def tableau_data(): Workbook.caller() save_path = str(dr_pivot_path()) save_path = save_path[:save_path.rindex('\\')] ddr_data = dr.raw_pivot() d = dr.tableau_campaign_data(ddr_data) s = search.merge_data() tableau = d.append(s) tableau['Quarter'] = qquarter() if Range('merged', 'A1').value is None: chunk_df(tableau, 'merged', 'A1') # If data is already present in the tab, the two data sets are merged together and then copied into the data tab. else: past_data = pd.read_excel(dr_pacing_path(), 'merged', index_col=None) past_data = past_data[past_data['Campaign'] != 'Search'] appended_data = past_data.append(tableau) Sheet('merged').clear() chunk_df(appended_data, 'merged', 'A1') #Range('Sheet3', 'AT1').value = pd.to_datetime(ddr_data['Date'].max()) + datetime.timedelta(days= 1) wb = Workbook() Sheet('Sheet1').name = 'DDR Data' chunk_df(ddr_data, 'DDR Data', 'A1') wb.save(save_path + '\\' + 'DR_Raw_Data.xlsx') wb.close()
def output_pacing_data_for_forecasts(): wb = Workbook.caller() dr_data = dr.raw_pivot() #pace = dr.pacing() #data_merged = data_transform.raw_pacing_and_dr(dr_data, pace) dr_forecasting = data_transform.transform_dr(dr_data) wb.set_current() Sheet('raw_pacing_data').clear_contents() Range('raw_pacing_data', 'A1', index=False).value = dr_forecasting performance.publishers(dr_data)