Esempio n. 1
0
def  lidar_scan():
	global myrobot
	global p
	global s
	try:	
		#print 'ITERATION:.......', iteration
		# Move robot; noise is in prob function
		rel_motion = myrobot.r_motion()
		print rel_motion
		myrobot = myrobot.move(rel_motion)
		#print 'Robot after movement: ', myrobot
			
		# Move particles
			
		p2 = [p[i].move(rel_motion) for i in xrange(N)]
		p = p2

		s.send('GE0000108000\r')
		data_lidar = s.recv(BUFFER_SIZE)
		# Lidar sense - returns distance to 3 beacons
		lidar = ttest.update_di(data_lidar) 
		# Calculate the weights 			
		w =[p[i].weight(lidar) for i in xrange(N)]
		w = np.asarray(w)
		w /= w.sum()
		try:
		# Probability random pick - use np.random alg
			p3 = np.random.choice(p, N, p = w)
			p = list(p3)
			mean_val = [(p[i].x, p[i].y, p[i].orientation) for i in xrange(len(p))]

		# Set myrobot to particle with max w
			center = np.mean(mean_val, axis = 0)
			myrobot.x, myrobot.y, myrobot.orientation = center[0], center[1], center[2]
		except:
			print 'error with choice'
			pass			
		print myrobot
	except:			
		traceback.print_exc()
		s.send('QT\r')
		s.shutdown(2)			
		s.close()
Esempio n. 2
0
            # Move robot; noise is in prob function
            #rel_motion = myrobot.r_motion()
            #print rel_motion
            #myrobot = myrobot.move(rel_motion)
            #print 'Robot after movement: ', myrobot

            # Move particles

            p2 = [p[i].move(rel_motion) for i in xrange(N)]
            p = p2
            #for i in p:
            #	print 'Particels after movement: ', i
            s.send('GE0000108000\r')
            data_lidar = s.recv(BUFFER_SIZE)
            # Lidar sense - returns distance to 3 beacons
            lidar, langle, lgraph = ttest.update_di(data_lidar)
            #print 'After lidar'
            #try:
            #	update_polar_plot(langle, lgraph)
            #except:
            #	print 'not same length'
            # Calculate the weights
            #print 'lidar data: ', lidar
            w = [p[i].weight(lidar) for i in xrange(N)]
            w = np.asarray(w)
            w /= w.sum()
            #print 'just weights: ', w
            #print 'sum of weights: ', np.sum(w)
            try:
                # Probability random pick - use np.random alg
                p3 = np.random.choice(p, N, p=w)
Esempio n. 3
0
		# Move robot; noise is in prob function
			#rel_motion = myrobot.r_motion()
			#print rel_motion
			#myrobot = myrobot.move(rel_motion)
		#print 'Robot after movement: ', myrobot
			
		# Move particles
			
			p2 = [p[i].move(rel_motion) for i in xrange(N)]
			p = p2
		#for i in p:
		#	print 'Particels after movement: ', i
			s.send('GE0000108000\r')
			data_lidar = s.recv(BUFFER_SIZE)
		# Lidar sense - returns distance to 3 beacons
			lidar, langle, lgraph = ttest.update_di(data_lidar) 
			#print 'After lidar'			
			#try:
			#	update_polar_plot(langle, lgraph)
			#except:
			#	print 'not same length'
		# Calculate the weights 
			#print 'lidar data: ', lidar			
			w =[p[i].weight(lidar) for i in xrange(N)]
			w = np.asarray(w)
			w /= w.sum()
			#print 'just weights: ', w
			#print 'sum of weights: ', np.sum(w)
			try:
		# Probability random pick - use np.random alg
				p3 = np.random.choice(p, N, p = w)