Esempio n. 1
0
def resnet(x, is_train):
    W1 = utils.weight_variable([1, 1, x.get_shape()[3].value, 64], name='W1')
    b1 = utils.bias_variable([64], 'bias1')
    conv1 = utils.conv2d(x, W1, b1)
    # conv1 =tf.layers.batch_normalization(conv1,training=is_train)
    conv1 = tf.nn.relu(conv1)

    bn1 = bottleneck(conv1, 1, is_train)
    cc1 = tf.concat([bn1, conv1], axis=3, name='C1')
    cc1 = tf.nn.relu(cc1)
    bn2 = bottleneck(cc1, 2, is_train)
    cc2 = tf.concat([bn2, cc1], axis=3, name='C2')
    cc2 = tf.nn.relu(cc2)
    bn3 = bottleneck(cc2, 3, is_train)
    cc3 = tf.concat([bn3, cc2], axis=3, name='C2')
    cc3 = tf.nn.relu(cc3)

    W2 = utils.weight_variable([1, 1, cc3.get_shape()[3].value, 64], name='W2')
    b2 = utils.bias_variable([64], 'bias2')
    conv2 = utils.conv2d(cc3, W2, b2)
    # conv2 = tf.layers.batch_normalization(conv2, training=is_train)
    conv2 = tf.nn.relu(conv2)

    W3 = utils.weight_variable([1, 1, conv2.get_shape()[3].value, 1],
                               name='W3')
    b3 = utils.bias_variable([1], 'bias3')
    conv3 = utils.conv2d(conv2, W3, b3)

    return conv3
Esempio n. 2
0
    def _discriminator(self,
                       input_images,
                       dims,
                       train_phase,
                       activation=tf.nn.relu,
                       scope_name="discriminator",
                       scope_reuse=False):
        N = len(dims)
        with tf.variable_scope(scope_name) as scope:
            if scope_reuse:
                scope.reuse_variables()
            h = input_images
            skip_bn = True  # First layer of discriminator skips batch norm
            for index in range(N - 2):
                W = utils.weight_variable([4, 4, dims[index], dims[index + 1]],
                                          name="W_%d" % index)
                b = tf.zeros([dims[index + 1]])
                h_conv = utils.conv2d_strided(h, W, b)
                if skip_bn:
                    h_bn = h_conv
                    skip_bn = False
                else:
                    #d_bn = ops.batch_norm(name='d_bn{0}'.format(index))
                    h_bn = d_bn(h_conv, train=train_phase)

                h = activation(h_bn, name="h_%d" % index)
                utils.add_activation_summary(h)

            W_pred = utils.weight_variable([4, 4, dims[-2], dims[-1]],
                                           name="W_pred")
            b = tf.zeros([dims[-1]])
            h_pred = utils.conv2d_strided(h, W_pred, b)
        return None, h_pred, None  # Return the last convolution output. None values are returned to maintatin disc from other GAN
Esempio n. 3
0
def build_graph():
    x_origin = tf.reshape(x, [-1, 3, 11, 1])
    x_origin_noise = tf.reshape(x_noise, [-1, 3, 11, 1])

    W_e_conv1 = weight_variable([5, 5, 1, 16], "w_e_conv1")
    b_e_conv1 = bias_variable([16], "b_e_conv1")
    print(conv2d(x_origin_noise, W_e_conv1).get_shape())
    h_e_conv1 = tf.nn.relu(tf.add(conv2d(x_origin_noise, W_e_conv1),
                                  b_e_conv1))

    W_e_conv2 = weight_variable([5, 5, 16, 32], "w_e_conv2")
    b_e_conv2 = bias_variable([32], "b_e_conv2")
    h_e_conv2 = tf.nn.relu(tf.add(conv2d(h_e_conv1, W_e_conv2), b_e_conv2))

    code_layer = h_e_conv2
    print("code layer shape : %s" % h_e_conv2.get_shape())

    W_d_conv1 = weight_variable([5, 5, 16, 32], "w_d_conv1")
    #    output_shape_d_conv1 = tf.pack([tf.shape(x)[0], 14, 14, 16])
    output_shape_d_conv1 = tf.pack([tf.shape(x)[0], 1, 3, 32])
    h_d_conv1 = tf.nn.relu(deconv2d(h_e_conv2, W_d_conv1,
                                    output_shape_d_conv1))

    W_d_conv2 = weight_variable([5, 5, 1, 16], "w_d_conv2")
    b_d_conv2 = bias_variable([16], "b_d_conv2")
    #    output_shape_d_conv2 = tf.pack([tf.shape(x)[0], 3, 11, 1])
    output_shape_d_conv2 = tf.pack([tf.shape(x)[0], 2, 6, 16])
    h_d_conv2 = tf.nn.relu(deconv2d(h_d_conv1, W_d_conv2,
                                    output_shape_d_conv2))

    x_reconstruct = h_d_conv2
    print("reconstruct layer shape : %s" % x_reconstruct.get_shape())

    return x_origin, code_layer, x_reconstruct
Esempio n. 4
0
    def add_prediction_op(self):
        fs = [5, 5]  # filter sizes
        cs = [
            4, 40, 80
        ]  # cs[i] is output number of channels from layer i [where layer 0 is input layer]

        # First conv layer
        W_conv1 = utils.weight_variable([fs[0], cs[0], cs[1]])
        b_conv1 = utils.bias_variable([cs[1]])

        h_conv1 = utils.lrelu(utils.conv1d(self.x, W_conv1) + b_conv1)

        # Second conv layer
        W_conv2 = utils.weight_variable([fs[1], cs[1], cs[2]])
        b_conv2 = utils.bias_variable([cs[2]])

        h_conv2 = utils.lrelu(utils.conv1d(h_conv1, W_conv2) + b_conv2)

        # First fully connected layer. Reshape the convolution output to 1D vector
        W_fc1 = utils.weight_variable([self.config.strlen * cs[2], 1024])
        b_fc1 = utils.bias_variable([1024])

        h_conv2_flat = tf.reshape(h_conv2, [-1, self.config.strlen * cs[2]])
        h_fc1 = utils.lrelu(tf.matmul(h_conv2_flat, W_fc1) + b_fc1)

        # Dropout (should be added to earlier layers too...)
        h_fc1_drop = tf.nn.dropout(h_fc1, self.keep_prob)

        # Final fully-connected layer
        W_fc2 = utils.weight_variable([1024, 3])
        b_fc2 = utils.bias_variable([1])

        y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2

        return y_conv
Esempio n. 5
0
    def add_prediction_op(self):
        fs = [5, 5] # filter sizes
        cs = [4, 40, 80] # cs[i] is output number of channels from layer i [where layer 0 is input layer]

        # First conv layer
        W_conv1 = utils.weight_variable([fs[0], cs[0], cs[1]])
        b_conv1 = utils.bias_variable([cs[1]])

        h_conv1 = utils.lrelu(utils.conv1d(self.x, W_conv1) + b_conv1)

        # Second conv layer
        W_conv2 = utils.weight_variable([fs[1], cs[1], cs[2]])
        b_conv2 = utils.bias_variable([cs[2]])

        h_conv2 = utils.lrelu(utils.conv1d(h_conv1, W_conv2) + b_conv2)

        # First fully connected layer. Reshape the convolution output to 1D vector
        W_fc1 = utils.weight_variable([self.config.strlen * cs[2], 1024])
        b_fc1 = utils.bias_variable([1024])

        h_conv2_flat = tf.reshape(h_conv2, [-1, self.config.strlen * cs[2]])
        h_fc1 = utils.lrelu(tf.matmul(h_conv2_flat, W_fc1) + b_fc1)

        # Dropout (should be added to earlier layers too...)
        h_fc1_drop = tf.nn.dropout(h_fc1, self.keep_prob)

        # Final fully-connected layer
        W_fc2 = utils.weight_variable([1024, 1])
        b_fc2 = utils.bias_variable([1])

        y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
        y_out = tf.sigmoid(y_conv)
        is_zero = tf.clip_by_value(tf.reduce_sum(self.x), 0, 1) # basically will be 1 iff at least one entry of x is nonzero
        y_out = tf.multiply(y_out, is_zero)
        return y_out
Esempio n. 6
0
    def _generator(self, z, dims, train_phase, activation=tf.nn.relu, scope_name="generator"):
        N = len(dims)
        image_size = self.resized_image_size // (2 ** (N - 1))
        with tf.variable_scope(scope_name) as scope:
            W_z = utils.weight_variable([self.z_dim, dims[0] * image_size * image_size], name="W_z")
            b_z = utils.bias_variable([dims[0] * image_size * image_size], name="b_z")
            h_z = tf.matmul(z, W_z) + b_z
            h_z = tf.reshape(h_z, [-1, image_size, image_size, dims[0]])
            h_bnz = utils.batch_norm(h_z, dims[0], train_phase, scope="gen_bnz")
            h = activation(h_bnz, name='h_z')
            utils.add_activation_summary(h)

            for index in range(N - 2):
                image_size *= 2
                W = utils.weight_variable([5, 5, dims[index + 1], dims[index]], name="W_%d" % index)
                b = utils.bias_variable([dims[index + 1]], name="b_%d" % index)
                deconv_shape = tf.stack([tf.shape(h)[0], image_size, image_size, dims[index + 1]])
                h_conv_t = utils.conv2d_transpose_strided(h, W, b, output_shape=deconv_shape)
                h_bn = utils.batch_norm(h_conv_t, dims[index + 1], train_phase, scope="gen_bn%d" % index)
                h = activation(h_bn, name='h_%d' % index)
                utils.add_activation_summary(h)

            image_size *= 2
            W_pred = utils.weight_variable([5, 5, dims[-1], dims[-2]], name="W_pred")
            b_pred = utils.bias_variable([dims[-1]], name="b_pred")
            deconv_shape = tf.stack([tf.shape(h)[0], image_size, image_size, dims[-1]])
            h_conv_t = utils.conv2d_transpose_strided(h, W_pred, b_pred, output_shape=deconv_shape)
            pred_image = tf.nn.tanh(h_conv_t, name='pred_image')
            utils.add_activation_summary(pred_image)

        return pred_image
Esempio n. 7
0
    def _discriminator(self, input_images, dims, train_phase, activation=tf.nn.relu, scope_name="discriminator",
                       scope_reuse=False):
        N = len(dims)
        with tf.variable_scope(scope_name) as scope:
            if scope_reuse:
                scope.reuse_variables()
            h = input_images
            skip_bn = True  # First layer of discriminator skips batch norm
            for index in range(N - 2):
                W = utils.weight_variable([5, 5, dims[index], dims[index + 1]], name="W_%d" % index)
                b = utils.bias_variable([dims[index + 1]], name="b_%d" % index)
                h_conv = utils.conv2d_strided(h, W, b)
                if skip_bn:
                    h_bn = h_conv
                    skip_bn = False
                else:
                    h_bn = utils.batch_norm(h_conv, dims[index + 1], train_phase, scope="disc_bn%d" % index)
                h = activation(h_bn, name="h_%d" % index)
                utils.add_activation_summary(h)

            shape = h.get_shape().as_list()
            image_size = self.resized_image_size // (2 ** (N - 2))  # dims has input dim and output dim
            h_reshaped = tf.reshape(h, [self.batch_size, image_size * image_size * shape[3]])
            W_pred = utils.weight_variable([image_size * image_size * shape[3], dims[-1]], name="W_pred")
            b_pred = utils.bias_variable([dims[-1]], name="b_pred")
            h_pred = tf.matmul(h_reshaped, W_pred) + b_pred

        return tf.nn.sigmoid(h_pred), h_pred, h
Esempio n. 8
0
    def build(self, input, is_dropout=False):  #is_dropout 是否dropout
        # 卷积层1    cov 5*5 6
        W_conv1 = weight_variable([5, 5, tf.shape(input)[-1], 6])  #cov 5*5 6
        b_conv1 = bias_variable([6])
        h_conv1 = tf.nn.relu(conv2d(input, W_conv1) + b_conv1)
        h_pool1 = avg_pooling(h_conv1)
        # 卷积层2    cov 5*5 6
        W_conv2 = weight_variable([5, 5, 6, 6])
        b_conv2 = bias_variable([6])
        h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
        h_pool2 = avg_pooling(h_conv2)
        #全连接1    120
        W_fc1 = weight_variable([7 * 7 * 6, 120])  #卷积后图像大小
        b_fc1 = bias_variable([120])
        h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 6])  #需要将卷积后的拉伸为一列

        h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
        if is_dropout: h_fc1 = tf.nn.dropout(h_fc1, 0.5)
        # 全连接2  84
        W_fc2 = weight_variable([120, 84])  # 卷积后图像大小
        b_fc2 = bias_variable([84])
        h_fc2 = tf.nn.relu(tf.matmul(h_fc1, W_fc2) + b_fc2)
        if is_dropout: h_fc2 = tf.nn.dropout(h_fc2, 0.5)
        # output  10
        W_fc3 = weight_variable([84, 10])  # 卷积后图像大小
        b_fc3 = bias_variable([10])
        h_fc3 = tf.nn.relu(tf.matmul(h_fc2, W_fc3) + b_fc3)
        return h_fc3
Esempio n. 9
0
    def create_network(self):
        with tf.name_scope('Input'):
            self._x = tf.placeholder(tf.float32, shape=[None, 1024], name='X')
            self._y = tf.placeholder(tf.float32, shape=[None, 46], name='Y')
            self._keep_prob = tf.placeholder(tf.float32)

        channels1 = 16
        channels2 = 32
        channels3 = 64
        with tf.name_scope('LeNetConvPool_1'):
            input_image = tf.reshape(self._x, [-1, 32, 32, 1])
            out_image_layer1 = utils.le_net_conv_pool(
                input_image,
                input_channels=1,
                output_channels=channels1,
                conv_count=1)
            out_image_layer1_d = tf.nn.dropout(out_image_layer1,
                                               self._keep_prob)
        with tf.name_scope('LeNetConvPool_2'):
            out_image_layer2 = utils.le_net_conv_pool(
                out_image_layer1_d,
                input_channels=channels1,
                output_channels=channels2,
                conv_count=2)
            out_image_layer2_d = tf.nn.dropout(out_image_layer2,
                                               self._keep_prob)
        with tf.name_scope('LeNetConvPool_3'):
            out_image_layer3 = utils.le_net_conv_pool(
                out_image_layer2_d,
                input_channels=channels2,
                output_channels=channels3,
                conv_count=3)
            out_image_layer3_d = tf.nn.dropout(out_image_layer3,
                                               self._keep_prob)
        with tf.name_scope('FullConnect'):
            W_fc1 = utils.weight_variable([4 * 4 * channels3, 256], 'W_fc1')
            b_fc1 = utils.bias_variable([256], 'b_fc1')
            h_pool2_flat = tf.reshape(out_image_layer3_d,
                                      [-1, 4 * 4 * channels3])
            h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
            h_fc1_drop = tf.nn.dropout(h_fc1, self._keep_prob)
        with tf.name_scope('ReadoutLayer'):
            W_fc2 = utils.weight_variable([256, 46], 'W_fc2')
            b_fc2 = utils.bias_variable([46], 'b_fc2')
            self._y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
        with tf.name_scope('Train'):
            cross_entropy = tf.reduce_mean(-tf.reduce_sum(
                self._y * tf.log(tf.clip_by_value(self._y_conv, 1e-10, 1.0)),
                reduction_indices=[1]))
            self._train_step = tf.train.AdamOptimizer(
                FLAGS.learning_rate).minimize(cross_entropy)
            tf.scalar_summary('Cross Entropy', cross_entropy)
        with tf.name_scope('Accuracy'):
            correct_prediction = tf.equal(tf.argmax(self._y_conv, 1),
                                          tf.argmax(self._y, 1))
            self._accuracy = tf.reduce_mean(
                tf.cast(correct_prediction, tf.float32))
            tf.scalar_summary('Accuracy', self._accuracy)
        self.sess.run(tf.initialize_all_variables())
    def __init__(self, input_dim, hidden_dim, n_layers=1,
            stddev=1., bias_value=0.0):
        # bias value will only be applied to the hidden layers
        self.input_dim = input_dim
        self.hidden_dim = hidden_dim
        self.hidden_layers = []

        num_pairs = int((input_dim * (input_dim - 1)) / 2)
        pairs = [None] * num_pairs
        ctr = 0
        for u in range(input_dim):
            for v in range(u+1, input_dim):
                pairs[ctr] = np.array((u, v))
                ctr +=1


        with tf.variable_scope('pairs_mlp'):
            self.w_in_var = weight_variable((input_dim, num_pairs * hidden_dim),
                                   stddev / np.sqrt(hidden_dim),
                                   name='w_in')
            self.w_out_var = weight_variable((num_pairs * hidden_dim, input_dim),
                                    stddev / np.sqrt(hidden_dim),
                                    name='w_out')

            
            mask = np.zeros((input_dim, num_pairs * hidden_dim), dtype='float32')
            hid_to_hid_mask = np.zeros((num_pairs * hidden_dim, num_pairs * hidden_dim), dtype='float32')

            
            self.bias_hid = bias_variable((hidden_dim * num_pairs,), value=bias_value, name='bias_first_hid')
            self.bias_out = bias_variable((input_dim,), name='bias_out')


            for i in range(0, num_pairs * hidden_dim, hidden_dim):
                hid_to_hid_mask[i:i + hidden_dim, i:i + hidden_dim] = 1.0

            for j in range(num_pairs):
                    u = pairs[j][0]
                    v = pairs[j][1]
                    mask[u, (j*hidden_dim):((j+1)*hidden_dim)] = 1.0
                    mask[v, (j*hidden_dim):((j+1)*hidden_dim)] = 1.0


            self.hid_to_hid_mask = tf.convert_to_tensor(hid_to_hid_mask)
            self.in_out_mask = tf.convert_to_tensor(mask)
            self.w_in = self.w_in_var * self.in_out_mask # element by element
            self.w_out = self.w_out_var * tf.transpose(self.in_out_mask) # element by element
            
            for i in range(n_layers - 1):
                with tf.variable_scope('layer_' + str(i)):
                    w_hid = weight_variable((num_pairs * hidden_dim,
                                             num_pairs * hidden_dim),
                                             stddev / np.sqrt(hidden_dim))
                    b_hid = bias_variable((hidden_dim * num_pairs,),
                                          value=bias_value)
                    self.hidden_layers.append((w_hid * self.hid_to_hid_mask,
                                               b_hid))
    def add_prediction_op(self):
        fs = [5, 5] # filter sizes
        cs = [4, 40, 80] # cs[i] is output number of channels from layer i [where layer 0 is input layer]

        # First conv layer
        W_conv1 = utils.weight_variable([fs[0], cs[0], cs[1]])
        b_conv1 = utils.bias_variable([cs[1]])

        h_conv1 = utils.lrelu(utils.conv1d(self.x, W_conv1) + b_conv1)

        # Second conv layer
        W_conv2 = utils.weight_variable([fs[1], cs[1], cs[2]])
        b_conv2 = utils.bias_variable([cs[2]])

        h_conv2 = utils.lrelu(utils.conv1d(h_conv1, W_conv2) + b_conv2)

        # Conv layer on top of the coverage
        W_conv_coverage = utils.weight_variable([fs[0], 1, cs[2]])
        b_conv_coverage = utils.bias_variable([cs[2]])

        conv_c = tf.expand_dims(self.e, -1)
        #print(conv_c.shape, W_conv_coverage.shape, b_conv_coverage.shape)
        h_conv_coverage = utils.lrelu(utils.conv1d(conv_c, W_conv_coverage) + b_conv_coverage)

        h_concatenated = tf.concat([h_conv2, h_conv_coverage], axis = -1)
        # First fully connected layer. Reshape the convolution output to 1D vector

        orig_shape = h_concatenated.get_shape().as_list()
        flat_shape = np.prod(orig_shape[1:])
        new_shape = [-1,] + [flat_shape]
        h_concatenated_flat = tf.reshape(h_concatenated, new_shape)
        h_concat_drop = tf.nn.dropout(h_concatenated_flat, self.keep_prob)
        fc1_in = h_concatenated_flat.get_shape().as_list()[-1]
        W_fc1 = utils.weight_variable([fc1_in, 1024])
        b_fc1 = utils.bias_variable([1024])
        h_fc1 = utils.lrelu(tf.matmul(h_concat_drop, W_fc1) + b_fc1)

        # Fully-connected layer on top of the coverage
        #W_fc_coverage = utils.weight_variable([self.config.strlen, cs[2]])
        #b_fc_coverage = utils.bias_variable([cs[2]])

        #h_fc_coverage = tf.nn.relu(tf.matmul(self.e, W_fc_coverage) + b_fc_coverage)
        #h_concatenated = tf.concat([h_fc1, h_fc_coverage], axis = -1)

        # Dropout (should be added to earlier layers too...)
        #h_concatenated_drop = tf.nn.dropout(h_concatenated, self.keep_prob)
        h_fc1_drop = tf.nn.dropout(h_fc1, self.keep_prob)

        # Final fully-connected layer
        W_fc2 = utils.weight_variable([1024, 1])
        b_fc2 = utils.bias_variable([1])

        y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
        y_out = tf.sigmoid(y_conv)

        return y_out
Esempio n. 12
0
 def init_weights(self):
     """ Initialize all the trainable weights."""
     self.w_g0 = weight_variable((self.sensor_size, self.hg_size))
     self.b_g0 = bias_variable((self.hg_size, ))
     self.w_l0 = weight_variable((self.loc_dim, self.hl_size))
     self.b_l0 = bias_variable((self.hl_size, ))
     self.w_g1 = weight_variable((self.hg_size, self.g_size))
     self.b_g1 = bias_variable((self.g_size, ))
     self.w_l1 = weight_variable((self.hl_size, self.g_size))
     self.b_l1 = weight_variable((self.g_size, ))
Esempio n. 13
0
 def init_weights(self):
     """ Initialize all the trainable weights."""
     #G_image
     conv_filt = (64, 64, 128)
     self.w_c0 = weight_variable((5, 5, self.num_channels, conv_filt[0]))
     self.b_c0 = bias_variable((conv_filt[0], ))
     self.w_c1 = weight_variable((3, 3, conv_filt[0], conv_filt[1]))
     self.b_c1 = bias_variable((conv_filt[1], ))
     self.w_c2 = weight_variable((3, 3, conv_filt[1], conv_filt[2]))
     self.b_c2 = bias_variable((conv_filt[2], ))
     self.flat_dim = (self.coarse_size - 8)**2 * conv_filt[2]
     self.w_x0 = weight_variable((self.flat_dim, self.output_dim))
     self.b_x0 = bias_variable((self.output_dim, ))
Esempio n. 14
0
    def _generator(self,
                   z,
                   dims,
                   train_phase,
                   activation=tf.nn.relu,
                   scope_name="generator"):
        N = len(dims)
        image_size = self.resized_image_size // (2**(N - 1))
        with tf.variable_scope(scope_name) as scope:
            W_z = utils.weight_variable(
                [self.z_dim, dims[0] * image_size * image_size], name="W_z")
            h_z = tf.matmul(z, W_z)
            h_z = tf.reshape(h_z, [-1, image_size, image_size, dims[0]])
            # h_bnz = tf.contrib.layers.batch_norm(inputs=h_z, decay=0.9, epsilon=1e-5, is_training=train_phase,
            #                                      scope="gen_bnz")
            # h_bnz = utils.batch_norm(h_z, dims[0], train_phase, scope="gen_bnz")
            h_bnz = utils.batch_norm('gen_bnz', h_z, True, 'NHWC', train_phase)
            h = activation(h_bnz, name='h_z')
            utils.add_activation_summary(h)

            for index in range(N - 2):
                image_size *= 2
                W = utils.weight_variable([4, 4, dims[index + 1], dims[index]],
                                          name="W_%d" % index)
                b = tf.zeros([dims[index + 1]])
                deconv_shape = tf.stack(
                    [tf.shape(h)[0], image_size, image_size, dims[index + 1]])
                h_conv_t = utils.conv2d_transpose_strided(
                    h, W, b, output_shape=deconv_shape)
                # h_bn = tf.contrib.layers.batch_norm(inputs=h_conv_t, decay=0.9, epsilon=1e-5, is_training=train_phase,
                #                                     scope="gen_bn%d" % index)
                # h_bn = utils.batch_norm(h_conv_t, dims[index + 1], train_phase, scope="gen_bn%d" % index)
                h_bn = utils.batch_norm("gen_bn%d" % index, h_conv_t, True,
                                        'NHWC', train_phase)
                h = activation(h_bn, name='h_%d' % index)
                utils.add_activation_summary(h)

            image_size *= 2
            W_pred = utils.weight_variable([4, 4, dims[-1], dims[-2]],
                                           name="W_pred")
            b = tf.zeros([dims[-1]])
            deconv_shape = tf.stack(
                [tf.shape(h)[0], image_size, image_size, dims[-1]])
            h_conv_t = utils.conv2d_transpose_strided(
                h, W_pred, b, output_shape=deconv_shape)
            pred_image = tf.nn.tanh(h_conv_t, name='pred_image')
            utils.add_activation_summary(pred_image)

        return pred_image
Esempio n. 15
0
def UNet(x, keep_probability):
    layer1 = conv_block(x, 1)
    pool1 = utils.max_pool(layer1, 2)

    layer2 = conv_block(pool1, 2)
    pool2 = utils.max_pool(layer2, 2)

    layer3 = conv_block(pool2, 3)
    pool3 = utils.max_pool(layer3, 2)

    layer4 = conv_block(pool3, 4)
    #upsampling

    up5 = upsampling_bolck(layer3, layer4, 5)
    layer5 = conv_block(up5, 5)

    up6 = upsampling_bolck(layer2, layer5, 6)
    layer6 = conv_block(up6, 6)

    up7 = upsampling_bolck(layer1, layer6, 7)
    layer7 = conv_block(up7, 7)

    W6 = utils.weight_variable([1, 1, layer7.get_shape()[3].value, 1],
                               name='W6')
    b6 = utils.bias_variable([1], 'bias6')
    conv6_1 = utils.conv2d(layer7, W6, b6, 'conv_6')

    return conv6_1
Esempio n. 16
0
def LearningRegularizationOmitting(cv_left,
                                   cv_right,
                                   batch_size=1,
                                   F=32,
                                   D=192,
                                   H=256,
                                   W=512,
                                   SHARE=None):

    Y36relu_left = cv_left
    Y36relu_right = cv_right
    with tf.name_scope('Conv3d37'):
        with tf.variable_scope('params', reuse=SHARE):
            W37 = weight_variable((3, 3, 3, 1, 2 * F))
        output37shape = [batch_size, D, H, W, 1]
        Y37_left = conv3dt(Y36relu_left,
                           W37,
                           outputshape=output37shape,
                           stride=2)
        Y37_right = conv3dt(Y36relu_right,
                            W37,
                            outputshape=output37shape,
                            stride=2)

    return Y37_left, Y37_right
Esempio n. 17
0
def conv_layer(input, r_field, input_c, out_c, nr):
    W = utils.weight_variable([r_field, r_field, input_c, out_c],
                              name="W" + str(nr))
    b = utils.bias_variable([out_c], name="b" + str(nr))
    conv = utils.conv2d_basic(input, W, b, name="conv" + str(nr))
    relu = tf.nn.relu(conv, name="relu" + str(nr))
    return relu
Esempio n. 18
0
 def init_weights(self):
     """ Initialize all the trainable weights."""
     #G_image
     conv_filt = (64, 64, 128)
     self.w_c0 = weight_variable((5, 5, self.depth, conv_filt[0]))
     self.b_c0 = bias_variable((conv_filt[0], ))
     self.w_c1 = weight_variable((3, 3, conv_filt[0], conv_filt[1]))
     self.b_c1 = bias_variable((conv_filt[1], ))
     self.w_c2 = weight_variable((3, 3, conv_filt[1], conv_filt[2]))
     self.b_c2 = bias_variable((conv_filt[2], ))
     self.flat_dim = (self.win_size - 8)**2 * conv_filt[2]
     self.w_x0 = weight_variable((self.flat_dim, self.hg_size))
     self.b_x0 = bias_variable((self.hg_size, ))
     #G_loc
     self.w_l0 = weight_variable((self.loc_dim, self.hl_size))
     self.b_l0 = bias_variable((self.hl_size, ))
Esempio n. 19
0
def fcnLayer(x, keep_probability):
    w_size = 3
    h_size = 3

    layer_size = [128, 128, 64, 64, 64, 64, 64, 64, 64]

    # for i in range(len(layer_size)):
    x1 = singleLayer(x, w_size, h_size, layer_size[0], 1, keep_probability)
    x2 = singleLayer(x1, w_size, h_size, layer_size[1], 2, keep_probability)
    x3 = singleLayer(x2, w_size, h_size, layer_size[2], 3, keep_probability)
    x4 = singleLayer(x3, w_size, h_size, layer_size[3], 4, keep_probability)
    x5 = singleLayer(x4, w_size, h_size, layer_size[4], 5, keep_probability)

    # x6=singleLayer(x5,w_size,h_size,layer_size[5],6,keep_probability)
    # x7=singleLayer(x6,w_size,h_size,layer_size[6],7,keep_probability)
    # x8=singleLayer(x7,1,1,layer_size[7],8,keep_probability)
    # x9=singleLayer(x8,1,1,layer_size[8],9,keep_probability)

    # W_out = utils.weight_variable([1, 1, x6.get_shape()[3].value, 1], name='W_out')
    # b_out = utils.bias_variable([1], 'bias_out')
    # output = utils.conv2d(x6, W_out, b_out)
    #
    # W_out = utils.weight_variable([1, 1, x6.get_shape()[3].value, 1], name='W_out')
    # b_out = utils.bias_variable([1], 'bias_out')
    # output = utils.conv2d(x6, W_out, b_out)
    #
    W_out = utils.weight_variable([1, 1, x5.get_shape()[3].value, 1],
                                  name='W_out')
    b_out = utils.bias_variable([1], 'bias_out')
    output = utils.conv2d(x5, W_out, b_out, name='conv_out')
    # packet=[conv1,conv2,conv3,conv4,output]
    return output
Esempio n. 20
0
    def inference(self, flag):
        with tf.variable_scope('layers', reuse=flag) as layer_scope:
            with tf.variable_scope('stage1') as scope:
                kernel = utils.weight_variable([5, 5, 3, 32], name='weights')
                biases = utils.bias_variable([32], name='biases')
                conv1 = utils.conv2d(self.ph_image, kernel, biases)
                pool1 = tf.nn.max_pool(conv1,
                                       ksize=[1, 3, 3, 1],
                                       strides=[1, 2, 2, 1],
                                       padding='SAME',
                                       name='pool1')
                relu1 = tf.nn.relu(pool1, name=scope.name)
            with tf.variable_scope('stage2') as scope:
                kernel = utils.weight_variable([5, 5, 32, 32], name='weights')
                biases = utils.bias_variable([32], name='biases')
                conv2 = utils.conv2d(relu1, kernel, biases)
                relu2 = tf.nn.relu(conv2, name='relu2')
                pool2 = tf.nn.avg_pool(relu2,
                                       ksize=[1, 3, 3, 1],
                                       strides=[1, 2, 2, 1],
                                       padding='SAME',
                                       name=scope.name)
            with tf.variable_scope('stage3') as scope:
                kernel = utils.weight_variable([5, 5, 32, 64], name='weights')
                biases = utils.bias_variable([64], name='biases')
                conv3 = utils.conv2d(pool2, kernel, biases)
                relu3 = tf.nn.relu(conv3, name='relu3')
                pool3 = tf.nn.avg_pool(relu3,
                                       ksize=[1, 3, 3, 1],
                                       strides=[1, 2, 2, 1],
                                       padding='SAME',
                                       name=scope.name)

            dim = 1
            for d in pool3.get_shape()[1:].as_list():
                dim *= d
            reshape = tf.reshape(pool3, [-1, dim])

            with tf.variable_scope('fc1') as scope:
                weights = utils.weight_variable([dim, 64], name='weights')
                biases = utils.bias_variable([64], name='biases')
                fc1 = tf.matmul(reshape, weights) + biases
            with tf.variable_scope('fc2') as scope:
                weights = utils.weight_variable([64, 10], name='weights')
                biases = utils.bias_variable([10], name='biases')
                fc2 = tf.matmul(fc1, weights) + biases
        return fc2
Esempio n. 21
0
    def __init__(self,
                 input_dim,
                 hidden_dim,
                 n_layers=1,
                 stddev=1.,
                 bias_value=0.0):
        # bias value will only be applied to the hidden layers
        self.input_dim = input_dim
        self.hidden_dim = hidden_dim
        self.hidden_layers = []
        with tf.variable_scope('block_mlp'):
            self.w_in_var = weight_variable(
                (input_dim, input_dim * hidden_dim),
                stddev / np.sqrt(hidden_dim),
                name='w_in')
            self.w_out_var = weight_variable(
                (input_dim * hidden_dim, input_dim),
                stddev / np.sqrt(hidden_dim),
                name='w_out')
            mask = np.zeros((input_dim, input_dim * hidden_dim),
                            dtype='float32')
            hid_to_hid_mask = np.zeros(
                (input_dim * hidden_dim, input_dim * hidden_dim),
                dtype='float32')
            self.bias_hid = bias_variable((hidden_dim * input_dim, ),
                                          value=bias_value,
                                          name='bias_first_hid')
            self.bias_out = bias_variable((input_dim, ), name='bias_out')
            for i, row in enumerate(mask):
                row[i * hidden_dim:(i + 1) * hidden_dim] = 1.0

            for i in range(0, input_dim * hidden_dim, hidden_dim):
                hid_to_hid_mask[i:i + hidden_dim, i:i + hidden_dim] = 1.0

            self.hid_to_hid_mask = tf.convert_to_tensor(hid_to_hid_mask)
            self.in_out_mask = tf.convert_to_tensor(mask)
            self.w_in = self.w_in_var * self.in_out_mask
            self.w_out = self.w_out_var * tf.transpose(self.in_out_mask)
            for i in range(n_layers - 1):
                with tf.variable_scope('layer_' + str(i)):
                    w_hid = weight_variable(
                        (input_dim * hidden_dim, input_dim * hidden_dim),
                        stddev / np.sqrt(hidden_dim))
                    b_hid = bias_variable((hidden_dim * input_dim, ),
                                          value=bias_value)
                    self.hidden_layers.append(
                        (w_hid * self.hid_to_hid_mask, b_hid))
Esempio n. 22
0
def convLayer(x, layer):
    W = utils.weight_variable([3, 3, x.get_shape()[3].value, 64],
                              name='W%s' % layer)
    b = utils.bias_variable([64], 'bias%s' % layer)
    conv = utils.conv2d(x, W, b)
    conv = tf.nn.relu(conv)

    return conv
Esempio n. 23
0
    def _init_discriminator_variables(self):
        with tf.name_scope('discriminator'):
            with tf.name_scope('weights'):
                self._W_discr1 = weight_variable([5, 5, 3, 128])
                self._W_discr2 = weight_variable([5, 5, 128, 256])
                self._W_discr3 = weight_variable([5, 5, 256, 512])
                if self.discr_whole_image:
                    self._W_discr4 = weight_variable([5, 5, 512, 512])
                self._W_dfc = weight_variable([4 * 4 * 512, 1])

            with tf.name_scope('biases'):
                self._b_discr1 = bias_variable([128])
                self._b_discr2 = bias_variable([256])
                self._b_discr3 = bias_variable([512])
                if self.discr_whole_image:
                    self._b_discr4 = bias_variable([512])
                self._b_dfc = bias_variable([1])
Esempio n. 24
0
 def _fully_connected_layer(self):
     """
     Fully connected layer with 1024 neurons to allow processing of entire image.
     """
     W_fc1 = utils.weight_variable([7 * 7 * 64, 1024])
     b_fc1 = utils.bias_variable([1024])
     h_pool2_flat = tf.reshape(self._pool_layer_2, [-1, 7*7*64])
     h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
     return h_fc1
Esempio n. 25
0
 def _pool_layer_2(self):
     """
     Second pooling layer.
     """
     W_conv2 = utils.weight_variable([5, 5, 32, 64])
     b_conv2 = utils.bias_variable([64])
     h_conv2 = tf.nn.relu(utils.conv2d(self._pool_layer_1, W_conv2) + b_conv2)
     h_pool2 = utils.max_pool_2x2(h_conv2) # image size is 7 x 7
     return h_pool2
Esempio n. 26
0
    def classifier(self, x, phase_train, is_training=True, reuse=False):
        '''
		The end part of the deep network which takes in the extracted
		features and classifies them into digits

		'''
        with tf.variable_scope('classifier', reuse=reuse):
            with tf.name_scope('fc4'):
                W_fc2 = ut.weight_variable([256, 128], 'fc4_wt')
                b_fc2 = ut.bias_variable([128], 'fc4_bias')
                h_fc2 = tf.nn.relu(tf.matmul(x, W_fc2) + b_fc2)

            with tf.name_scope('fc5'):
                W_fc3 = ut.weight_variable([128, 4], 'fc5_wt')
                b_fc3 = ut.bias_variable([4], 'fc5 _bias')
                out = tf.matmul(h_fc2, W_fc3) + b_fc3

            return out
Esempio n. 27
0
	def _value_network(self, state):
		"""Builds the value network."""
		w1 = weight_variable([3, 3, 1, self.NUM_CONV_1_FILTERS], name='w1')
		b1 = bias_variable([self.NUM_CONV_1_FILTERS])
		conv1 = tf.nn.relu(conv2d(state, w1) + b1)

		w2 = weight_variable(
			[3, 3, self.NUM_CONV_1_FILTERS, self.NUM_CONV_2_FILTERS], name='w2')
		b2 = bias_variable([self.NUM_CONV_2_FILTERS])
		conv2 = tf.nn.relu(conv2d(conv1, w2) + b2)

		value_flattened = layers.flatten(conv2)

		w3 = weight_variable([value_flattened.get_shape().as_list()[1], 1], name='w3')
		b3 = bias_variable([1])
		value = tf.matmul(value_flattened, w3) + b3

		return value
Esempio n. 28
0
    def __init__(self,
                 input_layer,
                 input_layer_size,
                 num_classes,
                 scope=None,
                 **kwargs):
        if not hasattr(num_classes, "__len__"):
            num_classes = (num_classes, )

        # All splits are done via half-spaces, so there are always 2^k-1 output
        # nodes. We handle non-power-of-two nodes by keeping track of the buffer
        # sizes vs. the actual multinomial dimensions.
        self._num_classes = num_classes
        self._dim_sizes = [2**(int(np.ceil(np.log2(c)))) for c in num_classes]
        self._num_nodes = np.prod(
            self._dim_sizes) - 1  # flatten the density into a 1-d grid
        self._split_labels, self._split_masks = self.multinomial_split_masks()

        with tf.variable_scope(scope or type(self).__name__):
            self._labels = tf.placeholder(
                tf.float32, shape=[None, np.prod(self._num_classes)])
            W = weight_variable([input_layer_size, self._num_nodes])
            b = bias_variable([self._num_nodes])
            split_indices = tf.to_int32(tf.argmax(self._labels, 1))
            splits, z = tf.gather(self._split_labels,
                                  split_indices), tf.gather(
                                      self._split_masks, split_indices)

            # q is the value of the tree nodes
            # m is the value of the multinomial bins
            self._q = tf.reciprocal(1 +
                                    tf.exp(-(tf.matmul(input_layer, W) + b)))
            r = splits * tf.log(tf.clip_by_value(self._q, 1e-10, 1.0))
            s = (1 - splits) * tf.log(tf.clip_by_value(1 - self._q, 1e-10,
                                                       1.0))
            self._loss_function = tf.reduce_mean(
                -tf.reduce_sum(z * (r + s), axis=[1]))

            # Convert from multiscale output to multinomial output
            L, R = self.multiscale_splits_masks()
            q_tiles = tf.constant([1, np.prod(self._num_classes)])

            m = tf.map_fn(
                lambda q_i: self.multiscale_to_multinomial(q_i, L, R, q_tiles),
                self._q)

            # Reshape to the original dimensions of the density
            density_shape = tf.stack([tf.shape(self._q)[0]] +
                                     list(self._num_classes))
            self._density = tf.reshape(m, density_shape)

            self._cross_entropy = tf.reduce_mean(-tf.reduce_sum(
                self._labels * tf.log(tf.clip_by_value(m, 1e-10, 1.0)) +
                (1 - self._labels) *
                tf.log(tf.clip_by_value(1 - m, 1e-10, 1.0)),
                axis=[1]))
Esempio n. 29
0
 def _pool_layer_1(self):
     """
     First pooling layer.
     """
     W_conv1 = utils.weight_variable([5, 5, 1, 32])
     b_conv1 = utils.bias_variable([32])
     x_image = tf.reshape(self.image, [-1, 28, 28, 1])
     h_conv1 = tf.nn.relu(utils.conv2d(x_image, W_conv1) + b_conv1)
     h_pool1 = utils.max_pool_2x2(h_conv1) # image size is 14 x 14 here
     return h_pool1
Esempio n. 30
0
def bottleneck(x, layer, is_train):
    W1 = utils.weight_variable([1, 1, x.get_shape()[3].value, 64],
                               name='W%s_1' % layer)
    conv1 = utils.resConv2d(x, W1)
    # conv1 = tf.layers.batch_normalization(conv1, training=is_train)
    conv1 = tf.nn.relu(conv1)

    W2 = utils.weight_variable([3, 3, conv1.get_shape()[3].value, 64],
                               name='W%s_2' % layer)
    conv2 = utils.resConv2d(conv1, W2)
    # conv2 = tf.layers.batch_normalization(conv2, training=is_train)
    conv2 = tf.nn.relu(conv2)

    W3 = utils.weight_variable([1, 1, conv2.get_shape()[3].value, 64],
                               name='W%s_3' % layer)
    conv3 = utils.resConv2d(conv2, W3)
    # conv3 = tf.layers.batch_normalization(conv3, training=is_train)

    return conv3
def VAE(input_shape=[None, 784],
        n_components_encoder=200,
        n_components_decoder=200,
        n_hidden=20,
        continuous=False,
        denoising=False,
        debug=False):
    # %%
    # Input placeholder
    if debug:
        input_shape = [50, 784]
        x = tf.Variable(np.zeros((input_shape), dtype=np.float32))
    else:
        x = tf.placeholder(tf.float32, input_shape)

    print('* Input')
    print('X:', x.get_shape().as_list())

    # %%
    # Optionally apply noise
    if denoising:
        print('* Denoising')
        x_noise = corrupt(x)
    else:
        x_noise = x

    if continuous:
        activation = lambda x: tf.log(1 + tf.exp(x))
    else:
        activation = lambda x: tf.tanh(x)

    dims = x_noise.get_shape().as_list()
    n_features = dims[1]

    print('* Encoder')
    W_enc = weight_variable([n_features, n_components_encoder])
    b_enc = bias_variable([n_components_encoder])
    h_enc = activation(tf.matmul(x_noise, W_enc) + b_enc)
    print('in:', x_noise.get_shape().as_list(),
          'W_enc:', W_enc.get_shape().as_list(),
          'b_enc:', b_enc.get_shape().as_list(),
          'h_enc:', h_enc.get_shape().as_list())

    print('* Variational Autoencoder')
    W_mu = weight_variable([n_components_encoder, n_hidden])
    b_mu = bias_variable([n_hidden])

    W_log_sigma = weight_variable([n_components_encoder, n_hidden])
    b_log_sigma = bias_variable([n_hidden])

    z_mu = tf.matmul(h_enc, W_mu) + b_mu
    z_log_sigma = 0.5 * (tf.matmul(h_enc, W_log_sigma) + b_log_sigma)
    print('in:', h_enc.get_shape().as_list(),
          'W_mu:', W_mu.get_shape().as_list(),
          'b_mu:', b_mu.get_shape().as_list(),
          'z_mu:', z_mu.get_shape().as_list())
    print('in:', h_enc.get_shape().as_list(),
          'W_log_sigma:', W_log_sigma.get_shape().as_list(),
          'b_log_sigma:', b_log_sigma.get_shape().as_list(),
          'z_log_sigma:', z_log_sigma.get_shape().as_list())
    # %%
    # Sample from noise distribution p(eps) ~ N(0, 1)
    if debug:
        epsilon = tf.random_normal(
            [dims[0], n_hidden])
    else:
        epsilon = tf.random_normal(
            tf.pack([tf.shape(x)[0], n_hidden]))
    print('epsilon:', epsilon.get_shape().as_list())

    # Sample from posterior
    z = z_mu + tf.exp(z_log_sigma) * epsilon
    print('z:', z.get_shape().as_list())

    print('* Decoder')
    W_dec = weight_variable([n_hidden, n_components_decoder])
    b_dec = bias_variable([n_components_decoder])
    h_dec = activation(tf.matmul(z, W_dec) + b_dec)
    print('in:', z.get_shape().as_list(),
          'W_dec:', W_dec.get_shape().as_list(),
          'b_dec:', b_dec.get_shape().as_list(),
          'h_dec:', h_dec.get_shape().as_list())

    W_mu_dec = weight_variable([n_components_decoder, n_features])
    b_mu_dec = bias_variable([n_features])
    y = tf.nn.sigmoid(tf.matmul(h_dec, W_mu_dec) + b_mu_dec)
    print('in:', z.get_shape().as_list(),
          'W_mu_dec:', W_mu_dec.get_shape().as_list(),
          'b_mu_dec:', b_mu_dec.get_shape().as_list(),
          'y:', y.get_shape().as_list())

    W_log_sigma_dec = weight_variable([n_components_decoder, n_features])
    b_log_sigma_dec = bias_variable([n_features])
    y_log_sigma = 0.5 * (
        tf.matmul(h_dec, W_log_sigma_dec) + b_log_sigma_dec)
    print('in:', z.get_shape().as_list(),
          'W_log_sigma_dec:', W_log_sigma_dec.get_shape().as_list(),
          'b_log_sigma_dec:', b_log_sigma_dec.get_shape().as_list(),
          'y_log_sigma:', y_log_sigma.get_shape().as_list())

    # p(x|z)
    if continuous:
        log_px_given_z = tf.reduce_sum(
            -(0.5 * tf.log(2.0 * np.pi) + y_log_sigma) -
            0.5 * tf.square((x - y) / tf.exp(y_log_sigma)))
    else:
        log_px_given_z = tf.reduce_sum(
            x * tf.log(y) +
            (1 - x) * tf.log(1 - y))

    # d_kl(q(z|x)||p(z))
    # Appendix B: 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
    kl_div = 0.5 * tf.reduce_sum(
        1.0 + 2.0 * z_log_sigma - tf.square(z_mu) - tf.exp(2.0 * z_log_sigma))

    print('* Output')
    print('Y:', y.get_shape().as_list())

    loss = -(log_px_given_z + kl_div)

    return {'cost': loss, 'x': x, 'z': z, 'y': y}
def VAE(input_shape=[None, 784],
        n_filters=[],
        filter_sizes=[],
        n_hidden=512,
        n_code=64,
        activation=tf.nn.relu,
        denoising=False,
        convolutional=False,
        debug=False):
    # %%
    # Input placeholder
    if debug:
        input_shape = [50, 784]
        x = tf.Variable(np.zeros((input_shape), dtype=np.float32))
    else:
        x = tf.placeholder(tf.float32, input_shape)

    # %%
    # Optionally apply denoising autoencoder
    if denoising:
        x_noise = corrupt(x)
    else:
        x_noise = x

    # %%
    # ensure 2-d is converted to square tensor.
    if convolutional:
        if len(x.get_shape()) == 2:
            x_dim = np.sqrt(x_noise.get_shape().as_list()[1])
            if x_dim != int(x_dim):
                raise ValueError('Unsupported input dimensions')
            x_dim = int(x_dim)
            x_tensor = tf.reshape(
                x_noise, [-1, x_dim, x_dim, 1])
        elif len(x_noise.get_shape()) == 4:
            x_tensor = x_noise
        else:
            raise ValueError('Unsupported input dimensions')
    else:
        x_tensor = x
    current_input = x_tensor

    print('* Input')
    print('X:', current_input.get_shape().as_list())
    # %%
    # Build the encoder
    shapes = []
    print('* Encoder')
    for layer_i, n_input in enumerate(n_filters[:-1]):
        n_output = n_filters[layer_i + 1]
        shapes.append(current_input.get_shape().as_list())
        if convolutional:
            n_input = shapes[-1][3]
            W = weight_variable([
                filter_sizes[layer_i],
                filter_sizes[layer_i],
                n_input, n_output])
            b = bias_variable([n_output])
            output = activation(
                tf.add(tf.nn.conv2d(
                    current_input, W,
                    strides=[1, 2, 2, 1], padding='SAME'), b))
        else:
            W = weight_variable([n_input, n_output])
            b = bias_variable([n_output])
            output = activation(tf.matmul(current_input, W) + b)
        print('in:', current_input.get_shape().as_list(),
              'W:', W.get_shape().as_list(),
              'b:', b.get_shape().as_list(),
              'out:', output.get_shape().as_list())
        current_input = output

    dims = current_input.get_shape().as_list()
    if convolutional:
        # %%
        # Flatten and build latent layer as means and standard deviations
        size = (dims[1] * dims[2] * dims[3])
        if debug:
            flattened = tf.reshape(current_input, [dims[0], size])
        else:
            flattened = tf.reshape(current_input,
                                   tf.pack([tf.shape(x)[0], size]))
    else:
        size = dims[1]
        flattened = current_input

    print('* Reshape')
    print(current_input.get_shape().as_list(),
          '->', flattened.get_shape().as_list())

    print('* FC Layer')
    W_fc = weight_variable([size, n_hidden])
    b_fc = bias_variable([n_hidden])
    h = tf.nn.tanh(tf.matmul(flattened, W_fc) + b_fc)
    print('in:', current_input.get_shape().as_list(),
          'W_fc:', W_fc.get_shape().as_list(),
          'b_fc:', b_fc.get_shape().as_list(),
          'h:', h.get_shape().as_list())

    print('* Variational Autoencoder')
    W_mu = weight_variable([n_hidden, n_code])
    b_mu = bias_variable([n_code])

    W_sigma = weight_variable([n_hidden, n_code])
    b_sigma = bias_variable([n_code])

    mu = tf.matmul(h, W_mu) + b_mu
    log_sigma = tf.mul(0.5, tf.matmul(h, W_sigma) + b_sigma)
    print('in:', h.get_shape().as_list(),
          'W_mu:', W_mu.get_shape().as_list(),
          'b_mu:', b_mu.get_shape().as_list(),
          'mu:', mu.get_shape().as_list())
    print('in:', h.get_shape().as_list(),
          'W_sigma:', W_sigma.get_shape().as_list(),
          'b_sigma:', b_sigma.get_shape().as_list(),
          'log_sigma:', log_sigma.get_shape().as_list())
    # %%
    # Sample from noise distribution p(eps) ~ N(0, 1)
    if debug:
        epsilon = tf.random_normal(
            [dims[0], n_code])
    else:
        epsilon = tf.random_normal(
            tf.pack([tf.shape(x)[0], n_code]))
    print('epsilon:', epsilon.get_shape().as_list())

    # Sample from posterior
    z = mu + tf.mul(epsilon, tf.exp(log_sigma))
    print('z:', z.get_shape().as_list())

    print('* Decoder')
    W_dec = weight_variable([n_code, n_hidden])
    b_dec = bias_variable([n_hidden])
    h_dec = tf.nn.relu(tf.matmul(z, W_dec) + b_dec)
    print('in:', z.get_shape().as_list(),
          'W_dec:', W_dec.get_shape().as_list(),
          'b_dec:', b_dec.get_shape().as_list(),
          'h_dec:', h_dec.get_shape().as_list())

    W_fc_t = weight_variable([n_hidden, size])
    b_fc_t = bias_variable([size])
    h_fc_dec = tf.nn.relu(tf.matmul(h_dec, W_fc_t) + b_fc_t)
    print('in:', h_dec.get_shape().as_list(),
          'W_fc_t:', W_fc_t.get_shape().as_list(),
          'b_fc_t:', b_fc_t.get_shape().as_list(),
          'h_fc_dec:', h_fc_dec.get_shape().as_list())

    if convolutional:
        if debug:
            h_tensor = tf.reshape(
                h_fc_dec, [dims[0], dims[1], dims[2], dims[3]])
        else:
            h_tensor = tf.reshape(
                h_fc_dec, tf.pack([tf.shape(x)[0], dims[1], dims[2], dims[3]]))
    else:
        h_tensor = h_fc_dec

    shapes.reverse()
    n_filters.reverse()

    print('* Reshape')
    print(h_fc_dec.get_shape().as_list(),
          '->', h_tensor.get_shape().as_list())

    ## %%
    ## Decoding layers
    current_input = h_tensor
    for layer_i, n_output in enumerate(n_filters[:-1][::-1]):
        n_input = n_filters[layer_i]
        n_output = n_filters[layer_i + 1]
        shape = shapes[layer_i]
        if convolutional:
            W = weight_variable([
                    filter_sizes[layer_i],
                    filter_sizes[layer_i],
                    n_output, n_input])
            b = bias_variable([n_output])
            if debug:
                output = activation(tf.add(
                    tf.nn.deconv2d(
                        current_input, W,
                        shape,
                        strides=[1, 2, 2, 1], padding='SAME'), b))
            else:
                output = activation(tf.add(
                    tf.nn.deconv2d(
                        current_input, W,
                        tf.pack(
                            [tf.shape(x)[0], shape[1], shape[2], shape[3]]),
                        strides=[1, 2, 2, 1], padding='SAME'), b))
        else:
            W = weight_variable([n_input, n_output])
            b = bias_variable([n_output])
            output = activation(tf.matmul(current_input, W) + b)
        print('in:', current_input.get_shape().as_list(),
              'W:', W.get_shape().as_list(),
              'b:', b.get_shape().as_list(),
              'out:', output.get_shape().as_list())
        current_input = output

    # %%
    # Now have the reconstruction through the network
    y_tensor = current_input
    y = tf.reshape(y_tensor, tf.pack([tf.shape(x)[0], input_shape[1]]))

    print('* Output')
    print('Y:', y_tensor.get_shape().as_list())

    # %%
    # Log Prior: D_KL(q(z|x)||p(z))
    # Equation 10
    prior_loss = 0.5 * tf.reduce_sum(
        1.0 + 2.0 * log_sigma - tf.pow(mu, 2.0) - tf.exp(2.0 * log_sigma))

    # Reconstruction Cost
    recon_loss = tf.reduce_sum(tf.abs(y_tensor - x_tensor))

    # Total cost
    loss = recon_loss - prior_loss

    # log_px_given_z = normal2(x, mu, log_sigma)
    # loss = (log_pz + log_px_given_z - log_qz_given_x).sum()

    return {'cost': loss, 'x': x, 'z': z, 'y': y}
def VAE(input_shape=[None, 784],
        n_components_encoder=2048,
        n_components_decoder=2048,
        n_hidden=2,
        debug=False):
    # %%
    # Input placeholder
    if debug:
        input_shape = [50, 784]
        x = tf.Variable(np.zeros((input_shape), dtype=np.float32))
    else:
        x = tf.placeholder(tf.float32, input_shape)

    activation = tf.nn.softplus

    dims = x.get_shape().as_list()
    n_features = dims[1]

    W_enc1 = weight_variable([n_features, n_components_encoder])
    b_enc1 = bias_variable([n_components_encoder])
    h_enc1 = activation(tf.matmul(x, W_enc1) + b_enc1)

    W_enc2 = weight_variable([n_components_encoder, n_components_encoder])
    b_enc2 = bias_variable([n_components_encoder])
    h_enc2 = activation(tf.matmul(h_enc1, W_enc2) + b_enc2)

    W_enc3 = weight_variable([n_components_encoder, n_components_encoder])
    b_enc3 = bias_variable([n_components_encoder])
    h_enc3 = activation(tf.matmul(h_enc2, W_enc3) + b_enc3)

    W_mu = weight_variable([n_components_encoder, n_hidden])
    b_mu = bias_variable([n_hidden])

    W_log_sigma = weight_variable([n_components_encoder, n_hidden])
    b_log_sigma = bias_variable([n_hidden])

    z_mu = tf.matmul(h_enc3, W_mu) + b_mu
    z_log_sigma = 0.5 * (tf.matmul(h_enc3, W_log_sigma) + b_log_sigma)

    # %%
    # Sample from noise distribution p(eps) ~ N(0, 1)
    if debug:
        epsilon = tf.random_normal(
            [dims[0], n_hidden])
    else:
        epsilon = tf.random_normal(
            tf.pack([tf.shape(x)[0], n_hidden]))

    # Sample from posterior
    z = z_mu + tf.exp(z_log_sigma) * epsilon

    W_dec1 = weight_variable([n_hidden, n_components_decoder])
    b_dec1 = bias_variable([n_components_decoder])
    h_dec1 = activation(tf.matmul(z, W_dec1) + b_dec1)

    W_dec2 = weight_variable([n_components_decoder, n_components_decoder])
    b_dec2 = bias_variable([n_components_decoder])
    h_dec2 = activation(tf.matmul(h_dec1, W_dec2) + b_dec2)

    W_dec3 = weight_variable([n_components_decoder, n_components_decoder])
    b_dec3 = bias_variable([n_components_decoder])
    h_dec3 = activation(tf.matmul(h_dec2, W_dec3) + b_dec3)

    W_mu_dec = weight_variable([n_components_decoder, n_features])
    b_mu_dec = bias_variable([n_features])
    y = tf.nn.tanh(tf.matmul(h_dec3, W_mu_dec) + b_mu_dec)

    # p(x|z)
    log_px_given_z = -tf.reduce_sum(
        x * tf.log(y + 1e-10) +
        (1 - x) * tf.log(1 - y + 1e-10), 1)

    # d_kl(q(z|x)||p(z))
    # Appendix B: 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
    kl_div = -0.5 * tf.reduce_sum(
        1.0 + 2.0 * z_log_sigma - tf.square(z_mu) - tf.exp(2.0 * z_log_sigma),
        1)
    loss = tf.reduce_mean(log_px_given_z + kl_div)

    return {'cost': loss, 'x': x, 'z': z, 'y': y}
def VAE(input_shape=[None, 784],
        n_filters=[1, 64, 128, 128],
        filter_sizes=[3, 3, 3, 3],
        n_hidden=512,
        n_code=2,
        activation=tf.nn.relu,
        convolutional=True,
        debug=False):
    # %%
    # Input placeholder
    if debug:
        input_shape = [50, 784]
        x = tf.Variable(np.zeros((input_shape), dtype=np.float32))
    else:
        x = tf.placeholder(tf.float32, input_shape, 'x')

    # %%
    # ensure 2-d is converted to square tensor.
    if convolutional:
        if len(x.get_shape()) == 2:
            x_dim = np.sqrt(x.get_shape().as_list()[1])
            if x_dim != int(x_dim):
                raise ValueError('Unsupported input dimensions')
            x_dim = int(x_dim)
            x_tensor = tf.reshape(
                x, [-1, x_dim, x_dim, 1])
        elif len(x.get_shape()) == 4:
            x_tensor = x
        else:
            raise ValueError('Unsupported input dimensions')
    else:
        x_tensor = x
    current_input = x_tensor

    print('* Input')
    print('X:', current_input.get_shape().as_list())

    # %%
    # Build the encoder
    shapes = []
    print('* Encoder')
    for layer_i, n_input in enumerate(n_filters[:-1]):
        n_output = n_filters[layer_i + 1]
        shapes.append(current_input.get_shape().as_list())
        if convolutional:
            n_input = shapes[-1][3]
            W = weight_variable([
                filter_sizes[layer_i],
                filter_sizes[layer_i],
                n_input, n_output])
            b = bias_variable([n_output])
            output = activation(
                tf.add(tf.nn.conv2d(
                    current_input, W,
                    strides=[1, 2, 2, 1], padding='SAME'), b))
        else:
            W = weight_variable([n_input, n_output])
            b = bias_variable([n_output])
            output = activation(tf.matmul(current_input, W) + b)

        print('in:', current_input.get_shape().as_list(),
              'W:', W.get_shape().as_list(),
              'b:', b.get_shape().as_list(),
              'out:', output.get_shape().as_list())
        current_input = output

    dims = current_input.get_shape().as_list()
    if convolutional:
        # %%
        # Flatten and build latent layer as means and standard deviations
        size = (dims[1] * dims[2] * dims[3])
        flattened = tf.reshape(current_input, [dims[0], size]
                               if debug else tf.pack([tf.shape(current_input)[0], size]))

    else:
        size = dims[1]
        flattened = current_input

    print('* Reshape')
    print(current_input.get_shape().as_list(),
          '->', flattened.get_shape().as_list())

    print('* FC Layer')
    W_fc = weight_variable([size, n_hidden])
    b_fc = bias_variable([n_hidden])
    h = activation(tf.matmul(flattened, W_fc) + b_fc)

    print('in:', current_input.get_shape().as_list(),
          'W_fc:', W_fc.get_shape().as_list(),
          'b_fc:', b_fc.get_shape().as_list(),
          'h:', h.get_shape().as_list())

    print('* Variational Autoencoder')
    W_mu = weight_variable([n_hidden, n_code])
    b_mu = bias_variable([n_code])

    W_sigma = weight_variable([n_hidden, n_code])
    b_sigma = bias_variable([n_code])

    z_mu = tf.matmul(h, W_mu) + b_mu
    z_log_sigma = 0.5 * tf.matmul(h, W_sigma) + b_sigma

    print('in:', h.get_shape().as_list(),
          'W_mu:', W_mu.get_shape().as_list(),
          'b_mu:', b_mu.get_shape().as_list(),
          'mu:', z_mu.get_shape().as_list())
    print('in:', h.get_shape().as_list(),
          'W_sigma:', W_sigma.get_shape().as_list(),
          'b_sigma:', b_sigma.get_shape().as_list(),
          'log_sigma:', z_log_sigma.get_shape().as_list())
    # %%
    # Sample from noise distribution p(eps) ~ N(0, 1)
    if debug:
        epsilon = tf.random_normal(
            [dims[0], n_code])
    else:
        epsilon = tf.random_normal(
            tf.pack([tf.shape(x)[0], n_code]))

    # Sample from posterior
    z = z_mu + tf.mul(epsilon, tf.exp(z_log_sigma))

    print('z:', z.get_shape().as_list())

    print('* Decoder')

    W_dec = weight_variable([n_code, n_hidden])
    b_dec = bias_variable([n_hidden])
    h_dec = activation(tf.matmul(z, W_dec) + b_dec)

    print('in:', z.get_shape().as_list(),
          'W_dec:', W_dec.get_shape().as_list(),
          'b_dec:', b_dec.get_shape().as_list(),
          'h_dec:', h_dec.get_shape().as_list())

    W_fc_t = weight_variable([n_hidden, size])
    b_fc_t = bias_variable([size])
    h_fc_dec = activation(tf.matmul(h_dec, W_fc_t) + b_fc_t)

    print('in:', h_dec.get_shape().as_list(),
          'W_fc_t:', W_fc_t.get_shape().as_list(),
          'b_fc_t:', b_fc_t.get_shape().as_list(),
          'h_fc_dec:', h_fc_dec.get_shape().as_list())
    if convolutional:
        h_tensor = tf.reshape(
            h_fc_dec, [dims[0], dims[1], dims[2], dims[3]] if debug
            else tf.pack([tf.shape(h_dec)[0], dims[1], dims[2], dims[3]]))
    else:
        h_tensor = h_fc_dec

    shapes.reverse()
    n_filters.reverse()

    print('* Reshape')
    print(h_fc_dec.get_shape().as_list(),
          '->', h_tensor.get_shape().as_list())
    # %%
    # Decoding layers
    current_input = h_tensor
    for layer_i, n_output in enumerate(n_filters[:-1][::-1]):
        n_input = n_filters[layer_i]
        n_output = n_filters[layer_i + 1]
        shape = shapes[layer_i]
        if convolutional:
            W = weight_variable([
                filter_sizes[layer_i],
                filter_sizes[layer_i],
                n_output, n_input])
            b = bias_variable([n_output])
            output = activation(tf.add(
                tf.nn.conv2d_transpose(
                    current_input, W,
                    shape if debug else
                    tf.pack(
                        [tf.shape(current_input)[0], shape[1],
                         shape[2], shape[3]]),
                    strides=[1, 2, 2, 1], padding='SAME'), b))
        else:
            W = weight_variable([n_input, n_output])
            b = bias_variable([n_output])
            output = activation(tf.matmul(current_input, W) + b)
        print('in:', current_input.get_shape().as_list(),
              'W:', W.get_shape().as_list(),
              'b:', b.get_shape().as_list(),
              'out:', output.get_shape().as_list())
        current_input = output

    dec_flat = tf.reshape(
        current_input, tf.pack([tf.shape(current_input)[0], input_shape[1]]))

    # %%
    # An extra fc layer and nonlinearity
    W_fc_final = weight_variable([input_shape[1], input_shape[1]])
    b_fc_final = bias_variable([input_shape[1]])
    y = tf.nn.sigmoid(tf.matmul(dec_flat, W_fc_final) + b_fc_final)

    # p(x|z)
    log_px_given_z = -tf.reduce_sum(
        x * tf.log(y + 1e-10) +
        (1 - x) * tf.log(1 - y + 1e-10), 1)

    # d_kl(q(z|x)||p(z))
    # Appendix B: 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
    kl_div = -0.5 * tf.reduce_sum(
        1.0 + 2.0 * z_log_sigma - tf.square(z_mu) - tf.exp(2.0 * z_log_sigma),
        1)
    loss = tf.reduce_mean(log_px_given_z + kl_div)

    return {'cost': loss, 'x': x, 'z': z, 'y': y}