def main():
    n = int(sys.argv[1])
    for i in range(n):
        x = stdrandom.gaussian(0.5, 0.2)
        y = stdrandom.gaussian(0.5, 0.2)
        stddraw.point(x, y)
    stddraw.show()
def midpoint(x0, y0, x1, y1, var, n):
    if n == 0:
        stddraw.line(x0, y0, x1, y1)
        stddraw.show(0.0)
        return
    xmid = 0.5 * (x0 + x1) + stdrandom.gaussian(0, math.sqrt(var))
    ymid = 0.5 * (y0 + y1) + stdrandom.gaussian(0, math.sqrt(var))

    midpoint(x0, y0, xmid, ymid, var / 2.7, n-1)
    midpoint(xmid, ymid, x1, y1, var / 2.7, n-1)
Esempio n. 3
0
def midpoint(x0, y0, x1, y1, var, n):
    if n == 0:
        stddraw.line(x0, y0, x1, y1)
        stddraw.show()
        return
    xmid = 0.5 * (x0 + x1) + stdrandom.gaussian(0, math.sqrt(var))
    ymid = 0.5 * (y0 + y1) + stdrandom.gaussian(0, math.sqrt(var))

    midpoint(x0, y0, xmid, ymid, var / 2.7, n-1)
    midpoint(xmid, ymid, x1, y1, var / 2.7, n-1)
Esempio n. 4
0
def curve(x0, y0, x1, y1, variance, scaleFactor, n=11):
    if n == 0:
        stddraw.line(x0, y0, x1, y1)
        stddraw.show(0.0)
        return
    delta = stdrandom.gaussian(0, math.sqrt(variance))
    delta1 = stdrandom.gaussian(0, math.sqrt(variance))
    xm = (x0 + x1) / 2.0 + delta
    ym = (y0 + y1) / 2.0 + delta1
    curve(x0, y0, xm, ym, variance / scaleFactor, scaleFactor, n - 1)
    curve(xm, ym, x1, y1, variance / scaleFactor, scaleFactor, n - 1)
Esempio n. 5
0
def curve(x0, y0, x1, y1, variance, scale_factor, n):
    if n == 0:
        stddraw.line(x0, y0, x1, y1)
        stddraw.show(0)
        return
    xmid = (x0 + x1) / 2
    ymid = (y0 + y1) / 2
    deltax = stdrandom.gaussian(0, math.sqrt(variance))
    deltay = stdrandom.gaussian(0, math.sqrt(variance))
    variance = variance / scale_factor
    curve(x0, y0, xmid + deltax, ymid + deltay, variance, scale_factor, n - 1)
    curve(xmid + deltax, ymid + deltay, x1, y1, variance, scale_factor, n - 1)
Esempio n. 6
0
def curve(x0, y0, x1, y1, var, s):
    if (x1 - x0) < .01:
        stddraw.line(x0, y0, x1, y1)
        return
    xm = (x0 + x1) / 2.0
    ym = (y0 + y1) / 2.0
    delta = stdrandom.gaussian(0, math.sqrt(var))
    curve(x0, y0, xm, ym+delta, var/s, s)
    curve(xm, ym+delta, x1, y1, var/s, s)
def curve(x0, y0, x1, y1, variance, scaleFactor):
    if (x1 - x0) < .01:
        stddraw.line(x0, y0, x1, y1)
        return
    xm = (x0 + x1) / 2.0
    ym = (y0 + y1) / 2.0
    delta = stdrandom.gaussian(0, math.sqrt(variance))
    curve(x0, y0, xm, ym+delta, variance/scaleFactor, scaleFactor)
    curve(xm, ym+delta, x1, y1, variance/scaleFactor, scaleFactor)
Esempio n. 8
0
def curve(x0, y0, x1, y1, variance, scaleFactor):
    if (x1 - x0) < .01:
        stddraw.line(x0, y0, x1, y1)
        return
    xm = (x0 + x1) / 2.0
    ym = (y0 + y1) / 2.0
    delta = stdrandom.gaussian(0, math.sqrt(variance))
    curve(x0, y0, xm, ym+delta, variance/scaleFactor, scaleFactor)
    curve(xm, ym+delta, x1, y1, variance/scaleFactor, scaleFactor)
Esempio n. 9
0
def fill_brownian(a, i0, i1, variance, scale):
    if i1 - i0 == 1:
        return

    Xm = int((i0 + i1) / 2)
    ym = (a[i0] + a[i1]) / 2
    delta = stdrandom.gaussian(0, math.sqrt(variance))
    a[Xm] = ym + delta
    fill_brownian(a, i0, Xm, variance / scale, scale)
    fill_brownian(a, Xm, i1, variance / scale, scale)
Esempio n. 10
0
def fill_brownian(a, i0, i1, variance, scaleFactor):
    if i0 - i1 == -1:
        stddraw.line(i0, a[i0], i1, a[i1])
        return

    ym = int((i0 + i1) * 1 / 2)
    delta = stdrandom.gaussian(0, math.sqrt(variance))
    a[ym] = delta
    fill_brownian(a, i0, ym, variance / scaleFactor, scaleFactor)
    fill_brownian(a, ym, i1, variance / scaleFactor, scaleFactor)
Esempio n. 11
0
def curve(a, x0, y0, x1, y1, var, beta, n=7):
    if n == 0:
        stddraw.line(x0, y0, x1, y1)
        return

    xm = (x0 + x1) / 2.0
    ym = (y0 + y1) / 2.0
    ix = int((((x0 + x1) / 2.0) * 128))
    delta = stdrandom.gaussian(0.0, math.sqrt(var))
    a[ix] = ym + delta
    curve(a, x0, y0, xm, ym + delta, var / beta, beta, n - 1)
    curve(a, xm, ym + delta, x1, y1, var / beta, beta, n - 1)
Esempio n. 12
0
def g20(n):
    l = []
    a = [0] * 20
    for i in range(n):
        l.append(stdrandom.gaussian())
    #print('l:',l)
    i = -5
    while i < 5:
        for t in l:
            if i < t < (i + 0.5):
                a[int(2 * i) + 10] += 1
        i += 0.5
    draw(a)
    return a
Esempio n. 13
0
# Read values from standard input to create an array of charged
# particles. Set each pixel color in an image to a grayscale value
# proportional to the total of the potentials due to the particles at
# corresponding points. Draw the resulting image to standard draw.

MAX_GRAY_SCALE = 255

# Read charges from standard input into an array.
#n = stdio.readInt()
n = eval(sys.argv[1])
charges = stdarray.create1D(n)
for i in range(n):
    x0 = round(stdrandom.uniformFloat(0, 1), 2)
    y0 = round(stdrandom.uniformFloat(0, 1), 2)
    q0 = stdrandom.gaussian(50, 150)
    charges[i] = Charge(x0, y0, q0)
    print(str(charges[i]))

# Create a Picture depicting potential values.
pic = Picture()
for col in range(pic.width()):
    for row in range(pic.height()):
        # Compute pixel color.
        x = 1.0 * col / pic.width()
        y = 1.0 * row / pic.height()
        v = 0.0

        for i in range(n):
            v += charges[i].potentialAt(x, y)
        v = (MAX_GRAY_SCALE / 2.0) + (v / 2.0e10)
Esempio n. 14
0
def maxwellBo(sigma=1.0):
    maxwellbo = math.sqrt(
        stdrandom.gaussian(0, sigma)**2 + stdrandom.gaussian(0, sigma)**2 +
        stdrandom.gaussian(0, sigma)**2)
    return maxwellbo