def migrate(metrics=None):
  """ Migrate _BACKLOG_DAYS worth of previously-collected tweets to the Taurus
  non-metric-data RabbitMQ exchange.

  :param metrics: optional sequence of metric names; if specified (not None),
    the migration will be limited to tweets corresponding to the given metric
    names.
  """
  startingTimestamp = datetime.utcnow() - timedelta(days=_BACKLOG_DAYS)

  sqlEngine = collectorsdb.engineFactory()

  # Retrieve the first twitter samples sequence number in the desired range
  # select min(seq) from twitter_tweet_samples where agg_ts >= startingTimestamp

  @collectorsdb.retryOnTransientErrors
  def queryMigrationRange():
    sel = (sql.select(
            [sql.func.count(),
             sql.func.min(schema.twitterTweetSamples.c.seq),
             sql.func.max(schema.twitterTweetSamples.c.seq)])
           .where(schema.twitterTweetSamples.c.agg_ts >= startingTimestamp))
    if metrics is not None:
      sel = sel.where(schema.twitterTweetSamples.c.metric.in_(metrics))

    return sqlEngine.execute(sel).first()

  totalNumItems, minSeq, maxSeq = queryMigrationRange()
  if totalNumItems == 0:
    g_log.info("Nothing forwarded: no tweet samples found since %s UTC",
               startingTimestamp.isoformat())
    return

  if metrics is None:
    g_log.info("Starting migration of tweets from %s UTC; totalNumItems=%d; "
               "minSeq=%s, maxSeq=%s",
               startingTimestamp.isoformat(), totalNumItems, minSeq, maxSeq)
  else:
    g_log.info("Starting migration of tweets from %s UTC; totalNumItems=%d; "
               "minSeq=%s, maxSeq=%s; metrics=%s",
               startingTimestamp.isoformat(), totalNumItems, minSeq, maxSeq,
               metrics)

  # Retrieve and publish batches
  totalNumPublished = 0
  totalNumBatches = 0
  batchMinSeq = minSeq
  with MessageBusConnector() as messageBus:
    while True:
      batchEndSeq, batch = TweetForwarder.queryNonMetricTweetBatch(
        sqlEngine=sqlEngine,
        minSeq=batchMinSeq,
        maxItems=200,
        maxSeq=maxSeq,
        metrics=metrics)

      if batchEndSeq is None:
        break

      TweetForwarder.publishNonMetricTweetBatch(messageBus=messageBus,
                                                batch=batch)

      totalNumPublished += len(batch)
      totalNumBatches += 1

      g_log.debug("Published numItems=%d; batchMinSeq=%s; batchEndSeq=%s "
                  "(%d of %d: %s%%)",
                  len(batch), batchMinSeq, batchEndSeq,
                  totalNumPublished, totalNumItems,
                  int(float(totalNumPublished)/totalNumItems * 100))

      if (totalNumBatches % 250) == 0 or totalNumPublished == totalNumItems:
        # Progress report
        g_log.info(
          "Published %d of %d: %s%%",
          totalNumPublished, totalNumItems,
          int(float(totalNumPublished)/totalNumItems * 100))

      # Prepare for next query
      batchMinSeq = batchEndSeq + 1

  g_log.info("Done publishing! publishedBatches=%d, publishedItems=%d, "
             "expectedItems=%d; minSeq=%s, maxSeq=%s",
             totalNumBatches, totalNumPublished,
             totalNumItems, minSeq, maxSeq)
def migrate(metrics=None):
  """ Migrate _BACKLOG_DAYS worth of previously-collected tweets to the Taurus
  non-metric-data RabbitMQ exchange.

  :param metrics: optional sequence of metric names; if specified (not None),
    the migration will be limited to tweets corresponding to the given metric
    names.
  """
  startingTimestamp = datetime.utcnow() - timedelta(days=_BACKLOG_DAYS)

  sqlEngine = collectorsdb.engineFactory()

  # Retrieve the first twitter samples sequence number in the desired range
  # select min(seq) from twitter_tweet_samples where agg_ts >= startingTimestamp

  @collectorsdb.retryOnTransientErrors
  def queryMigrationRange():
    sel = (sql.select(
            [sql.func.count(),
             sql.func.min(schema.twitterTweetSamples.c.seq),
             sql.func.max(schema.twitterTweetSamples.c.seq)])
           .where(schema.twitterTweetSamples.c.agg_ts >= startingTimestamp))
    if metrics is not None:
      sel = sel.where(schema.twitterTweetSamples.c.metric.in_(metrics))

    return sqlEngine.execute(sel).first()

  totalNumItems, minSeq, maxSeq = queryMigrationRange()
  if totalNumItems == 0:
    g_log.info("Nothing forwarded: no tweet samples found since %s UTC",
               startingTimestamp.isoformat())
    return

  if metrics is None:
    g_log.info("Starting migration of tweets from %s UTC; totalNumItems=%d; "
               "minSeq=%s, maxSeq=%s",
               startingTimestamp.isoformat(), totalNumItems, minSeq, maxSeq)
  else:
    g_log.info("Starting migration of tweets from %s UTC; totalNumItems=%d; "
               "minSeq=%s, maxSeq=%s; metrics=%s",
               startingTimestamp.isoformat(), totalNumItems, minSeq, maxSeq,
               metrics)

  # Retrieve and publish batches
  totalNumPublished = 0
  totalNumBatches = 0
  batchMinSeq = minSeq
  with MessageBusConnector() as messageBus:
    while True:
      batchEndSeq, batch = TweetForwarder.queryNonMetricTweetBatch(
        sqlEngine=sqlEngine,
        minSeq=batchMinSeq,
        maxItems=200,
        maxSeq=maxSeq,
        metrics=metrics)

      if batchEndSeq is None:
        break

      TweetForwarder.publishNonMetricTweetBatch(messageBus=messageBus,
                                                batch=batch)

      totalNumPublished += len(batch)
      totalNumBatches += 1

      g_log.debug("Published numItems=%d; batchMinSeq=%s; batchEndSeq=%s "
                  "(%d of %d: %s%%)",
                  len(batch), batchMinSeq, batchEndSeq,
                  totalNumPublished, totalNumItems,
                  int(float(totalNumPublished)/totalNumItems * 100))

      if (totalNumBatches % 250) == 0 or totalNumPublished == totalNumItems:
        # Progress report
        g_log.info(
          "Published %d of %d: %s%%",
          totalNumPublished, totalNumItems,
          int(float(totalNumPublished)/totalNumItems * 100))

      # Prepare for next query
      batchMinSeq = batchEndSeq + 1

  g_log.info("Done publishing! publishedBatches=%d, publishedItems=%d, "
             "expectedItems=%d; minSeq=%s, maxSeq=%s",
             totalNumBatches, totalNumPublished,
             totalNumItems, minSeq, maxSeq)
def main():
  """
  NOTE: main also serves as entry point for "console script" generated by setup
  """
  logging_support.LoggingSupport.initTool()

  _parseArgs()

  startingTimestamp = datetime.utcnow() - timedelta(days=_BACKLOG_DAYS)

  sqlEngine = collectorsdb.engineFactory()

  # Retrieve the first twitter samples sequence number in the desired range
  # select min(seq) from twitter_tweet_samples where agg_ts >= startingTimestamp

  @collectorsdb.retryOnTransientErrors
  def queryMigrationRange():
    sel = sql.select(
        [sql.func.count(),
         sql.func.min(schema.twitterTweetSamples.c.seq),
         sql.func.max(schema.twitterTweetSamples.c.seq)]
      ).where(schema.twitterTweetSamples.c.agg_ts >= startingTimestamp)
    return sqlEngine.execute(sel).first()

  totalNumItems, minSeq, maxSeq = queryMigrationRange()
  if totalNumItems == 0:
    g_log.info("Nothing forwarded: no tweet samples found since %s UTC",
               startingTimestamp.isoformat())
    return

  g_log.info("Starting migration of tweets from %s UTC; totalNumItems=%d; "
             "minSeq=%s, maxSeq=%s",
             startingTimestamp.isoformat(), totalNumItems, minSeq, maxSeq)

  # Retrieve and publish batches
  totalNumPublished = 0
  totalNumBatches = 0
  batchMinSeq = minSeq
  with MessageBusConnector() as messageBus:
    while True:
      batchEndSeq, batch = TweetForwarder.queryNonMetricTweetBatch(
        sqlEngine=sqlEngine,
        minSeq=batchMinSeq,
        maxItems=200,
        maxSeq=maxSeq)
  
      if batchEndSeq is None:
        break
  
      TweetForwarder.publishNonMetricTweetBatch(messageBus=messageBus,
                                                batch=batch)
  
      totalNumPublished += len(batch)
      totalNumBatches += 1
  
      g_log.debug("Published numItems=%d; batchMinSeq=%s; batchEndSeq=%s "
                  "(%d of %d: %s%%)",
                  len(batch), batchMinSeq, batchEndSeq,
                  totalNumPublished, totalNumItems,
                  int(float(totalNumPublished)/totalNumItems * 100))
  
      if (totalNumBatches % 250) == 0 or totalNumPublished == totalNumItems:
        # Progress report
        g_log.info(
          "Published %d of %d: %s%%",
          totalNumPublished, totalNumItems,
          int(float(totalNumPublished)/totalNumItems * 100))
  
      # Prepare for next query
      batchMinSeq = batchEndSeq + 1

  g_log.info("Done publishing! publishedBatches=%d, publishedItems=%d, "
             "expectedItems=%d; minSeq=%s, maxSeq=%s",
             totalNumBatches, totalNumPublished,
             totalNumItems, minSeq, maxSeq)
Esempio n. 4
0
def main():
    """
  NOTE: main also serves as entry point for "console script" generated by setup
  """
    logging_support.LoggingSupport.initTool()

    _parseArgs()

    startingTimestamp = datetime.utcnow() - timedelta(days=_BACKLOG_DAYS)

    sqlEngine = collectorsdb.engineFactory()

    # Retrieve the first twitter samples sequence number in the desired range
    # select min(seq) from twitter_tweet_samples where agg_ts >= startingTimestamp

    @collectorsdb.retryOnTransientErrors
    def queryMigrationRange():
        sel = sql.select([
            sql.func.count(),
            sql.func.min(schema.twitterTweetSamples.c.seq),
            sql.func.max(schema.twitterTweetSamples.c.seq)
        ]).where(schema.twitterTweetSamples.c.agg_ts >= startingTimestamp)
        return sqlEngine.execute(sel).first()

    totalNumItems, minSeq, maxSeq = queryMigrationRange()
    if totalNumItems == 0:
        g_log.info("Nothing forwarded: no tweet samples found since %s UTC",
                   startingTimestamp.isoformat())
        return

    g_log.info(
        "Starting migration of tweets from %s UTC; totalNumItems=%d; "
        "minSeq=%s, maxSeq=%s", startingTimestamp.isoformat(), totalNumItems,
        minSeq, maxSeq)

    # Retrieve and publish batches
    totalNumPublished = 0
    totalNumBatches = 0
    batchMinSeq = minSeq
    with MessageBusConnector() as messageBus:
        while True:
            batchEndSeq, batch = TweetForwarder.queryNonMetricTweetBatch(
                sqlEngine=sqlEngine,
                minSeq=batchMinSeq,
                maxItems=200,
                maxSeq=maxSeq)

            if batchEndSeq is None:
                break

            TweetForwarder.publishNonMetricTweetBatch(messageBus=messageBus,
                                                      batch=batch)

            totalNumPublished += len(batch)
            totalNumBatches += 1

            g_log.debug(
                "Published numItems=%d; batchMinSeq=%s; batchEndSeq=%s "
                "(%d of %d: %s%%)", len(batch), batchMinSeq, batchEndSeq,
                totalNumPublished, totalNumItems,
                int(float(totalNumPublished) / totalNumItems * 100))

            if (totalNumBatches %
                    250) == 0 or totalNumPublished == totalNumItems:
                # Progress report
                g_log.info("Published %d of %d: %s%%", totalNumPublished,
                           totalNumItems,
                           int(float(totalNumPublished) / totalNumItems * 100))

            # Prepare for next query
            batchMinSeq = batchEndSeq + 1

    g_log.info(
        "Done publishing! publishedBatches=%d, publishedItems=%d, "
        "expectedItems=%d; minSeq=%s, maxSeq=%s", totalNumBatches,
        totalNumPublished, totalNumItems, minSeq, maxSeq)