Esempio n. 1
0
def getnotassociatedindex(len_sub, len_tr, del_tr, del_sub):

    non_tr = []
    non_sub = []

    non_sub = np.array(range(len_sub))
    non_tr = np.array(range(len_tr))

    non_sub = np.delete(non_sub, del_sub)
    non_tr = np.delete(non_tr, del_tr)

    non_sub = non_sub.tolist()
    non_tr = non_tr.tolist()

    return non_sub, non_tr
Esempio n. 2
0
def getnotassociatedindex(len_sub, len_tr, del_tr, del_sub):

    non_tr = []
    non_sub = []

    non_sub = np.array(range(len_sub))
    non_tr = np.array(range(len_tr))

    non_sub = np.delete(non_sub, del_sub)
    non_tr = np.delete(non_tr, del_tr)

    non_sub = non_sub.tolist()
    non_tr = non_tr.tolist()

    return non_sub, non_tr
Esempio n. 3
0
def trackmerge(tr, new_tr_copy, non_tr, loss, threshold, res):

    threshold_ = threshold + (2 * threshold / 3)  # margin

    new_tr = new_tr_copy

    for ii in range(len(non_tr)):

        a = loss[non_tr[ii], :]
        b = a[a < threshold_]

        if len(b) > 0:
            if len(b) > 1:
                b = [b.min()]

            # Get merging track overlapped subject's index
            idx_b = np.argwhere(a == b)

            # Get parent track's index
            idx_new_tr = np.argwhere(res[:, 1] == idx_b[0, 0])

            # Merge tracks
            try:  # Maybe wrong hungarian as we expected

                # Only associate locked tracks
                if tr[ii].state is 2 and new_tr[idx_new_tr[0, 0]].state is 2:
                    new_tr[idx_new_tr[0, 0]].associatetrack(tr[ii])
                    tr = np.delete(tr, ii)
                    tr = tr.tolist()

            except:
                pass

    return new_tr, tr
Esempio n. 4
0
def trackmerge(tr, new_tr_copy, non_tr, loss, threshold, res):

    threshold_ = threshold + (2 * threshold / 3)  # margin

    new_tr = new_tr_copy

    for ii in range(len(non_tr)):

        a = loss[non_tr[ii], :]
        b = a[a < threshold_]

        if len(b) > 0:
            if len(b) > 1:
                b = [b.min()]

            # Get merging track overlapped subject's index
            idx_b = np.argwhere(a == b)

            # Get parent track's index
            idx_new_tr = np.argwhere(res[:, 1] == idx_b[0, 0])

            # Merge tracks
            try:  # Maybe wrong hungarian as we expected

                # Only associate locked tracks
                if tr[ii].state is 2 and new_tr[idx_new_tr[0, 0]].state is 2:
                    new_tr[idx_new_tr[0, 0]].associatetrack(tr[ii])
                    tr = np.delete(tr, ii)
                    tr = tr.tolist()

            except:
                pass

    return new_tr, tr
Esempio n. 5
0
def hungarianassociation(loss, threshold):

    print loss

    # SKLEARN association method
    res = _hungarian(loss)

    del_index = []

    for ii in range(len(res)):
        y, x = res[ii]

        """
        if(loss[y, x] > threshold):
            del_index.append(ii)
        """

    new_res = np.delete(res, del_index, 0)

    return new_res
Esempio n. 6
0
def hungarianassociation(loss, distance, threshold):

    loss = postproc(loss, threshold)

    debug_flag = 0
    if debug_flag: print loss

    # SKLEARN association method
    res = _hungarian(loss)

    del_index = []

    for ii in range(len(res)): 
        y, x = res[ii]

        if(loss [y, x] > threshold):
            del_index.append(ii)

    new_res = np.delete(res, del_index, 0)
    #print new_res
    return new_res
Esempio n. 7
0
def hungarianassociation(loss, distance, threshold):

    loss = postproc(loss, threshold)

    debug_flag = 0
    if debug_flag: print loss

    # SKLEARN association method
    res = _hungarian(loss)

    del_index = []

    for ii in range(len(res)):
        y, x = res[ii]

        if (loss[y, x] > threshold):
            del_index.append(ii)

    new_res = np.delete(res, del_index, 0)
    #print new_res
    return new_res
Esempio n. 8
0
def tracksplit(new_tr, sub, threshold):
    # usage of appareance model might be a good option
    # for distance calculation in this section

    threshold_ = threshold + (2 * threshold / 3)  # margin

    del_idx = []

    for ii in range(len(sub)):
        for tr in new_tr:
            if tr.group and tr.calculatesubjectdistance(sub[ii], threshold_):
                n_tr = tr.deassociatetrack()
                n_tr.updatetrack(sub[ii])
                new_tr.append(n_tr)
                del_idx.append(ii)
                break

    if del_idx:
        sub = np.delete(sub, del_idx)
        sub = sub.tolist()

    return new_tr, sub
Esempio n. 9
0
def tracksplit(new_tr, sub, threshold):
    # usage of appareance model might be a good option
    # for distance calculation in this section

    threshold_ = threshold + (2 * threshold / 3)  # margin

    del_idx = []

    for ii in range(len(sub)):
        for tr in new_tr:
            if tr.group and tr.calculatesubjectdistance(sub[ii], threshold_):
                n_tr = tr.deassociatetrack()
                score = lossfunction(tr, sub[ii])
                n_tr.updatetrack(sub[ii], score[0])
                new_tr.append(n_tr)
                del_idx.append(ii)
                break

    if del_idx:
        sub = np.delete(sub, del_idx)
        sub = sub.tolist()

    return new_tr, sub
Esempio n. 10
0
def trackupdate(tr, sub, res, loss, threshold):

    new_track = []
    del_index_sub = []
    del_index_tr = []
    init_tr = tr
    init_sub = sub
    threshold_distance = 100

    aux_res = res

    # Update successful associations
    for ii in range(len(res)):
        y, x = res[ii]
        aux_res = np.delete(aux_res, 0, axis=0)
        new_tr = assignsubjecttoexistingtrack(tr[y], sub[x])
        new_track.append(new_tr)
        del_index_sub.append(x)
        del_index_tr.append(y)

    sub = np.delete(sub, del_index_sub)
    tr = np.delete(tr, del_index_tr)
    sub = sub.tolist()
    tr = tr.tolist()

    # Update missed associations --> where merge should act
    non_index_sub, non_index_tr = getnotassociatedindex(
        len(init_sub), len(init_tr), del_index_tr, del_index_sub)

    new_track, tr = trackmerge(
        tr, new_track, non_index_tr, loss, threshold_distance, res)

    del_index = []

    for ii in range(len(tr)):
        tr[ii].updatetrack()

        # In case track got lost
        if tr[ii].state == 4:
            del_index.append(ii)

    if del_index:
        tr = np.delete(tr, del_index)
        tr = tr.tolist()

    for n in new_track:
        tr.append(n)

    # Update new subjects --> where split should act

    tr, sub = tracksplit(new_track, sub, threshold_distance)

    """
    TODO
    ----
    - Only assign new tracks in outer positions of the image
    """

    for s in sub:
        t = assignsubjecttonewtrack(s)
        tr.append(t)

    return tr
Esempio n. 11
0
def trackupdate(tr, sub, res, loss, threshold):

    new_track = []
    del_index_sub = []
    del_index_tr = []
    init_tr = tr
    init_sub = sub
    threshold_distance = 100

    aux_res = res

    # Update successful associations
    for ii in range(len(res)):
        y, x = res[ii]
        aux_res = np.delete(aux_res, 0, axis=0)
        new_tr = assignsubjecttoexistingtrack(tr[y], sub[x])
        new_track.append(new_tr)
        del_index_sub.append(x)
        del_index_tr.append(y)

    sub = np.delete(sub, del_index_sub)
    tr = np.delete(tr, del_index_tr)
    sub = sub.tolist()
    tr = tr.tolist()

    # Update missed associations --> where merge should act
    non_index_sub, non_index_tr = getnotassociatedindex(
        len(init_sub), len(init_tr), del_index_tr, del_index_sub)

    new_track, tr = trackmerge(tr, new_track, non_index_tr, loss,
                               threshold_distance, res)

    del_index = []

    for ii in range(len(tr)):
        tr[ii].updatetrack()

        # In case track got lost
        if tr[ii].state == 4:
            del_index.append(ii)

    if del_index:
        tr = np.delete(tr, del_index)
        tr = tr.tolist()

    for n in new_track:
        tr.append(n)

    # Update new subjects --> where split should act

    tr, sub = tracksplit(new_track, sub, threshold_distance)
    """
    TODO
    ----
    - Only assign new tracks in outer positions of the image
    """

    for s in sub:
        t = assignsubjecttonewtrack(s)
        tr.append(t)

    return tr