
    return expectation
  if len(lb) == 2:
    def func(y,x): return f([x,y])
    def gf(x): return lb[1]
    def hf(x): return ub[1]
    expectation,confidence = dblquad(func,lb[0],ub[0],gf,hf)
    return expectation 
  if len(lb) == 1:
    expectation,confidence = quad(f,lb[0],ub[0])
    return expectation 
Esempio n. 23
0
    def __init__(self, psfmodel, renormalize_psf=True, flux=flux.default,
                 x_0=x_0.default, y_0=y_0.default, xname=None, yname=None,
                 fluxname=None, **kwargs):

        self.psfmodel = psfmodel.copy()

        if renormalize_psf:
            from scipy.integrate import dblquad
            self._psf_scale_factor = 1. / dblquad(self.psfmodel,
                                                  -np.inf, np.inf,
                                                  lambda x: -np.inf,
                                                  lambda x: np.inf)[0]
        else:
            self._psf_scale_factor = 1

        self.xname = xname
        self.yname = yname
        self.fluxname = fluxname

        # these can be used to adjust the integration behavior. Might be
        # used in the future to expose how the integration happens
        self._dblquadkwargs = {}

        super(PRFAdapter, self).__init__(n_models=1, x_0=x_0, y_0=y_0,
                                         flux=flux, **kwargs)
Esempio n. 24
0
def pcs_numeric_quad_int_iso_cone_torsionless(theta_max=None, c=None, r_pivot_atom=None, r_ln_pivot=None, A=None, R_eigen=None, RT_eigen=None, Ri_prime=None):
    """Determine the averaged PCS value via numerical integration.

    @keyword theta_max:     The half cone angle.
    @type theta_max:        float
    @keyword c:             The PCS constant (without the interatomic distance and in Angstrom units).
    @type c:                float
    @keyword r_pivot_atom:  The pivot point to atom vector.
    @type r_pivot_atom:     numpy rank-1, 3D array
    @keyword r_ln_pivot:    The lanthanide position to pivot point vector.
    @type r_ln_pivot:       numpy rank-1, 3D array
    @keyword A:             The full alignment tensor of the non-moving domain.
    @type A:                numpy rank-2, 3D array
    @keyword R_eigen:       The eigenframe rotation matrix.
    @type R_eigen:          numpy rank-2, 3D array
    @keyword RT_eigen:      The transpose of the eigenframe rotation matrix (for faster calculations).
    @type RT_eigen:         numpy rank-2, 3D array
    @keyword Ri_prime:      The empty rotation matrix for the in-frame isotropic cone motion, used to calculate the PCS for each state i in the numerical integration.
    @type Ri_prime:         numpy rank-2, 3D array
    @return:                The averaged PCS value.
    @rtype:                 float
    """

    # Perform numerical integration.
    result = dblquad(pcs_pivot_motion_torsionless_quad_int, -pi, pi, lambda phi: 0.0, lambda phi: theta_max, args=(r_pivot_atom, r_ln_pivot, A, R_eigen, RT_eigen, Ri_prime))

    # The surface area normalisation factor.
    SA = 2.0 * pi * (1.0 - cos(theta_max))

    # Return the value.
    return c * result[0] / SA
Esempio n. 25
0
 def expect(self, func=lambda x: 1, lower=(-10,-10), upper=(10,10)):
     def fun(x, y):
         x = np.column_stack((x,y))
         return func(x) * self.pdf(x)
     from scipy.integrate import dblquad
     return dblquad(fun, lower[0], upper[0], lambda y: lower[1],
                    lambda y: upper[1])
Esempio n. 26
0
def integrate_nd(f, domain, shape, dtype):

    if shape == () or shape == (1,):
        if dtype in continuous_types:
            return integrate.quad(f, domain.lower, domain.upper, epsabs=1e-8)[0]
        else:
            return np.sum(list(map(f, np.arange(domain.lower, domain.upper + 1))))
    elif shape == (2,):
        def f2(a, b):
            return f([a, b])

        return integrate.dblquad(f2,
                                 domain.lower[0],
                                 domain.upper[0],
                                 lambda a: domain.lower[1],
                                 lambda a: domain.upper[1])[0]

    elif shape == (3,):
        def f3(a, b, c):
            return f([a, b, c])

        return integrate.tplquad(f3,
                                 domain.lower[0], domain.upper[0],
                                 lambda a: domain.lower[1],
                                 lambda a: domain.upper[1],
                                 lambda a, b: domain.lower[2],
                                 lambda a, b: domain.upper[2])[0]
    else:
        raise ValueError("Dont know how to integrate shape: " + str(shape))
Esempio n. 27
0
def test():
    fr = 0.5
    rhor = 400
    qitot = 1e-3
    nitot = 100000
    qifrac = qitot/nitot

    s = p3lookup(rhor, fr, qifrac, 0, 0.01, 'p3lookup_new.npy')

    i1 = gp.gintegral_seg(s.mu, s.l, s.dgr, s.dcr)
    i2, err = quad(lambda x: x**s.mu*np.exp(-s.l*x), s.dgr, s.dcr)

    print '---------SINGLE INTEGRATION---------'
    print 'result from gamma function:', i1
    print 'result from numerical int:', i2
    print 'difference i2-i1:', i2-i1

    cr1 = collision_rate_pyt(s.dgr, s.dcr, s.rhog, fr, s.mu, s.l)
    cr2 = collision_rate(s.dgr, s.dcr, s.rhog, fr, s.mu, s.l)

    print '---------COLLISION RATE---------'
    print 'result from gamma function:', cr1
    print 'result from numerical int:', cr2
    print 'difference i2-i1:', cr2-cr1

    mu2 = 2
    di1 = gp.gintegral_seg(s.mu, s.l, s.dgr, s.dcr)*gp.gintegral_seg(s.mu+1, s.l, s.dgr, s.dcr)
    di2, err = dblquad(lambda x,y: x**s.mu*np.exp(-s.l*x)*y**(s.mu+1)*np.exp(-s.l*y), s.dgr, s.dcr, lambda m:s.dgr, lambda m: s.dcr)

    print '---------DOUBLE INTEGRAL---------'
    print 'result from gamma function:', di1
    print 'result from numerical int:', di2
    print 'difference i2-i1:', di2-di1

    return
def prodRate(mDarkPhoton, epsilon, tmin = -0.5 * math.pi, tmax = 0.5 * math.pi):
    """ dNdPdTheta integrated over p and theta """
    integral = dblquad( dNdPdTheta, # integrand
                        tmin, tmax, # theta boundaries (2nd argument of integrand)
                        lambda x: pMin(mDarkPhoton), lambda x: pMax(mDarkPhoton), # p boundaries (1st argument of integrand)
                        args=(mDarkPhoton, epsilon) ) # extra parameters to pass to integrand
    return integral[0]
Esempio n. 29
0
 def test_double_integral2(self):
     def func(x0, x1, t0, t1):
         return x0 + x1 + t0 + t1
     g = lambda x: x
     h = lambda x: 2 * x
     args = 1, 2
     assert_quad(dblquad(func, 1, 2, g, h, args=args),35./6 + 9*.5)
Esempio n. 30
0
 def test_call(self):
     from scipy.integrate import dblquad
     m = MultiGauss2D(sigmas=[1, 2], norms=[3, 4])
     xy_max = 5 * m.max_sigma  # integration range
     integral = dblquad(m, -xy_max, xy_max,
                        lambda _: -xy_max, lambda _: xy_max)[0]
     assert_almost_equal(integral, 7, decimal=5)
Esempio n. 31
0
def prepare_psf_model(psfmodel,
                      xname=None,
                      yname=None,
                      fluxname=None,
                      renormalize_psf=True):
    """
    Convert a 2D PSF model to one suitable for use with
    `BasicPSFPhotometry` or its subclasses.

    The resulting model may be a composite model, but should have only
    the x, y, and flux related parameters un-fixed.

    Parameters
    ----------
    psfmodel : a 2D model
        The model to assume as representative of the PSF.
    xname : str or None
        The name of the ``psfmodel`` parameter that corresponds to the
        x-axis center of the PSF.  If None, the model will be assumed to
        be centered at x=0, and a new parameter will be added for the
        offset.
    yname : str or None
        The name of the ``psfmodel`` parameter that corresponds to the
        y-axis center of the PSF.  If None, the model will be assumed to
        be centered at y=0, and a new parameter will be added for the
        offset.
    fluxname : str or None
        The name of the ``psfmodel`` parameter that corresponds to the
        total flux of the star.  If None, a scaling factor will be added
        to the model.
    renormalize_psf : bool
        If True, the model will be integrated from -inf to inf and
        re-scaled so that the total integrates to 1.  Note that this
        renormalization only occurs *once*, so if the total flux of
        ``psfmodel`` depends on position, this will *not* be correct.

    Returns
    -------
    outmod : a model
        A new model ready to be passed into `BasicPSFPhotometry` or its
        subclasses.
    """

    if xname is None:
        xinmod = models.Shift(0, name='x_offset')
        xname = 'offset_0'
    else:
        xinmod = models.Identity(1)
        xname = xname + '_2'
    xinmod.fittable = True

    if yname is None:
        yinmod = models.Shift(0, name='y_offset')
        yname = 'offset_1'
    else:
        yinmod = models.Identity(1)
        yname = yname + '_2'
    yinmod.fittable = True

    outmod = (xinmod & yinmod) | psfmodel

    if fluxname is None:
        outmod = outmod * models.Const2D(1, name='flux_scaling')
        fluxname = 'amplitude_3'
    else:
        fluxname = fluxname + '_2'

    if renormalize_psf:
        # we do the import here because other machinery works w/o scipy
        from scipy import integrate

        integrand = integrate.dblquad(psfmodel, -np.inf, np.inf,
                                      lambda x: -np.inf, lambda x: np.inf)[0]
        normmod = models.Const2D(1. / integrand, name='renormalize_scaling')
        outmod = outmod * normmod

    # final setup of the output model - fix all the non-offset/scale
    # parameters
    for pnm in outmod.param_names:
        outmod.fixed[pnm] = pnm not in (xname, yname, fluxname)

    # and set the names so that BasicPSFPhotometry knows what to do
    outmod.xname = xname
    outmod.yname = yname
    outmod.fluxname = fluxname

    # now some convenience aliases if reasonable
    outmod.psfmodel = outmod[2]
    if 'x_0' not in outmod.param_names and 'y_0' not in outmod.param_names:
        outmod.x_0 = getattr(outmod, xname)
        outmod.y_0 = getattr(outmod, yname)
    if 'flux' not in outmod.param_names:
        outmod.flux = getattr(outmod, fluxname)

    return outmod
def noise_denominator_integration(ell, j):
    return integrate.dblquad(
        noise_denominator_integrand, 0, l_max, 0, l_max,
        args=(ell, j))[0] / two_pi_squared
def N1(ell, j, N3_for_this_L_j):
    return Tz(redshift)**2 * j_max * mass_moment_3 * (integrate.dblquad(
        lambda l1, l2: 1, 0, l_max, lambda l2: 0,
        lambda l2: l_max)[0] / two_pi_squared) * N3_for_this_L_j / (
            eta_D2_L**2 * mass_moment_1**3 * Cshot(redshift))
Esempio n. 34
0
        print(cg_coef(1, 0, 0.5, 0.5, 1.5, 0.5), np.sqrt(2 / 3))
        print(cg_coef(1, 0, 0.5, 0.5, 0.5, 0.5), -np.sqrt(1 / 3))

        print(cg_coef(1, -1, 0.5, 0.5, 0.5, -0.5), -np.sqrt(2 / 3))

        print(cg_coef(1.5, -0.5, 1, -1, 2.5, -1.5), np.sqrt(3 / 5))

        print(cg_coef(1, 0, 1, 0, 2, 0), np.sqrt(2 / 3))

        print(cg_coef(30, 18, 21, -5, 19, 13))

        print()

        print(
            integ.dblquad(lambda x, y: x * y, 0, 0.5, lambda y: 0,
                          lambda y: 1 - 2 * y))
        print(
            si.math.complex_dblquad(lambda x, y: x * y, 0, 0.5, lambda y: 0,
                                    lambda y: 1 - 2 * y))

        print(
            "num",
            triple_y_integral(1, 0, 1, 0, 2, 0),
            1.5 * np.sqrt(1 / (5 * pi)) * (cg_coef(1, 0, 1, 0, 2, 0)**2),
        )
        print(
            "num",
            triple_y_integral(1, 1, 1, 0, 2, 1),
            1.5 * np.sqrt(1 / (5 * pi)) * cg_coef(1, 0, 1, 0, 2, 0) *
            cg_coef(1, 1, 1, 0, 2, 1),
        )
Esempio n. 35
0
            #print "Loop " + str(iloop1)+" and " +str(iloop2)
            GAUSSINT = 0
            dist, sameflag = diloops(LOOPCOORDS[iloop1][0],
                                     LOOPCOORDS[iloop2][0]), difloops(
                                         LOOPCOORDS[iloop1][0],
                                         LOOPCOORDS[iloop2][0])

            if (dist and sameflag):
                #print "Loop " + str(iloop1)+","+str(LOOPCOORDS[iloop1][1])+" and " +str(iloop2)+" + "+str(LOOPCOORDS[iloop2][1])+" with "+str(dist)+" "+str(sameflag)
                for pa1 in xrange(0, len(LOOPCOORDS[iloop1][0]) - 1):
                    for pa2 in xrange(0, len(LOOPCOORDS[iloop2][0]) - 1):
                        p1, q1, p2, q2 = LOOPCOORDS[iloop1][0][
                            pa1 + 1], LOOPCOORDS[iloop1][0][pa1], LOOPCOORDS[
                                iloop2][0][pa2 + 1], LOOPCOORDS[iloop2][0][pa2]
                        #print p1, q1, p2, q2
                        GAUSSINT = GAUSSINT + integrate.dblquad(
                            SEGF, 0, 1, lambda x: 0, lambda y: 1)[0]
                GAUSSINT = GAUSSINT / (4.0 * pi)
                #print GAUSSINT
                if (fabs(GAUSSINT) > 0.5):
                    type1, looi1 = LOOPCOORDS[iloop1][1][0], LOOPCOORDS[
                        iloop1][1][1]
                    type2, looi2 = LOOPCOORDS[iloop2][1][0], LOOPCOORDS[
                        iloop2][1][1]
                    indexes = []
                    if (type1 == "hairpin "):
                        indexes.append([HAIRPINS[looi1], "hp"])
                    elif (type1 == "stem "):
                        indexes.append([STEMS[looi1], "st"])
                    elif (type1 == "unstl "):
                        indexes.append([FULLUNSTLS[looi1], "il"])
                    if (type2 == "hairpin "):
Esempio n. 36
0
print(fun5)

print('---------------------')


def var1(x): return x**3


fun6 = integrate.quad(var1, 0, 6)
print(fun6)


def var2(y, x): return x * y**4


fun6 = integrate.dblquad(var2, 0, 6, lambda x: 0, lambda x: 1)
print(fun6)


print('---------------------')

var3 = np.array([[2, 4, 6], [1, 3, 5]])
print(var3)

trans1 = sp.fft(var3)
print(trans1)


print('---------------------')

array1 = np.array(([1, 3], [2, 4]))
Esempio n. 37
0
def F(x):
    res = np.zeros_like(x)
    for i, val in enumerate(x):
        y, err = integrate.dblquad(dE, 0, val, lambda x: 0, lambda x: val)
        res[i] = y
    return res
def N2(ell, j, redshift):
    return Tz(redshift)**2 * 0.21**2 * integrate.dblquad(
        lambda l1, l2: N3_integrand(ell, l1, l2, j, redshift), 0,
        current_l_max, lambda l2: 0,
        lambda l2: current_l_max)[0] / (eta_D2_L**2 * 0.3**4)
def N3(ell, j, redshift):
    return Cshot(redshift) * 2 * integrate.dblquad(
        lambda l1, l2: N3_integrand(ell, l1, l2, j, redshift), 0,
        current_l_max, lambda l2: 0, lambda l2: current_l_max)[0]
Esempio n. 40
0
def half_sphere(x, y):
    return (1 - x**2 - y**2)**0.5


N = 1000000
x = np.linspace(-1, 1, N)

#mid 1)切割法
dx = x[1] - x[0]
y = half_circle(x)  #mid y是一个np.ndarray数组值,不是函数,这估计就是向量计算了
s = 2 * dx * np.sum(y)
print '%.100f' % s

#mid 2)多边形角坐标法求和
s = np.trapz(y, x) * 2
print '%.100f' % s

#mid 3)数值积分法
pi_half, err = integrate.quad(half_circle, -1, 1)
s = pi_half * 2
print '%.100f' % s

#mid 4)求半球体积,使用二重积分
'''
对于x轴从-1到1进行进行积分,对于y轴从-half_circle(x)到
half_circle(x)进行积分
'''
v_half, err = integrate.dblquad(half_sphere, -1, 1, lambda x: -half_circle(x),
                                lambda x: half_circle(x))
print '%.10f' % v_half
def N0(ell, j, redshift):
    return Tz(redshift)**4 * j_max**2 * 46.64 * (
        integrate.dblquad(lambda l1, l2: 1, 0, current_l_max, lambda l2: 0,
                          lambda l2: current_l_max)[0] /
        two_pi_squared)**2 / (eta_D2_L**3 * 0.3**4)
Esempio n. 42
0
from scipy.integrate import dblquad
area = dblquad(lambda x, y: x*y, 0, 0.5, lambda x: 0, lambda x: 1-2*x)
print(area)
Esempio n. 43
0
def compute_gaussian_teo_corr(rate,
                              paramMap,
                              quad_int=True,
                              compute_matrices=True,
                              d_w=0.01,
                              fmax=6):
    """
  Computes input correlation function, its hankel transform. 
  
  Example usage:
  
  C_mean,C_mean_ft,corr_prof,corr_prof_ht,uran,fran,kran=compute_gaussian_teo_corr(rate_model,paramMap,fmax=6)
      
  # compute eigenvalues 
  if rate_model is True:
    eigs=(C_mean_ft-a)*eta
    eigs_prof=(corr_prof_ht*density-a)*eta
  else:
    eigs=(C_mean_ft+k3)*eta
    eigs_prof=(corr_prof_ht+k3)*eta
  
  """

    #print 'Computing theoretical correlations'
    p = get_params(paramMap)

    amp = p.input_mean * p.L**2 / (2 * np.pi * p.sigma**2)

    # do not allow naive integration with compute_matrices
    assert (quad_int is True
            or (quad_int is False and compute_matrices is False))

    # kernel

    if not hasattr(p,
                   'filter_type') or p.filter_type == FilterType.FILTER_INPUT:
        K_t_fun = lambda t: K_t(p.b1, p.b2, p.b3, p.mu1, p.mu2, p.mu3, t)
    else:
        K_t_fun = lambda t: K_outeq_t(p.b_in, p.b_out, p.mu_out, t)

    corr_rate_fun = lambda tau, u: corr_rate(K_t_fun, p.speed, p.sigma, tau, u)

    # integration limits and steps
    d_u = 0.01
    d_s = 0.005
    d_tau = 0.001

    u_min, u_max = 0, 2
    tau_min, tau_max = 0, 2
    w_min, w_max = 0, 2 * np.pi * fmax
    s_min, s_max = -.5, .5

    if compute_matrices is True:

        # compute the distances of all place field centers
        ran, step = np.linspace(-p.L / 2.,
                                p.L / 2.,
                                p.n,
                                endpoint=False,
                                retstep=True)
        UX, UY = np.meshgrid(ran, ran)
        allu = np.sqrt(UX**2 + UY**2)

        # compute theoretical correlation matrix
        C_mean = np.zeros((p.n, p.n))
        samp_uran = np.unique(allu.ravel())

    # RATE BASED
    if rate is True:

        # quad integration
        if quad_int is True:

            # profile
            corr_prof = np.pi * (amp**2) * p.sigma**2 / (p.L**2) * np.array([
                quad(corr_rate_fun, tau_min, tau_max, args=(u))
                for u in np.arange(u_min, u_max, d_u)
            ])[:, 0]

            # matrix
            if compute_matrices is True:
                for u in samp_uran:
                    c = np.pi * (amp**2) * p.sigma**2 / (p.L**2) * quad(
                        corr_rate_fun, tau_min, tau_max, args=(u))[0]
                    C_mean[allu == u] = c

        # naif integration
        else:
            U2, T2 = np.mgrid[u_min:u_max:d_u, tau_min:tau_max:d_tau]
            A2 = K_t_fun(T2) * np.exp(-(U2**2 + T2**2) /
                                      (4 * p.sigma**2)) * iv(
                                          0, T2 * U2 / (2 * p.sigma**2))
            corr_prof = np.pi * (amp**2) * p.sigma**2 / (p.L**2) * sum(
                A2, 1) * d_tau

    # SPIKE BASED
    else:

        # theoretical function
        step_pos = lambda t: (np.sign(t) + 1) * 0.5
        step_neg = lambda t: (1 - np.sign(t)) * 0.5
        W_fun_t = lambda t: step_neg(t) * p.Aplus * np.exp(
            t / p.tau_plus) + step_pos(t) * p.Aminus * np.exp(-t / p.tau_minus)
        corr_spike_fun = lambda s, tau, u: W_fun_t(s) * K_t_fun(tau) * np.exp(
            -(u**2 + (tau - s)**2) /
            (4 * p.sigma**2)) * iv(0, (tau - s) * u / (2 * p.sigma**2))

        # quad integration
        if quad_int is True:

            # profile
            corr_prof = np.pi * (amp**2) * p.sigma**2 / (p.L**2) * np.array([
                dblquad(corr_spike_fun,
                        tau_min,
                        tau_max,
                        lambda s: s_min,
                        lambda s: s_max,
                        args=(u, )) for u in np.arange(u_min, u_max, d_u)
            ])[:, 0]

            # matrix
            if compute_matrices is True:
                for u in samp_uran:
                    c = np.pi * (amp**2) * p.sigma**2 / (p.L**2) * dblquad(
                        corr_spike_fun,
                        tau_min,
                        tau_max,
                        lambda s: s_min,
                        lambda s: s_max,
                        args=(u, ))[0]
                    C_mean[allu == u] = c

        # naive integration
        else:
            U3, T3, S3 = np.mgrid[u_min:u_max:d_u, tau_min:tau_max:d_tau,
                                  s_min:s_max:d_s]
            A3 = W_fun_t(S3) * K_t(T3) * np.exp(
                -(U3**2 + (T3 - S3)**2) /
                (4 * p.sigma**2)) * iv(0, (T3 - S3) * U3 / (2 * p.sigma**2))
            corr_prof = np.pi * (amp**2) * p.sigma**2 / (p.L**2) * sum(
                sum(A3, 2), 1) * d_tau * d_s

    # FOURIER DOMAIN

    # hankel transform of the profile curve
    W2, U2 = np.mgrid[w_min:w_max:d_w, u_min:u_max:d_u]
    corr_prof_ht = 2 * np.pi * sum(
        corr_prof[np.newaxis, :] * U2 * jv(0, W2 * U2),
        1) * d_u  #*(p.n**2)/p.L**2

    # compute matrix dft
    if compute_matrices is True:
        C_mean_ft = np.real(
            np.fft.fftshift(np.fft.fft2(
                np.fft.fftshift(C_mean)))).astype(float)

    uran = np.arange(u_min, u_max, d_u)
    fran = np.arange(w_min, w_max, d_w) / (2 * np.pi)
    kran = np.fft.fftshift(np.fft.fftfreq(int(p.n), d=p.L / float(p.n)))

    if compute_matrices is False:
        return corr_prof, corr_prof_ht, uran, fran, kran
    else:
        return C_mean, C_mean_ft, corr_prof, corr_prof_ht, uran, fran, kran
Esempio n. 44
0
# %%


def f(y, x):
    return x + y**2


def gfun(x):
    return 1


def hfun(x):
    return x


print(dblquad(f, 1, 2, gfun, hfun))

# ### Ordinary differential equation (ODE)
#
# SciPy provides two ways for solving ODE:
# 1) an API with `odeint`,
# 2) an object-oriented API with `ode`.
#
# `odeint` is simpler, we will only use that one here.
#
# Import:
from scipy.integrate import odeint
# %%

# An ODE system can be written :
#
Esempio n. 45
0
def rate_migdal(w, mw, sigma_nucleon, interaction='SI', m_med=float('inf'),
                include_approx_nr=False,
                t=None, halo_model=None, **kwargs):
    """Differential rate per unit detector mass and deposited ER energy of
    Migdal effect WIMP-nucleus scattering

    :param w: ER energy deposited in detector through Migdal effect
    :param mw: Mass of WIMP
    :param sigma_nucleon: WIMP/nucleon cross-section
    :param interaction: string describing DM-nucleus interaction.
    See sigma_erec for options
    :param m_med: Mediator mass. If not given, assumed very heavy.
    :param include_approx_nr: If True, instead return differential rate
        per *detected* energy, including the contribution of
        the simultaneous NR signal approximately, assuming q_{NR} = 0.15.
        This is how https://arxiv.org/abs/1707.07258
        presented the Migdal spectra.
    :param t: A J2000.0 timestamp.
    If not given, conservative velocity distribution is used.
    :param halo_model: class (default to standard halo model)
    containing velocity distribution
    :param progress_bar: if True, show a progress bar during evaluation
    (if w is an array)

    Further kwargs are passed to scipy.integrate.quad numeric integrator
    (e.g. error tolerance).
    """
    halo_model = wr.StandardHaloModel() if halo_model is None else halo_model
    include_approx_nr = 1 if include_approx_nr else 0

    result = 0
    for state, binding_e in binding_es_for_migdal.items():
        binding_e *= nu.eV
        # Only consider n=3 and n=4
        # n=5 is the valence band so unreliable in in liquid
        # n=1,2 contribute very little
        if state[0] not in ['3', '4']:
            continue

        # Lookup for differential probability (units of ev^-1)
        p = interp1d(df_migdal['E'].values * nu.eV,
                     df_migdal[state].values / nu.eV,
                     bounds_error=False,
                     fill_value=0)

        def diff_rate(v, erec):
            # Observed energy = energy of emitted electron
            #                 + binding energy of state
            eelec = w - binding_e - include_approx_nr * erec * 0.15
            if eelec < 0:
                return 0

            return (
                # Usual elastic differential rate,
                # common constants follow at end
                wr.sigma_erec(erec, v, mw, sigma_nucleon, interaction,
                              m_med=m_med)
                * v * halo_model.velocity_dist(v, t)

                # Migdal effect |Z|^2
                # TODO: ?? what is explicit (eV/c)**2 doing here?
                * (nu.me * (2 * erec / wr.mn())**0.5 / (nu.eV / nu.c0))**2
                / (2 * np.pi)
                * p(eelec))

        # Note dblquad expects the function to be f(y, x), not f(x, y)...
        r = dblquad(
            diff_rate,
            0,
            wr.e_max(mw, wr.v_max(t, halo_model.v_esc)),
            lambda erec: vmin_migdal(w - include_approx_nr * erec * 0.15,
                                     erec, mw),
            lambda _: wr.v_max(t, halo_model.v_esc),
            **kwargs)[0]

        result += r

    return halo_model.rho_dm / mw * (1 / wr.mn()) * result
Esempio n. 46
0
def approximate_Z(func):
    return integrate.dblquad(func, -2.5, 2.5, lambda x: -2.5, lambda x: 2.5)[0]
def N3(ell, j):
    return Cshot(redshift) * 2 * integrate.dblquad(
        N3_integrand, 0, l_max, 0, l_max, args=(ell, j))[0]
Esempio n. 48
0
            return maxx


#plt.plot(at,I(at),'b')
#plt.plot(at,pol(at),'r')
#plt.plot(at,np.cos(at),'k')
#plt.plot(at,np.polyval(zp,at)*(1+np.tanh((0.33-at)*20))/2,'r')
#plt.plot(at,pol(at)*(1+np.tanh((0.33-at)*20))/2,'g')

#plt.show()

#area = dblquad(lambda x, y: I_sqrt(a,x,y), 0, a/10, lambda x: 0, lambda x: a/10)

for i in range(1):
    a = 0.15 + i / 20
    area = dblquad(lambda x, y: I_sqrt(a, x, y), 0, a, lambda x: 0,
                   lambda x: a)
    moy = area[0] / a / a
    sm = dblquad(lambda x, y: (I_sqrt(a, x, y) - moy)**2, 0, a, lambda x: 0,
                 lambda x: a)
    #area = dblquad(lambda x, y: I_tst(a,x,y), 0, a, lambda x: 0, lambda x: a)
    #area = dblquad(lambda x, y: I_tst(a,x,y), 0, a, lambda x: 0, lambda x: a)
    print(a, sm)

fig = plt.figure()
ax = fig.gca(projection='3d')
X = np.arange(-1, 1, 0.05)
Y = np.arange(-1, 1, 0.05)
X, Y = np.meshgrid(X, Y)
#R = np.sqrt(X**2 + Y**2)
Z = I_sqrt(a, X, Y)
surf = ax.plot_surface(X,
def N0(ell):
    return Tz(redshift)**4 * j_max**2 * mass_moment_4 * (
        integrate.dblquad(lambda l1, l2: 1, 0, l_max, lambda l2: 0,
                          lambda l2: l_max)[0] /
        two_pi_squared)**2 / (eta_D2_L**3 * mass_moment_1**4)
Esempio n. 50
0
 def test_disentangled_gaussian(self):
     norm, err = dblquad(
         lambda x1, x2: normsq(disentangled_gaussian_wavefcn()(x1, x2)),
         -np.inf, np.inf, lambda x: -np.inf, lambda y: np.inf)
     self.assertAlmostEqual(norm, 1, delta=abs(err))
def N4(ell):
    return integrate.dblquad(N4_integrand, 0, l_max, 0, l_max, args=(ell, ))[0]
Esempio n. 52
0
 def test_correlated_bipartite_gaussian(self):
     covmatrix = np.array([[2., 0.5], [0.5, 1.]])
     wavefcn = correlated_bipartite_gaussian_wavefcn(covmatrix)
     norm, err = dblquad(lambda x1, x2: normsq(wavefcn(x1, x2)), -np.inf,
                         np.inf, lambda x: -np.inf, lambda y: np.inf)
     self.assertAlmostEqual(norm, 1, delta=abs(err))
Esempio n. 53
0
    for i in range(shock, column):
        if i < center_x + 0.5:
            far_p[0] = center_x - i + 1
            near_p[0] = center_x - i
        elif i > center_x + 0.5:
            far_p[0] = i - center_x
            near_p[0] = i - center_x - 1
        if j < center_y + 0.5:
            far_p[1] = center_y - j + 1
            near_p[1] = center_y - j
        elif j > center_y + 0.5:
            far_p[1] = j - center_y
            near_p[1] = j - center_y - 1
        if (np.linalg.norm(near_p) < R) & (np.linalg.norm(far_p) > R):
            Z_a[j, i], err[j,
                           i] = dblquad(idx, i - 1.0, i - 0.0,
                                        lambda y: j - 1.0, lambda y: j - 0.0)
            Z_a[j, i] = Z_a[j, i] * Z_a_out + (1 - Z_a[j, i]) * Z_a_in
        elif np.linalg.norm(near_p) >= R:
            Z_a[j, i] = Z_a_out
        else:
            Z_a[j, i] = Z_a_in

for j in range(0, line):
    for i in range(shock, column):
        RHO_a[j, i] = rho_a_2
        U_a[j, i] = u_a_2
        V_a[j, i] = 0.0
        P_a[j, i] = p_a_2

for j in range(0, line):
    for i in range(0, column):
Esempio n. 54
0
 def test_excited_states(self):
     for n in range(3):
         wavefcn = coupled_excited_harmonics(n)
         norm, err = dblquad(lambda x1, x2: normsq(wavefcn(x1, x2)), -100,
                             100, lambda x2: -100, lambda x2: 100)
         self.assertAlmostEqual(norm, 1, delta=abs(err))
Esempio n. 55
0
def hit(obstacle, sigma):
    f = partial(normal, mean=obstacle, sigma=sigma)
    mu, error = dblquad(f, 0, MAX_DIS, 0, MAX_DIS)
    mu = 1 / mu

    return lambda x, y: mu * normal(x, y, obstacle, sigma)
Esempio n. 56
0
def noise_denominator_integration(ell, j, redshift):
    return integrate.dblquad(
        lambda l1, l2: noise_denominator_integrand(ell, j, l1, l2, redshift),
        0, current_l_max, lambda l2: 0, lambda l2: current_l_max)[0]
Esempio n. 57
0
    def potential(self, i, sobo=False, sphere=False):
        """Get the potential between the electron and nucleus (Using Cartesian Coordinates, NO gaussian product rule, fft).

        Parameters
        ----------
        i : int
            The atomic center index.
        sobo : Bool
            If True, use sobolev preconditioning. If False, no sobolev preconditioning.

        Returns
        -------
        numpy array
            The potential matrix.
        """
        if sphere is False:

            x_3d, y_3d, z_3d = np.meshgrid(self.r, self.r, self.r)
            V_mat = np.zeros((self.num_of_basis, self.num_of_basis),
                             dtype=complex)
            coulomb_e_p = 1 / np.sqrt(
                (x_3d - self.atomic_position[i - 1][0])**2 +
                (y_3d - self.atomic_position[i - 1][1])**2 +
                (z_3d - self.atomic_position[i - 1][2])**2)

            if sobo is True:
                spacing = (self.max_r - self.min_r) / (self.num_of_div - 1)
                r_freq = spyfft.fftfreq(self.num_of_div, spacing)
                x_freq_3d, y_freq_3d, z_freq_3d, = np.meshgrid(
                    r_freq, r_freq, r_freq)
                precond_in_k = (1 + (0.5) * ((2 * np.pi)**2) *
                                (x_freq_3d**2 + y_freq_3d**2 + z_freq_3d**2))

            for mu in range(self.num_of_basis):
                for nu in range(self.num_of_basis):
                    potential_mu_nu_temp = np.zeros(
                        (self.num_of_div, self.num_of_div, self.num_of_div),
                        dtype=complex)
                    for p in range(self.num_of_gauss):
                        for q in range(self.num_of_gauss):
                            int_func_1 = self.GF(
                                self.a_overlap_mat[p][mu],
                                np.sqrt(
                                    (x_3d - self.atomic_position[mu][0])**2 +
                                    (y_3d - self.atomic_position[mu][1])**2 +
                                    (z_3d - self.atomic_position[mu][2])**2))
                            int_func_2 = self.GF(
                                self.a_overlap_mat[q][nu],
                                np.sqrt(
                                    (x_3d - self.atomic_position[nu][0])**2 +
                                    (y_3d - self.atomic_position[nu][1])**2 +
                                    (z_3d - self.atomic_position[nu][2])**2))

                            if sobo is False:
                                integrate_func = np.multiply(
                                    int_func_1,
                                    np.multiply(coulomb_e_p, int_func_2))
                            elif sobo is True:
                                int_func_2_fft = spyfft.ifftn(
                                    spyfft.fftn(
                                        np.multiply(coulomb_e_p, int_func_2)) /
                                    precond_in_k)
                                integrate_func = np.real(
                                    np.multiply(int_func_1, int_func_2_fft))

                            potential_mu_nu_temp -= self.d_overlap_mat[p][
                                mu] * self.d_overlap_mat[q][nu] * (
                                    2 * self.a_overlap_mat[p][mu] / m.pi
                                )**(3 / 4) * (2 * self.a_overlap_mat[q][nu] /
                                              m.pi)**(3 / 4) * integrate_func
                            # print(potential_mu_nu_temp)
                    # print("Potential", potential_mu_nu_temp)
                    V_mat[mu][nu] += spyint.simpson(
                        spyint.simpson(
                            spyint.simpson(potential_mu_nu_temp, self.r),
                            self.r), self.r)
            return np.real(V_mat)

        elif sphere is True:
            theta = np.linspace(0, m.pi, 50)
            radius = np.linspace(0, self.max_r, self.num_of_div)
            r_2d, theta_2d = np.meshgrid(radius, theta)
            V_mat = np.zeros((self.num_of_basis, self.num_of_basis),
                             dtype=complex)
            min_r = 0
            max_r = 100
            for mu in range(self.num_of_basis):
                for nu in range(self.num_of_basis):
                    overlap_mu_nu_temp = 0
                    for p in range(self.num_of_gauss):
                        for q in range(self.num_of_gauss):
                            new_a, new_R, new_K = self.two_GF(
                                self.a_overlap_mat[p][mu],
                                self.a_overlap_mat[q][nu],
                                self.atomic_position[mu],
                                self.atomic_position[nu])
                            new_RR = new_R - self.atomic_position[0]
                            new_RR_abs = m.sqrt(np.inner(new_RR, new_RR))
                            # Please use a function instead of a lambda function so that debugging is easier.
                            int_func = lambda t, r: (2 * m.pi * (r)**2) * (
                                m.sin(t) / (m.sqrt(r**2 + new_RR_abs**2 - 2 * r
                                                   * new_RR_abs * m.cos(t))
                                            )) * new_K * self.GF(new_a, r)
                            overlap_mu_nu_temp += self.d_overlap_mat[p][
                                mu] * self.d_overlap_mat[q][nu] * (
                                    2 * new_a /
                                    m.pi)**(3 / 4) * spyint.dblquad(
                                        int_func, min_r, max_r, 0, m.pi)[0]
                    V_mat[mu][nu] += overlap_mu_nu_temp
            return V_mat
Esempio n. 58
0
def main():
    # Intergal:积分
    from scipy.integrate import quad, dblquad, nquad
    # 一元积分
    print(quad(lambda x: np.exp(-x), 0, np.inf))
    # 二元积分
    print(
        dblquad(lambda t, x: np.exp(-x * t) / t**3, 0, np.inf, lambda x: 1,
                lambda x: np.inf))

    # n元积分
    def f(x, y):
        return x * y

    def bound_y():
        return [0, 0.5]

    def bound_x(y):
        return [0, 1 - 2 * y]

    print(nquad(f, [bound_x, bound_y]))

    #Optimizer:优化器
    from scipy.optimize import minimize

    def rosen(x):
        return sum(100.0 * (x[1:] - x[:-1]**2.0)**2.0 + (1 - x[:-1])**2.0)

    x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.2])
    res = minimize(rosen,
                   x0,
                   method="nelder-mead",
                   options={
                       "xtol": 1e-8,
                       "disp": True
                   })
    print("ROSE MINI:", res.x)

    #下面弄的是雅可比行列式
    def func(x):
        return -(2 * x[0] * x[1] + 2 * x[0] - x[0]**2 - 2 * x[1]**2)

    def func_deriv(x):
        dfdx0 = -(-2 * x[0] + 2 * x[1] + 2)
        dfdx1 = -(2 * x[0] - 4 * x[1])
        return np.array([dfdx0, dfdx1])

    cons = ({
        "type": "eq",
        "fun": lambda x: np.array([x[0]**3 - x[1]]),
        "jac": lambda x: np.array([3.0 * (x[0]**2.0), -1.0])
    }, {
        'type': 'ineq',
        'fun': lambda x: np.array(x[1] - 1),
        'jac': lambda x: np.array([0.0, 1.0])
    })
    res = minimize(func, [-1.0, 1.0],
                   jac=func_deriv,
                   constraints=cons,
                   method='SLSQP',
                   options={'disp': True})
    print("RESTRICT:", res)

    #求根
    from scipy.optimize import root

    def fun(x):
        return x + 2 * np.cos(x)

    sol = root(fun, 0.1)
    print("ROOT:", sol.x, sol.fun)

    #Interpolation:插值——离散函数逼近的重要方法         注意与拟合的区别
    x = np.linspace(0, 1, 10)
    y = np.sin(2 * np.pi * x)
    from scipy.interpolate import interp1d
    li = interp1d(x, y, kind="cubic")
    x_new = np.linspace(0, 1, 50)
    y_new = li(x_new)
    figure()
    plot(x, y, "r")
    plot(x_new, y_new, "k")
    show()
    print(y_new)

    #Linear:线性计算与矩阵分解
    from scipy import linalg as lg
    arr = np.array([[1, 2], [3, 4]])
    print("Det:", lg.det(arr))
    print("Inv:", lg.inv(arr))
    #解线性方程组
    b = np.array([6, 14])
    print("Sol:", lg.solve(arr, b))
    #特征值
    print("Eig:", lg.eig(arr))

    #矩阵分解
    print("LU:", lg.lu(arr))
    print("QR:", lg.qr(arr))
    print("SVD:", lg.svd(arr))
    print("Schur:", lg.schur(arr))
def N4(ell, redshift):
    return integrate.dblquad(
        lambda l1, l2: N4_integrand(ell, l1, l2, redshift), 0, current_l_max,
        lambda l2: 0, lambda l2: current_l_max)[0]
Esempio n. 60
0
def b_integral():
    # calculating with https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.dblquad.html
    print("b)")
    value, error =dblquad(fun4,0,2,-2,2)
    print("value: ",value, "error estimate: ", error)