Esempio n. 1
0
def svm_laplacian(training, labels, test, real):
    laplacian = laplacian_kernel(training)
    laplacian_test = laplacian_kernel(test, training)
    model = SVC(C = 4, kernel = 'precomputed', max_iter = -1)
    model.fit(laplacian, labels) 
    accuracy = model.score(laplacian_test, real)
    print(accuracy)
Esempio n. 2
0
    def kernel_matrix(self, data_matrix, y, kernel_index, gamma, train=True):

        kernel_list = ['rbf', 'polynomial', 'laplacian', 'linear']

        if train : 

            if kernel_index =='rbf':
                K = rbf_kernel(data_matrix, gamma = gamma)          
            if kernel_index =='polynomial':
                K = polynomial_kernel(data_matrix, gamma = gamma)
            if kernel_index =='laplacian':
                K = laplacian_kernel(data_matrix, gamma = gamma)
            if kernel_index =='linear':
                #K = pairwise_kernels(data_matrix, 'linear')
                K = linear_kernel(data_matrix)
            return K 

        else :

            if kernel_index =='rbf':
                K = rbf_kernel(data_matrix, y, gamma = gamma)
            if kernel_index =='polynomial':
                K = polynomial_kernel(data_matrix, y, gamma = gamma)
            if kernel_index =='laplacian':
                K = laplacian_kernel(data_matrix, y, gamma = gamma)
            if kernel_index =='linear':
                #K = pairwise_kernels(data_matrix, y, 'linear')
                K = linear_kernel(data_matrix, y)
            return K
    def kernelMatrix(self, X, y=None):

        if self.K_type == 'linear':
            """
            if y != None:
                if self.mu == None:
                    reg = Lasso(self.param) #TODO change with a model for classification and let the possibility to specify regression or classification
                    self_mu = reg.fit(X, y).coef_
                    self.Xtr = self.Xtr[:, mp.where(self_mu != 0)]

                self.X = self.X[:, mp.where(self_mu != 0)]
            """
            if self.normalize:
                self.K = normalize(linear_kernel(X, self.Xtr))
            else:
                self.K = linear_kernel(X, self.Xtr)

            return self.K

        if self.K_type == 'polynomial':
            if self.normalize:
                self.K = normalize(
                    polynomial_kernel(X, self.Xtr, degree=self.param))
            else:
                self.K = polynomial_kernel(X, self.Xtr, degree=self.param)

            return self.K

        if self.K_type == 'gaussian':
            if self.normalize:
                self.K = normalize(rbf_kernel(X, self.Xtr, gamma=self.param))
            else:
                self.K = rbf_kernel(X, self.Xtr, gamma=self.param)

            return self.K

        if self.K_type == 'laplacian':
            if self.normalize:
                self.K = normalize(
                    laplacian_kernel(X, self.Xtr, gamma=self.param))
            else:
                self.K = laplacian_kernel(X, self.Xtr, gamma=self.param)

            return self.K

        if self.K_type == 'sigmoid':
            if self.normalize:
                self.K = normalize(
                    sigmoid_kernel(X, self.Xtr, gamma=self.param))
            else:
                self.K = sigmoid_kernel(X, self.Xtr, gamma=self.param)
            return self.K
Esempio n. 4
0
def evaluate_clf(X, Y, best_params_, n_splits, n_eval=10):
    accuracy = []
    n = n_eval
    for i in range(n):
        # after grid search, the best parameter is {'kernel': 'rbf', 'C': 100, 'gamma': 0.1}
        if best_params_['kernel'] == 'linear':
            clf = svm.SVC(kernel='linear', C=best_params_['C'])
        elif best_params_['kernel'] == 'rbf':
            clf = svm.SVC(kernel='rbf',
                          C=best_params_['C'],
                          gamma=best_params_['gamma'])
        elif best_params_[
                'kernel'] == 'precomputed':  # take care of laplacian case
            clf = svm.SVC(kernel='precomputed', C=best_params_['C'])
        else:
            raise Exception('Parameter Error')

        k_fold = StratifiedKFold(n_splits=n_splits,
                                 shuffle=True,
                                 random_state=i)
        if clf.kernel == 'precomputed':
            laplacekernel = laplacian_kernel(X, X, gamma=best_params_['gamma'])
            cvs = cross_val_score(clf, laplacekernel, Y, n_jobs=-1, cv=k_fold)
            print('CV Laplacian kernel')
        else:
            cvs = cross_val_score(clf, X, Y, n_jobs=-1, cv=k_fold)
        print(cvs)
        acc = cvs.mean()
        accuracy.append(acc)
    accuracy = np.array(accuracy)
    print('mean is %s, std is %s ' % (accuracy.mean(), accuracy.std()))
    return (accuracy.mean(), accuracy.std())
Esempio n. 5
0
    def _get_kernel_matrix(self, X1, X2):
        # K is len(X1)-by-len(X2) matrix
        if self._kernel == 'rbf':
            K = pairwise.rbf_kernel(X1, X2, gamma=self._gamma)
        elif self._kernel == 'poly':
            K = pairwise.polynomial_kernel(X1,
                                           X2,
                                           degree=self._degree,
                                           gamma=self._gamma,
                                           coef0=self._coef0)
        elif self._kernel == 'linear':
            K = pairwise.linear_kernel(X1, X2)
        elif self._kernel == 'laplacian':
            K = pairwise.laplacian_kernel(X1, X2, gamma=self._gamma)
        elif self._kernel == 'chi2':
            K = pairwise.chi2_kernel(X1, X2, gamma=self._gamma)
        elif self._kernel == 'additive_chi2':
            K = pairwise.additive_chi2_kernel(X1, X2)
        elif self._kernel == 'sigmoid':
            K = pairwise.sigmoid_kernel(X1,
                                        X2,
                                        gamma=self._gamma,
                                        coef0=self._coef0)
        else:
            print('[Error] Unknown kernel')
            K = None

        return K
Esempio n. 6
0
    def predict(X_train, X_test, y_train, y_test, train_sweights,
                weight_samples, gamma, C, dec_b):

        # standardize the bin counts
        scaler = StandardScaler().fit(X_train)
        X_train = scaler.transform(X_train)
        X_test = scaler.transform(X_test)

        # define the model
        comp_gram = lambda X, X_: laplacian_kernel(X, X_, gamma / X.shape[1])
        classifier = SVC(class_weight='balanced',
                         random_state=1,
                         kernel=comp_gram,
                         probability=True,
                         C=C)

        if not weight_samples:
            classifier.fit(X_train, y_train)
        else:
            classifier.fit(X_train, y_train, train_sweights)

        y_pred_p = classifier.predict_proba(X_test)
        # convert to binary prediction using the specified desicion boundry
        y_pred = np.where(y_pred_p[:, 1] < dec_b, 0, 1)
        # for known label compute score, else return prediction
        if y_test is not None:
            pres, recall, f1, _ = precision_recall_fscore_support(
                y_test, y_pred)
            return pres[1], recall[1], f1[1]
        # this is entered when pred_X is passed
        else:
            return y_pred_p, y_pred
Esempio n. 7
0
    def _apply_kernel(self, x, y):
        """Apply the selected kernel function to the data."""
        if self.kernel == 'linear':
            phi = linear_kernel(x, y)
        elif self.kernel == 'rbf':
            phi = rbf_kernel(x, y, self.coef1)
        elif self.kernel == 'poly':
            phi = polynomial_kernel(x, y, self.degree, self.coef1, self.coef0)
        elif self.kernel == 'sigmoid':
            coef0 = self.coef0 if self.coef0 is not None else 1
            phi = sigmoid_kernel(x, y, self.gamma, coef0)
        elif self.kernel == 'chi2':
            gamma = self.gamma if self.gamma is not None else 1
            phi = chi2_kernel(x, y, self.gamma)
        elif self.kernel == 'laplacian':
            phi = laplacian_kernel(x, y, self.gamma)
        elif callable(self.kernel):
            phi = self.kernel(x, y)
            if len(phi.shape) != 2:
                raise ValueError(
                    "Custom kernel function did not return 2D matrix")
            if phi.shape[0] != x.shape[0]:
                raise ValueError(
                    "Custom kernel function did not return matrix with rows"
                    " equal to number of data points."
                    "")
        else:
            raise ValueError("Kernel selection is invalid.")

        if self.bias_used:
            phi = np.append(phi, np.ones((phi.shape[0], 1)), axis=1)

        return phi
Esempio n. 8
0
def chooseKernel(data, kerneltype='euclidean'):
    r"""Kernalize data (uses sklearn)

    Parameters
    ==========
    data : array of shape (n_individuals, n_dimensions)
        Data matrix.
    kerneltype : {'euclidean', 'cosine', 'laplacian', 'polynomial_kernel', 'jaccard'}, optional
        Kernel type.

    Returns
    =======
    array of shape (n_individuals, n_individuals)
    """
    if kerneltype == 'euclidean':
        K = np.divide(1, (1+pairwise_distances(data, metric="euclidean")))
    elif kerneltype == 'cosine':
        K = (pairwise.cosine_kernel(data))
    elif kerneltype == 'laplacian':
        K = (pairwise.laplacian_kernel(data))
    elif kerneltype == 'linear':
        K = (pairwise.linear_kernel(data))
    elif kerneltype == 'polynomial_kernel':
        K = (pairwise.polynomial_kernel(data))
    elif kerneltype == 'jaccard':
        K = 1-distance.cdist(data, data, metric='jaccard')
    scaler = KernelCenterer().fit(K)
    return(scaler.transform(K))
Esempio n. 9
0
def min_corr_toeplitz(c2, tau=None, gamma0=1.):
    """For details, see here.

    Parameters
    ----------
        c2 : array, shape (n_, n_)
        tau : array, shape (n,), optional
        g0 : float, optional

    Returns
    -------
        c2_star : array, shape (n_, n_)
        gamma_star : array, shape (n_,)

    """

    n_ = c2.shape[0]
    if tau is None:
        tau = np.array(range(n_))
    tau = tau.reshape(n_, 1)

    # Step 1: Compute the square Frobenius norm between two correlations

    def func(g):
        return np.linalg.norm(laplacian_kernel(tau, tau, g) - c2, ord='f')

    # Step 2: Calibrate the parameter gamma

    gamma_star = sp.optimize.minimize(func, gamma0, bounds=[(0, None)])['x'][0]

    # Step 3: Compute the Toeplitz correlation

    c2_star = laplacian_kernel(tau, tau, gamma_star)

    return c2_star, gamma_star
    def kernel_mean_matching(self, X, Z, kern='lin', B=1.0, eps=None):
        nx = X.shape[0]
        nz = Z.shape[0]

        print("nx: ", nx, " nz: ", nz)

        if eps == None:
            eps = B / math.sqrt(nz)

        if kern == 'lin':
            K = np.dot(Z, Z.T)
            K = K.todense()
            kappa = np.sum(np.dot(Z, X.T) * float(nz) / float(nx), axis=1)
        elif kern == 'rbf':
            K = sk.rbf_kernel(Z, Z)
            kappa = np.sum(sk.rbf_kernel(Z, X), axis=1) * float(nz) / float(nx)
        elif kern == 'poly':
            K = sk.polynomial_kernel(Z, Z)
            kappa = np.sum(sk.polynomial_kernel(Z, X),
                           axis=1) * float(nz) / float(nx)
        elif kern == 'laplacian':
            K = sk.laplacian_kernel(Z, Z)
            kappa = np.sum(sk.laplacian_kernel(Z, X),
                           axis=1) * float(nz) / float(nx)
        elif kern == 'sigmoid':
            K = sk.sigmoid_kernel(Z, Z)
            kappa = np.sum(sk.sigmoid_kernel(Z, X),
                           axis=1) * float(nz) / float(nx)

        else:
            raise ValueError('unknown kernel')

        K = K.astype(np.double)
        K = matrix(K)
        kappa = matrix(kappa)

        G = matrix(np.r_[np.ones((1, nz)), -np.ones((1, nz)),
                         np.eye(nz), -np.eye(nz)])
        h = matrix(np.r_[nz * (1 + eps), nz * (eps - 1), B * np.ones((nz, )),
                         np.zeros((nz, ))])

        print("starting solver")
        solvers.options['show_progress'] = False
        sol = solvers.qp(K, -kappa, G, h)
        print(sol)
        coef = np.array(sol['x'])
        return coef
Esempio n. 11
0
def wwl(X, node_features=None, num_iterations=3, sinkhorn=False, gamma=None):
    """
    Pairwise computation of the Wasserstein Weisfeiler-Lehman kernel for graphs in X.
    """
    D_W =  pairwise_wasserstein_distance(X, node_features = node_features, 
                                num_iterations=num_iterations, sinkhorn=sinkhorn)
    wwl = laplacian_kernel(D_W, gamma=gamma)
    return wwl
Esempio n. 12
0
File: svdd.py Progetto: JuneKyu/CLAD
        def laplFunc():

            if self.parameters["kernel"].__contains__("width"):
                s = self.parameters["kernel"]["width"]
            else:
                s = 2
            K = smp.laplacian_kernel(X, Y, gamma=s)

            return K
Esempio n. 13
0
def test_laplacian_kernel():
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    K = laplacian_kernel(X, X)
    # the diagonal elements of a laplacian kernel are 1
    assert_array_almost_equal(np.diag(K), np.ones(5))

    # off-diagonal elements are < 1 but > 0:
    assert np.all(K > 0)
    assert np.all(K - np.diag(np.diag(K)) < 1)
Esempio n. 14
0
def test_laplacian_kernel():
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    K = laplacian_kernel(X, X)
    # the diagonal elements of a laplacian kernel are 1
    assert_array_almost_equal(np.diag(K), np.ones(5))

    # off-diagonal elements are < 1 but > 0:
    assert np.all(K > 0)
    assert np.all(K - np.diag(np.diag(K)) < 1)
def gram_laplacian_scipy(x):
    """Compute Gram (kernel) matrix for a laplacian kernel.

  Args:
    x: A num_examples x num_features matrix of features.

  Returns:
    A num_examples x num_examples Gram matrix of examples.
  """
    K = laplacian_kernel(x)
    return K
def calc_gaussian_sim(data_matrix, method):
    if method == "rbf":
        return rbf_kernel(data_matrix)
    elif method == "chi2":
        return chi2_kernel(data_matrix)
    elif method == "laplacian":
        return laplacian_kernel(data_matrix)
    elif method == "sigmoid":
        return sigmoid_kernel(data_matrix)
    else:
        raise ValueError("Wron method parameter ind calc_gaussian_sim()")
 def transform(self, X, Y):
     if self.type == 'rbf':
         return rbf_kernel(X, Y, self.gamma)[0]
     elif self.type == 'Chi2':
         return chi2_kernel(X, Y, self.gamma)[0]
     elif self.type == 'AChi2':
         return -additive_chi2_kernel(X, Y)[0]
     elif self.type == 'laplacian':
         return laplacian_kernel(X, Y, self.gamma)[0]
     elif self.type == 'sigmoid':
         return sigmoid_kernel(X, Y, self.gamma, self.coef0)[0]
Esempio n. 18
0
    def __init__(self, kernel_name='rbf', type='classification'):

        self.kernel_name = kernel_name
        self.type = type
        self.kernel_dict = {
            "rbf": lambda x, y=None: rbf_kernel(x, y),
            "linear": lambda x, y=None: linear_kernel(x, y),
            "add_chi2": lambda x, y=None: additive_chi2_kernel(x, y),
            "chi2": lambda x, y=None: chi2_kernel(x, y),
            "poly": lambda x, y=None: polynomial_kernel(x, y),
            "laplace": lambda x, y=None: laplacian_kernel(x, y)
        }
Esempio n. 19
0
    def fit(self, signal, n_batch=20):
        '''
        Computes the gram matrix on the given signal

        Parameters
        ----------
        signal (np.array): pre-processed signal for cp-detection
        n_batch (int): number of batches for batch-bandwidth calculation
       
        Returns
        -------
        self including self.gram
        
        Note: Can be computationally expensive for large signals, since the 
        gram matrix is computed.
        
        '''

        signal -= np.mean(signal)

        if signal.ndim == 1:
            signal = signal.reshape(-1, 1)

        if (self.bandwidth == 'median'):

            if (self.kernel == 'laplace'):
                sigma = np.median(pdist(signal, metric='cityblock'))
            elif (self.kernel == 'gaussian'):
                sigma = np.median(pdist(signal, metric="sqeuclidean"))

        elif (self.bandwidth == 'sig_std'):
            sigma = np.std(signal)

        elif (self.bandwidth == 'sig_std_batch_max'):
            n = int(signal.shape[0] / n_batch)
            batch_signal = [
                signal[i:i + n] for i in range(0, signal.shape[0], n)
            ]
            std_ = [np.std(i) for i in batch_signal]
            sigma = np.max(std_)

        if (self.kernel == 'linear'):
            gram = linear_kernel(signal)
        elif (self.kernel == 'laplace'):
            gram = laplacian_kernel(signal, gamma=(1 / sigma))
        elif (self.kernel == 'gaussian'):
            gram = rbf_kernel(signal, gamma=(1 / sigma))

        self.gram = gram

        return self
Esempio n. 20
0
def calculateMultipleKernel(x, y):
    theta = random.sample(range(1,47),46) # given a random theta for now

    # Convert our 2d arrays to numpy arrays
    x = np.array(x)
    y = np.array(y)
    
    # Reshape the array-like input vectors since we only have one sample
    x = x.reshape(1,-1)
    y = y.reshape(1,-1)
    
    # Variables to aggregate the kernel result
    kernelResult = 0;
    index = 0; 
    
    for i in range(0,3):
        kernelResult += theta[index] * additive_chi2_kernel(x,y)
        index += 1
        
    for i in range(0,3):
        kernelResult += theta[index] * chi2_kernel(x,y,theta[index+1])
        index += 2
    
    for i in range(0,3):
        kernelResult += theta[index] * cosine_similarity(x,y)
        index += 1
    
    for i in range(0,3):
        kernelResult += theta[index] * linear_kernel(x,y)
        index += 1
    
    for i in range(0,3):
        kernelResult += theta[index] * polynomial_kernel(
            x,y,theta[index+1],theta[index+2], theta[index+3])
        index += 4
        
    for i in range(0,3):
        kernelResult += theta[index] * rbf_kernel(x,y,theta[index+1])
        index += 2
        
    for i in range(0,3):
        kernelResult += theta[index] * laplacian_kernel(x,y,theta[index+1])
        index += 2
    
    for i in range(0,3):
        kernelResult += theta[index] * sigmoid_kernel(x,y,theta[index+1])
        index += 2
        
    return kernelResult
Esempio n. 21
0
def calculateMultipleKernel(x, y):
    theta = random.sample(range(1, 47), 46)  # given a random theta for now

    # Convert our 2d arrays to numpy arrays
    x = np.array(x)
    y = np.array(y)

    # Reshape the array-like input vectors since we only have one sample
    x = x.reshape(1, -1)
    y = y.reshape(1, -1)

    # Variables to aggregate the kernel result
    kernelResult = 0
    index = 0

    for i in range(0, 3):
        kernelResult += theta[index] * additive_chi2_kernel(x, y)
        index += 1

    for i in range(0, 3):
        kernelResult += theta[index] * chi2_kernel(x, y, theta[index + 1])
        index += 2

    for i in range(0, 3):
        kernelResult += theta[index] * cosine_similarity(x, y)
        index += 1

    for i in range(0, 3):
        kernelResult += theta[index] * linear_kernel(x, y)
        index += 1

    for i in range(0, 3):
        kernelResult += theta[index] * polynomial_kernel(
            x, y, theta[index + 1], theta[index + 2], theta[index + 3])
        index += 4

    for i in range(0, 3):
        kernelResult += theta[index] * rbf_kernel(x, y, theta[index + 1])
        index += 2

    for i in range(0, 3):
        kernelResult += theta[index] * laplacian_kernel(x, y, theta[index + 1])
        index += 2

    for i in range(0, 3):
        kernelResult += theta[index] * sigmoid_kernel(x, y, theta[index + 1])
        index += 2

    return kernelResult
Esempio n. 22
0
def chooseKernel(data, kerneltype='euclidean'):
    if kerneltype == 'euclidean':
        K = np.divide(1, (1 + pairwise_distances(data, metric="euclidean")))
    elif kerneltype == 'cosine':
        K = (pairwise.cosine_kernel(data))
    elif kerneltype == 'laplacian':
        K = (pairwise.laplacian_kernel(data))
    elif kerneltype == 'linear':
        K = (pairwise.linear_kernel(data))
    elif kerneltype == 'polynomial_kernel':
        K = (pairwise.polynomial_kernel(data))
    elif kerneltype == 'jaccard':
        K = 1 - distance.cdist(data, data, metric='jaccard')
    scaler = KernelCenterer().fit(K)
    return (scaler.transform(K))
Esempio n. 23
0
def kernel_matrix(X, sigma, kernel):
    print("Calculating Kernel matrix")

    # Initialise with zeros Kernel-Weight matrix
    N = X.shape[0]
    K = np.zeros((N, N))

    if kernel == 'gaussian':
        gamma = 1 / (2 * (sigma**2))
        K = rbf_kernel(X, gamma=gamma)
    elif kernel == 'laplacian':
        gamma = 1 / sigma
        K = laplacian_kernel(X, gamma=gamma)

    return K
Esempio n. 24
0
    def kernel_function(self, x1, x2):
        features = []

        # linear kernel:
        # Cosine distance
        features += np.squeeze(1 -
                               pairwise.paired_cosine_distances(x1, x2)[0]),

        # Manhanttan distance
        features += pairwise.paired_manhattan_distances(x1, x2)[0],

        # Euclidean distance
        features += pairwise.paired_euclidean_distances(x1, x2)[0],

        # Chebyshev distance
        features += pairwise.pairwise_distances(x1, x2,
                                                metric="chebyshev")[0][0],

        # stat kernel:
        # Pearson coefficient
        pearson = stats.pearsonr(np.squeeze(np.asarray(x1)),
                                 np.squeeze(np.asarray(x2)))[0]
        features += 0 if np.isnan(pearson) else pearson,

        # Spearman coefficient
        spearman = stats.spearmanr(x1, x2, axis=1).correlation
        features += 0 if np.isnan(spearman) else spearman,

        # Kendall tau coefficient
        kendall = stats.kendalltau(x1, x2).correlation
        features += 0 if np.isnan(kendall) else kendall,

        # non-linear kernel:
        # polynomial
        features += pairwise.polynomial_kernel(x1, x2, degree=2)[0][0],

        # rbf
        features += pairwise.rbf_kernel(x1, x2)[0][0],

        # laplacian
        features += pairwise.laplacian_kernel(x1, x2)[0][0],

        # sigmoid
        features += pairwise.sigmoid_kernel(x1, x2)[0][0],

        return features
Esempio n. 25
0
def get_singular_vals_kernels(weight_dict, kernel='cosine', activation=False):
    explained_var_dict = {}
    for layer_name in weight_dict.keys():
        if 'weight' in layer_name or activation:
            w = weight_dict[
                layer_name]  # w is output x input so don't transpose
            if len(w.shape) > 2:  # conv layer
                w = w.reshape(w.shape[0] * w.shape[1], -1)
            if kernel == 'cosine':
                K = pairwise.cosine_similarity(w)
            elif kernel == 'rbf':
                K = pairwise.rbf_kernel(w)
            elif kernel == 'laplacian':
                K = pairwise.laplacian_kernel(w)
            pca = PCA()
            pca.fit(K)
            explained_var_dict[layer_name] = deepcopy(pca.singular_values_)
    return explained_var_dict
Esempio n. 26
0
def dataPreProcess():
    filename = '/Users/guichengwu/Desktop/208_mid term/exam.dat'

    data = np.loadtxt(filename, dtype='str')

    for i in range(data.shape[0]):
        for j in range(1,data.shape[1]):
            data[i][j] = data[i][j][2:]

    data_matrix = np.matrix(data).astype(np.float)
    X = data_matrix[:, 1:5]
    Y = data_matrix[:, 0]
    X = preprocessing.scale(X)
    X = laplacian_kernel(X)
    #pca = decomposition.PCA(n_components=3)
    #pca.fit(X)
    #X = pca.transform(X)
    X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(
    X, Y, test_size =0.2)
Esempio n. 27
0
 def _kernel(self, X, Y=None):
     kernel = None
     if self.kernel == 'chi2':
         kernel = chi2_kernel(X, Y, gamma=self.gamma)
     elif self.kernel == 'laplacian':
         kernel = laplacian_kernel(X, Y, gamma=self.gamma)
     elif self.kernel == 'linear':
         kernel = linear_kernel(X, Y)
     elif self.kernel == 'polynomial':
         kernel = polynomial_kernel(X,
                                    Y,
                                    degree=self.degree,
                                    gamma=self.gamma,
                                    coef0=self.coef0)
     elif self.kernel == 'rbf':
         kernel = rbf_kernel(X, Y, gamma=self.gamma)
     elif self.kernel == 'sigmoid':
         kernel = sigmoid_kernel(X, Y, gamma=self.gamma, coef0=self.coef0)
     return kernel
Esempio n. 28
0
def evaluate_sklearn_kernel(kernel_name, kernel_param, X, Y=None):
    # These names are consistent with sklearn's
    if kernel_name not in ['linear', 'polynomial', 'rbf', 'laplacian']:
        raise Exception('Unrecognised kernel name \'' + kernel_name + '\'!')

    if kernel_name == 'linear':
        return linear_kernel(X=X, Y=Y)
    elif kernel_name == 'polynomial':
        (degree_param, gamma_param,
         coef0_param) = get_polynomial_kernel_params(kernel_param=kernel_param)
        return polynomial_kernel(X=X,
                                 Y=Y,
                                 degree=degree_param,
                                 gamma=gamma_param,
                                 coef0=coef0_param)
    elif kernel_name == 'rbf':
        return rbf_kernel(X=X, Y=Y, gamma=kernel_param)
    else:  # Laplacian
        return laplacian_kernel(X=X, Y=Y, gamma=kernel_param)
def get_kernel_matrix(X1, X2=None, kernel='rbf',gamma = 1, degree = 3, coef0=1):
    #Obtain N1xN2 kernel matrix from N1xM and N2xM data matrices
    if kernel == 'rbf':
        K = pairwise.rbf_kernel(X1,X2,gamma = gamma);
    elif kernel == 'poly':
        K = pairwise.polynomial_kernel(X1,X2,degree = degree, gamma = gamma,
                                       coef0 = coef0);
    elif kernel == 'linear':
        K = pairwise.linear_kernel(X1,X2);
    elif kernel == 'laplacian':
        K = pairwise.laplacian_kernel(X1,X2,gamma = gamma);
    elif kernel == 'chi2':
        K = pairwise.chi2_kernel(X1,X2,gamma = gamma);
    elif kernel == 'additive_chi2':
        K = pairwise.additive_chi2_kernel(X1,X2);
    elif kernel == 'sigmoid':
        K = pairwise.sigmoid_kernel(X1,X2,gamma = gamma,coef0 = coef0);
    else:
        print('[Error] Unknown kernel');
        K = None;
    return K;
Esempio n. 30
0
def kernel_matrix(X, sigma, kernel, pkDegree, c0):

    print("Calculating Kernel matrix")

    # Value of sigma is very important, and objective of research.Here default value.
    # Get dimensions of square distance Matrix N
    N = X.shape[0]
    # Initialise with zeros Kernel matrix
    K = np.zeros((N, N))

    if kernel == 'gaussian':
        gamma = 0.5 / sigma**2
        K = rbf_kernel(X, gamma=gamma)
    elif kernel == 'laplacian':
        gamma = 1 / sigma
        K = laplacian_kernel(X, gamma=gamma)
    elif kernel == 'linear':
        K = linear_kernel(X)
    elif kernel == 'polynomial':
        K = polynomial_kernel(X, gamma=sigma, degree=pkDegree, coef0=c0)

    return K
Esempio n. 31
0
def prediction(method, input_X, param=None):
    filename = '/Users/guichengwu/Desktop/208_mid term/exam.dat'
    data = np.loadtxt(filename, dtype='str')

    for i in range(data.shape[0]):
        for j in range(1,data.shape[1]):
            data[i][j] = data[i][j][2:]

    data_matrix = np.matrix(data).astype(np.float)
    X = data_matrix[:, 1:5]
    Y = data_matrix[:, 0]
    nrow = X.shape[0]
    X = np.vstack((X, input_X))
    
    X = preprocessing.scale(X)
    X = laplacian_kernel(X)

    input_X = X[nrow:X.shape[0], :]
    
    X_train = X[0:nrow, :]
    Y_train = Y
    
    return method_selection(method, X_train, Y_train, input_X, param)
Esempio n. 32
0
    def __init__(self,
                 B=1000,
                 epsilon=0.1,
                 kernel="gaussian",
                 gamma=None,
                 coef0=1.0,
                 degree=3):
        self._B = B
        self._epsilon = epsilon

        if kernel == "gaussian":
            self._kernel = lambda x, y: pw.rbf_kernel(x, y, gamma)
        elif kernel == "linear":
            self._kernel = pw.linear_kernel
        elif kernel == "polynomial":
            self._kernel = lambda x, y: pw.polynomial_kernel(
                x, y, degree, gamma, coef0)
        elif kernel == "sigmoid":
            self._kernel = lambda x, y: pw.sigmoid_kernel(x, y, gamma, coef0)
        elif kernel == "laplacian":
            self._kernel = lambda x, y: pw.laplacian_kernel(x, y, gamma)
        else:
            self._kernel = kernel
Esempio n. 33
0
def preprocessGraph():
    filename = '/Users/guichengwu/Desktop/208_mid term/exam.dat'

    data = np.loadtxt(filename, dtype='str')

    for i in range(data.shape[0]):
        for j in range(1,data.shape[1]):
            data[i][j] = data[i][j][2:]

    data_matrix = np.matrix(data).astype(np.float)
    X = data_matrix[:, 1:5]
    Y = np.asarray(data_matrix[:, 0])
    X = preprocessing.scale(X)
    X = laplacian_kernel(X)
    #X = polynomial_kernel(X)
    #X = laplacian_kernel(X)
    #X = rbf_kernel(X)
    #X = sigmoid_kernel(X)

    pca = decomposition.PCA(n_components=3)
    pca.fit(X)
    X = pca.transform(X)

    data_fig1 = plt.figure(1, figsize=(8, 6))
    plt.clf()
    #Plot the training points
    plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired)
    plt.xlabel('Projection Vector 1')
    plt.ylabel('Projection Vector 2')
    plt.show()
    data_fig1.savefig('/Users/guichengwu/Desktop/208_mid term/data_2d.png')

    data_fig2 = plt.figure(2)
    ax2 = data_fig2.add_subplot(111, projection='3d')
    ax2.scatter(np.asarray(X[:,0]), np.asarray(X[:,1]), np.asarray(X[:, 2]), c=Y, cmap=plt.cm.Paired)
    plt.show()
    data_fig2.savefig('/Users/guichengwu/Desktop/208_mid term/data_3d.png')
Esempio n. 34
0
#                           kinects=['K1', 'K2', 'K3', 'K4', 'K5'],
#                           kernel_func_rgb=lambda X, L=None: pairwise.laplacian_kernel(X, L, gamma=0.00001),
#                           kernel_func_depth=lambda X, L=None: pairwise.laplacian_kernel(X, L, gamma=0.00001),
#                           kernel_func_concatenate=lambda X, L=None: pairwise.laplacian_kernel(X, L, gamma=0.001),
#                           C_mkl=100,
#                           C_concatenate=100,
#                           lam_mkl=0.5,
#                           late_fusion_weight_rgb=0.8,
#                           late_fusion_weight_depth=0.2
#                           )

laplacian_params_K1 = Params(
    name='laplacian',
    assignable_names=['lap', 'laplacian'],
    kinects=['K1'],
    kernel_func_mkl_rgb=lambda X, L=None: pairwise.laplacian_kernel(
        X, L, gamma=0.0001),
    kernel_func_mkl_of=lambda X, L=None: pairwise.laplacian_kernel(
        X, L, gamma=0.0001),
    kernel_func_mkl_depth=lambda X, L=None: pairwise.laplacian_kernel(
        X, L, gamma=0.0001),
    kernel_func_concatenate=lambda X, L=None: pairwise.laplacian_kernel(
        X, L, gamma=0.001),
    kernel_func_svm_rgb=lambda X, L=None: pairwise.laplacian_kernel(
        X, L, gamma=0.00001),
    kernel_func_svm_depth=lambda X, L=None: pairwise.laplacian_kernel(
        X, L, gamma=0.00001),
    C_mkl=100,
    C_concatenate=100,
    C_rgb=100,
    C_of=100,
    C_depth=100,
Esempio n. 35
0
def drawAlgoCompGraph():
    h = 0.02
    names = ["ridge", "KNN", "Linear SVM", "RBF SVM", "LDA",
             "Random Forest", "AdaBoost", "Naive Bayes", "QDA", "Logistic"]

    kernel_names =['laplacian kernel', 'RBF kernel', 'Sigmoid kernel']
    classifiers = [
        linear_model.Ridge(),
        KNeighborsClassifier(9),
        SVC(kernel="linear", C=0.025),
        SVC(kernel="rbf", gamma=0.25),
        LDA(),
        RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),
        AdaBoostClassifier(),
        GaussianNB(),
        QDA(),
        linear_model.LogisticRegression()]

    filename = '/Users/guichengwu/Desktop/208_mid term/exam.dat'

    data = np.loadtxt(filename, dtype='str')

    for i in range(data.shape[0]):
        for j in range(1,data.shape[1]):
            data[i][j] = data[i][j][2:]

    data_matrix = np.matrix(data).astype(np.float)
    X = data_matrix[:, 1:5]
    y = np.asarray(data_matrix[:, 0])
    X = preprocessing.scale(X)

    Lap_X = laplacian_kernel(X)
    pca1 = decomposition.PCA(n_components=2)
    pca1.fit(Lap_X)
    Lap_X = pca1.transform(Lap_X)

    RBF_X = rbf_kernel(X)
    pca2 = decomposition.PCA(n_components=2)
    pca2.fit(RBF_X)
    RBF_X = pca2.transform(RBF_X)

    Sig_X = sigmoid_kernel(X)
    pca3 = decomposition.PCA(n_components=2)
    pca3.fit(Sig_X)
    Sig_X = pca3.transform(Sig_X)

    linearly_separable1 = (Lap_X, y)
    linearly_separable2 = (RBF_X, y)
    linearly_separable3 = (Sig_X, y)

    datasets = [            
                linearly_separable1,
                linearly_separable2,
                linearly_separable3,
                ]

    figure = plt.figure(figsize=(30, 10))
    i = 1

    for kernel_name, ds in zip(kernel_names, datasets):
        X, y = ds
        X = StandardScaler().fit_transform(X)
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4)
        x_min, x_max = X[:, 0].min() - 0.5, X[:, 0].max()+0.5
        y_min, y_max = X[:, 1].min() - 0.5, X[:, 1].max()+0.5
        xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                             np.arange(y_min, y_max, h))

        cm = plt.cm.RdBu
        cm_bright = ListedColormap(['#FF0000', '#0000FF'])
        ax = plt.subplot(len(datasets), len(classifiers)+1, i)
        ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)
        ax.scatter(X_test[:, 0], X_test[:,1], c=y_test, cmap=cm_bright, alpha=0.6)
        ax.set_xlim(xx.min(), xx.max())
        ax.set_ylim(yy.min(), yy.max())
        ax.set_xticks(())
        ax.set_yticks(())
        ax.set_title(kernel_name)
        i += 1

        # iterate over classifiers
        for name, clf in zip(names, classifiers):
            ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
            clf.fit(X_train, y_train)
            score = clf.score(X_test, y_test)

            if hasattr(clf, "decision_function"):
                Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
            else:
                Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]

            Z = Z.reshape(xx.shape)
            ax.contourf(xx, yy, Z, cmap=cm, alpha=0.8)

            ax.scatter(X_train[:, 0], X_train[:,1], c=y_train, cmap=cm_bright)
            ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6)
            ax.set_xlim(xx.min(), xx.max())
            ax.set_ylim(yy.min(), yy.max())
            ax.set_xticks(())
            ax.set_yticks(())
            ax.set_title(name)
            ax.text(xx.max() - 0.3, yy.min() + 0.3, ('%.2f' % score).lstrip('0'),
                    size=15, horizontalalignment='right')
            i += 1

    figure.subplots_adjust(left=0.02, right=0.98)
    plt.show()
    figure.savefig('/Users/guichengwu/Desktop/algorithm_comparison2.png')
    def kernel_mean_matching(self,
                             X,
                             Z,
                             y_labels,
                             kern='lin',
                             B0=1.0,
                             B1=1.0,
                             eps=None):
        nx = X.shape[0]
        nz = Z.shape[0]

        print("nx: ", nx, " nz: ", nz)
        print("B0: ", B0, " B1: ", B1)

        if eps == None:
            avg = (B0 + B1) * 1.0 / 2.0
            eps = avg / math.sqrt(nz)

        if kern == 'lin':
            K = np.dot(Z, Z.T)
            K = K.todense()
            kappa = np.sum(np.dot(Z, X.T) * float(nz) / float(nx), axis=1)
        elif kern == 'rbf':
            K = sk.rbf_kernel(Z, Z)
            kappa = np.sum(sk.rbf_kernel(Z, X), axis=1) * float(nz) / float(nx)
        elif kern == 'poly':
            K = sk.polynomial_kernel(Z, Z)
            kappa = np.sum(sk.polynomial_kernel(Z, X),
                           axis=1) * float(nz) / float(nx)
        elif kern == 'laplacian':
            K = sk.laplacian_kernel(Z, Z)
            kappa = np.sum(sk.laplacian_kernel(Z, X),
                           axis=1) * float(nz) / float(nx)
        elif kern == 'sigmoid':
            K = sk.sigmoid_kernel(Z, Z)
            kappa = np.sum(sk.sigmoid_kernel(Z, X),
                           axis=1) * float(nz) / float(nx)

        else:
            raise ValueError('unknown kernel')

        K = K.astype(np.double)
        K = matrix(K)

        kappa = matrix(kappa)
        G = matrix(np.r_[np.ones((1, nz)), -np.ones((1, nz)),
                         np.eye(nz), -np.eye(nz)])

        true_label_max = np.argmax(y_labels, axis=1)
        updatedm = np.ones((nz, ))
        updatedm[true_label_max == 1] = B0
        updatedm[true_label_max == 0] = B1

        h = matrix(np.r_[nz * (1 + eps), nz * (eps - 1), updatedm,
                         np.zeros((nz, ))])

        solvers.options['show_progress'] = False
        print("starting solver")
        sol = solvers.qp(K, -kappa, G, h)
        coef = np.array(sol['x'])
        print(sol)
        return coef