Esempio n. 1
0
def make_netx_graph_from_aid_groups(ibs,
                                    aids_list,
                                    only_reviewed_matches=True,
                                    invis_edges=None,
                                    ensure_edges=None,
                                    temp_nids=None,
                                    allow_directed=False):
    r"""
    Args:
        ibs (ibeis.IBEISController): image analysis api
        aids_list (list):

    Example:
        >>> # DISABLE_DOCTEST
        >>> from ibeis.viz.viz_graph import *  # NOQA
        >>> import ibeis
        >>> ibs = ibeis.opendb(defaultdb='testdb1')
        >>> aids_list = [[1, 2, 3, 4], [5, 6, 7]]
        >>> invis_edges = [(1, 5)]
        >>> only_reviewed_matches = True
        >>> graph = make_netx_graph_from_aid_groups(ibs, aids_list,
        >>>                                         only_reviewed_matches,
        >>>                                         invis_edges)
        >>> list(nx.connected_components(graph.to_undirected()))
    """
    #aids_list, nid_list = ibs.group_annots_by_name(aid_list)
    unique_aids = list(ut.flatten(aids_list))

    # grouped version
    unflat_edges = (list(itertools.product(aids, aids)) for aids in aids_list)
    aid_pairs = [tup for tup in ut.iflatten(unflat_edges) if tup[0] != tup[1]]
    aids1 = ut.get_list_column(aid_pairs, 0)
    aids2 = ut.get_list_column(aid_pairs, 1)

    if only_reviewed_matches:
        annotmatch_rowids = ibs.get_annotmatch_rowid_from_superkey(
            aids1, aids2)
        annotmatch_rowids = ut.filter_Nones(annotmatch_rowids)
        aids1 = ibs.get_annotmatch_aid1(annotmatch_rowids)
        aids2 = ibs.get_annotmatch_aid2(annotmatch_rowids)

    graph = make_netx_graph_from_aidpairs(ibs,
                                          aids1,
                                          aids2,
                                          unique_aids=unique_aids)

    if ensure_edges is not None:
        if ensure_edges == 'all':
            ensure_edges = list(ut.upper_diag_self_prodx(list(graph.nodes())))
        ensure_edges_ = []
        for edge in ensure_edges:
            edge = tuple(edge)
            redge = tuple(edge[::-1])  # HACK
            if graph.has_edge(*edge):
                ensure_edges_.append(edge)
                pass
                #nx.set_edge_attributes(graph, 'weight', {edge: .001})
            elif (not allow_directed) and graph.has_edge(*redge):
                ensure_edges_.append(redge)
                #nx.set_edge_attributes(graph, 'weight', {redge: .001})
                pass
            else:
                ensure_edges_.append(edge)
                #graph.add_edge(*edge, weight=.001)
                graph.add_edge(*edge)

    if temp_nids is None:
        unique_nids = ibs.get_annot_nids(list(graph.nodes()))
    else:
        # HACK
        unique_nids = [1] * len(list(graph.nodes()))
        #unique_nids = temp_nids

    nx.set_node_attributes(graph, 'nid', dict(zip(graph.nodes(), unique_nids)))

    import plottool as pt
    ensure_names_are_connected(graph, aids_list)

    # Color edges by nid
    color_by_nids(graph, unique_nids=unique_nids)
    if invis_edges:
        for edge in invis_edges:
            if graph.has_edge(*edge):
                nx.set_edge_attributes(graph, 'style', {edge: 'invis'})
                nx.set_edge_attributes(graph, 'invisible', {edge: True})
            else:
                graph.add_edge(*edge, style='invis', invisible=True)

    # Hack color images orange
    if ensure_edges:
        nx.set_edge_attributes(
            graph, 'color', {tuple(edge): pt.ORANGE
                             for edge in ensure_edges_})

    return graph
Esempio n. 2
0
def merge_viewpoint_graph():
    r"""
    CommandLine:
        python -m ibeis.scripts.specialdraw merge_viewpoint_graph --show

    Example:
        >>> # DISABLE_DOCTEST
        >>> from ibeis.scripts.specialdraw import *  # NOQA
        >>> result = merge_viewpoint_graph()
        >>> print(result)
        >>> ut.quit_if_noshow()
        >>> import plottool as pt
        >>> ut.show_if_requested()
    """
    import plottool as pt
    import ibeis
    import networkx as nx

    defaultdb = 'PZ_Master1'
    ibs = ibeis.opendb(defaultdb=defaultdb)

    #nids = None
    aids = ibs.get_name_aids(4875)
    ibs.print_annot_stats(aids)

    left_aids = ibs.filter_annots_general(aids, view='left')[0:3]
    right_aids = ibs.filter_annots_general(aids, view='right')
    right_aids = list(set(right_aids) - {14517})[0:3]
    back = ibs.filter_annots_general(aids, view='back')[0:4]
    backleft = ibs.filter_annots_general(aids, view='backleft')[0:4]
    backright = ibs.filter_annots_general(aids, view='backright')[0:4]

    right_graph = nx.DiGraph(ut.upper_diag_self_prodx(right_aids))
    left_graph = nx.DiGraph(ut.upper_diag_self_prodx(left_aids))
    back_edges = [
        tuple([back[0], backright[0]][::1]),
        tuple([back[0], backleft[0]][::1]),
    ]
    back_graph = nx.DiGraph(back_edges)

    # Let the graph be a bit smaller

    right_graph.edge[right_aids[1]][
        right_aids[2]]['constraint'] = ut.get_argflag('--constraint')
    left_graph.edge[left_aids[1]][left_aids[2]]['constraint'] = ut.get_argflag(
        '--constraint')

    #right_graph = right_graph.to_undirected().to_directed()
    #left_graph = left_graph.to_undirected().to_directed()
    nx.set_node_attributes(right_graph, 'groupid', 'right')
    nx.set_node_attributes(left_graph, 'groupid', 'left')

    #nx.set_node_attributes(right_graph, 'scale', .2)
    #nx.set_node_attributes(left_graph, 'scale', .2)
    #back_graph.node[back[0]]['scale'] = 2.3

    nx.set_node_attributes(back_graph, 'groupid', 'back')

    view_graph = nx.compose_all([left_graph, back_graph, right_graph])
    view_graph.add_edges_from([
        [backright[0], right_aids[0]][::-1],
        [backleft[0], left_aids[0]][::-1],
    ])
    pt.ensure_pylab_qt4()
    graph = graph = view_graph  # NOQA
    #graph = graph.to_undirected()

    nx.set_edge_attributes(graph, 'color', pt.DARK_ORANGE[0:3])
    #nx.set_edge_attributes(graph, 'color', pt.BLACK)
    nx.set_edge_attributes(graph, 'color',
                           {edge: pt.LIGHT_BLUE[0:3]
                            for edge in back_edges})

    #pt.close_all_figures();
    from ibeis.viz import viz_graph
    layoutkw = {
        'nodesep': 1,
    }
    viz_graph.viz_netx_chipgraph(ibs,
                                 graph,
                                 with_images=1,
                                 prog='dot',
                                 augment_graph=False,
                                 layoutkw=layoutkw)

    if False:
        """
        #view_graph = left_graph
        pt.close_all_figures(); viz_netx_chipgraph(ibs, view_graph, with_images=0, prog='neato')
        #viz_netx_chipgraph(ibs, view_graph, layout='pydot', with_images=False)
        #back_graph = make_name_graph_interaction(ibs, aids=back, with_all=False)

        aids = left_aids + back + backleft + backright + right_aids

        for aid, chip in zip(aids, ibs.get_annot_chips(aids)):
            fpath = ut.truepath('~/slides/merge/aid_%d.jpg' % (aid,))
            vt.imwrite(fpath, vt.resize_to_maxdims(chip, (400, 400)))

        ut.copy_files_to(, )

        aids = ibs.filterannots_by_tags(ibs.get_valid_aids(),
        dict(has_any_annotmatch='splitcase'))

        aid1 = ibs.group_annots_by_name_dict(aids)[252]
        aid2 = ibs.group_annots_by_name_dict(aids)[6791]
        aids1 = ibs.get_annot_groundtruth(aid1)[0][0:4]
        aids2 = ibs.get_annot_groundtruth(aid2)[0]

        make_name_graph_interaction(ibs, aids=aids1 + aids2, with_all=False)

        ut.ensuredir(ut.truthpath('~/slides/split/))

        for aid, chip in zip(aids, ibs.get_annot_chips(aids)):
            fpath = ut.truepath('~/slides/merge/aidA_%d.jpg' % (aid,))
            vt.imwrite(fpath, vt.resize_to_maxdims(chip, (400, 400)))
        """
    pass
Esempio n. 3
0
 def add_clique(graph, nodes, edgeattrs={}, nodeattrs={}):
     edge_list = ut.upper_diag_self_prodx(nodes)
     graph.add_edges_from(edge_list, **edgeattrs)
     return edge_list
Esempio n. 4
0
    def fix_duplicates(drive):
        r"""
        for every duplicate file passing a (eg avi) filter, remove the file
        that is in the smallest directory. On a tie use the smallest dpath.
        This will filter all duplicate files in a folder into a single folder.

        but... need to look at non-duplicates in that folder and decide if they
        should be moved as well.  So, should trigger on folders that have at
        least 50% duplicate.  Might not want to move curated folders.

        Example:
            cd ~/local/scripts
            >>> from register_files import *  # NOQA
            >>> dpaths = ut.get_argval('--drives', type_=list, default=['E:/'])#'D:/', 'E:/', 'F:/'])
            >>> drives = [Drive(root_dpath) for root_dpath in dpaths]
            >>> E = drive = drives[0]
            >>> #D, E, F = drives
        """
        print('Fixing Duplicates in %r' % (drive,))
        list_ = drive.fpath_hashX_list
        multiindex_dict_ = build_multindex(list_)
        duplicate_hashes = [
            key for key, val in six.iteritems(multiindex_dict_)
            if len(val) > 1
        ]
        duplicate_idxs = ut.dict_take(multiindex_dict_, duplicate_hashes)
        unflat_fpaths = ut.list_unflat_take(drive.fpath_list, duplicate_idxs)
        # Check if any dups have been removed
        still_exists = ut.unflat_map(exists, unflat_fpaths)
        unflat_idxs2 = ut.zipcompress(duplicate_idxs, still_exists)
        duplicate_idxs = [idxs for idxs in unflat_idxs2 if len(idxs) > 1]
        # Look at duplicate files
        unflat_fpaths = ut.list_unflat_take(drive.fpath_list, duplicate_idxs)
        unflat_sizes = ut.list_unflat_take(drive.fpath_bytes_list, duplicate_idxs)
        # Find highly coupled directories
        if True:
            coupled_dirs = []
            for fpaths in unflat_fpaths:
                #basedir = ut.longest_existing_path(commonprefix(fpaths))
                dirs = sorted(list(map(dirname, fpaths)))
                _list = list(range(len(dirs)))
                idxs = ut.upper_diag_self_prodx(_list)
                coupled_dirs.extend(list(map(tuple, ut.list_unflat_take(dirs, idxs))))
            hist_ = ut.dict_hist(coupled_dirs)
            coupled_idxs = ut.list_argsort(hist_.values())[::-1]
            most_coupled = ut.take(list(hist_.keys()), coupled_idxs[0:100])
            print('Coupled fpaths: ' + ut.list_str(most_coupled, nl=True))
        print('%d unique files are duplicated' % (len(unflat_sizes),))
        #print('Duplicate sizes: ' + ut.list_str(unflat_sizes[0:10], nl=True))
        #print('Duplicate fpaths: ' + ut.list_str(unflat_fpaths[0:10], nl=True))
        #print('Duplicate fpaths: ' + ut.list_str(unflat_fpaths[0::5], nl=True))
        print('Duplicate fpaths: ' + ut.list_str(unflat_fpaths, nl=True))
        # Find duplicate directories
        dpath_list = list(drive.dpath_to_fidx.keys())
        fidxs_list = ut.dict_take(drive.dpath_to_fidx, drive.dpath_list)
        #exists_list = list(map(exists, drive.fpath_list))
        #unflat_exists = ut.list_unflat_take(exists_list, fidxs_list)
        fname_registry = [basename(fpath) for fpath in drive.fpath_list]
        unflat_fnames = ut.list_unflat_take(fname_registry, fidxs_list)
        def unsorted_list_hash(list_):
            return ut.hashstr27(str(sorted(list_)))
        unflat_fname_sets = list(map(unsorted_list_hash, ut.ProgIter(unflat_fnames, freq=10000)))
        fname_based_duplicate_dpaths = []
        multiindex_dict2_ = build_multindex(unflat_fname_sets)
        fname_based_duplicate_hashes = [key for key, val in multiindex_dict2_.items() if len(val) > 1]
        print('#fname_based_duplicate_dpaths = %r' % (len(fname_based_duplicate_hashes),))
        fname_based_duplicate_didxs = ut.dict_take(multiindex_dict2_, fname_based_duplicate_hashes)
        fname_based_duplicate_dpaths = ut.list_unflat_take(dpath_list, fname_based_duplicate_didxs)
        print(ut.repr3(fname_based_duplicate_dpaths[0:10]))
Esempio n. 5
0
    def fix_duplicates(drive):
        r"""
        for every duplicate file passing a (eg avi) filter, remove the file
        that is in the smallest directory. On a tie use the smallest dpath.
        This will filter all duplicate files in a folder into a single folder.

        but... need to look at non-duplicates in that folder and decide if they
        should be moved as well.  So, should trigger on folders that have at
        least 50% duplicate.  Might not want to move curated folders.

        Example:
            cd ~/local/scripts
            >>> from register_files import *  # NOQA
            >>> dpaths = ut.get_argval('--drives', type_=list, default=['E:/'])#'D:/', 'E:/', 'F:/'])
            >>> drives = [Drive(root_dpath) for root_dpath in dpaths]
            >>> E = drive = drives[0]
            >>> #D, E, F = drives
        """
        print('Fixing Duplicates in %r' % (drive, ))
        list_ = drive.fpath_hashX_list
        multiindex_dict_ = build_multindex(list_)
        duplicate_hashes = [
            key for key, val in six.iteritems(multiindex_dict_) if len(val) > 1
        ]
        duplicate_idxs = ut.dict_take(multiindex_dict_, duplicate_hashes)
        unflat_fpaths = ut.list_unflat_take(drive.fpath_list, duplicate_idxs)
        # Check if any dups have been removed
        still_exists = ut.unflat_map(exists, unflat_fpaths)
        unflat_idxs2 = ut.zipcompress(duplicate_idxs, still_exists)
        duplicate_idxs = [idxs for idxs in unflat_idxs2 if len(idxs) > 1]
        # Look at duplicate files
        unflat_fpaths = ut.list_unflat_take(drive.fpath_list, duplicate_idxs)
        unflat_sizes = ut.list_unflat_take(drive.fpath_bytes_list,
                                           duplicate_idxs)
        # Find highly coupled directories
        if True:
            coupled_dirs = []
            for fpaths in unflat_fpaths:
                #basedir = ut.longest_existing_path(commonprefix(fpaths))
                dirs = sorted(list(map(dirname, fpaths)))
                _list = list(range(len(dirs)))
                idxs = ut.upper_diag_self_prodx(_list)
                coupled_dirs.extend(
                    list(map(tuple, ut.list_unflat_take(dirs, idxs))))
            hist_ = ut.dict_hist(coupled_dirs)
            coupled_idxs = ut.list_argsort(hist_.values())[::-1]
            most_coupled = ut.take(list(hist_.keys()), coupled_idxs[0:100])
            print('Coupled fpaths: ' + ut.repr2(most_coupled, nl=True))
        print('%d unique files are duplicated' % (len(unflat_sizes), ))
        #print('Duplicate sizes: ' + ut.repr2(unflat_sizes[0:10], nl=True))
        #print('Duplicate fpaths: ' + ut.repr2(unflat_fpaths[0:10], nl=True))
        #print('Duplicate fpaths: ' + ut.repr2(unflat_fpaths[0::5], nl=True))
        print('Duplicate fpaths: ' + ut.repr2(unflat_fpaths, nl=True))
        # Find duplicate directories
        dpath_list = list(drive.dpath_to_fidx.keys())
        fidxs_list = ut.dict_take(drive.dpath_to_fidx, drive.dpath_list)
        #exists_list = list(map(exists, drive.fpath_list))
        #unflat_exists = ut.list_unflat_take(exists_list, fidxs_list)
        fname_registry = [basename(fpath) for fpath in drive.fpath_list]
        unflat_fnames = ut.list_unflat_take(fname_registry, fidxs_list)

        def unsorted_list_hash(list_):
            return ut.hashstr27(str(sorted(list_)))

        unflat_fname_sets = list(
            map(unsorted_list_hash, ut.ProgIter(unflat_fnames, freq=10000)))
        fname_based_duplicate_dpaths = []
        multiindex_dict2_ = build_multindex(unflat_fname_sets)
        fname_based_duplicate_hashes = [
            key for key, val in multiindex_dict2_.items() if len(val) > 1
        ]
        print('#fname_based_duplicate_dpaths = %r' %
              (len(fname_based_duplicate_hashes), ))
        fname_based_duplicate_didxs = ut.dict_take(
            multiindex_dict2_, fname_based_duplicate_hashes)
        fname_based_duplicate_dpaths = ut.list_unflat_take(
            dpath_list, fname_based_duplicate_didxs)
        print(ut.repr3(fname_based_duplicate_dpaths[0:10]))
Esempio n. 6
0
def make_netx_graph_from_aid_groups(ibs, aids_list, only_reviewed_matches=True,
                                    invis_edges=None, ensure_edges=None,
                                    temp_nids=None, allow_directed=False):
    r"""
    Args:
        ibs (ibeis.IBEISController): image analysis api
        aids_list (list):

    Example:
        >>> # DISABLE_DOCTEST
        >>> from ibeis.viz.viz_graph import *  # NOQA
        >>> import ibeis
        >>> ibs = ibeis.opendb(defaultdb='testdb1')
        >>> aids_list = [[1, 2, 3, 4], [5, 6, 7]]
        >>> invis_edges = [(1, 5)]
        >>> only_reviewed_matches = True
        >>> graph = make_netx_graph_from_aid_groups(ibs, aids_list,
        >>>                                         only_reviewed_matches,
        >>>                                         invis_edges)
        >>> list(nx.connected_components(graph.to_undirected()))
    """
    #aids_list, nid_list = ibs.group_annots_by_name(aid_list)
    unique_aids = list(ut.flatten(aids_list))

    # grouped version
    unflat_edges = (list(itertools.product(aids, aids)) for aids in aids_list)
    aid_pairs = [tup for tup in ut.iflatten(unflat_edges) if tup[0] != tup[1]]
    aids1 = ut.get_list_column(aid_pairs, 0)
    aids2 = ut.get_list_column(aid_pairs, 1)

    if only_reviewed_matches:
        annotmatch_rowids = ibs.get_annotmatch_rowid_from_superkey(aids1, aids2)
        annotmatch_rowids = ut.filter_Nones(annotmatch_rowids)
        aids1 = ibs.get_annotmatch_aid1(annotmatch_rowids)
        aids2 = ibs.get_annotmatch_aid2(annotmatch_rowids)

    graph = make_netx_graph_from_aidpairs(ibs, aids1, aids2, unique_aids=unique_aids)

    if ensure_edges is not None:
        if ensure_edges == 'all':
            ensure_edges = list(ut.upper_diag_self_prodx(list(graph.nodes())))
        ensure_edges_ = []
        for edge in ensure_edges:
            edge = tuple(edge)
            redge = tuple(edge[::-1])  # HACK
            if graph.has_edge(*edge):
                ensure_edges_.append(edge)
                pass
                #nx.set_edge_attributes(graph, 'weight', {edge: .001})
            elif (not allow_directed) and graph.has_edge(*redge):
                ensure_edges_.append(redge)
                #nx.set_edge_attributes(graph, 'weight', {redge: .001})
                pass
            else:
                ensure_edges_.append(edge)
                #graph.add_edge(*edge, weight=.001)
                graph.add_edge(*edge)

    if temp_nids is None:
        unique_nids = ibs.get_annot_nids(list(graph.nodes()))
    else:
        # HACK
        unique_nids = [1] * len(list(graph.nodes()))
        #unique_nids = temp_nids

    nx.set_node_attributes(graph, 'nid', dict(zip(graph.nodes(), unique_nids)))

    import plottool as pt
    ensure_names_are_connected(graph, aids_list)

    # Color edges by nid
    color_by_nids(graph, unique_nids=unique_nids)
    if invis_edges:
        for edge in invis_edges:
            if graph.has_edge(*edge):
                nx.set_edge_attributes(graph, 'style', {edge: 'invis'})
                nx.set_edge_attributes(graph, 'invisible', {edge: True})
            else:
                graph.add_edge(*edge, style='invis', invisible=True)

    # Hack color images orange
    if ensure_edges:
        nx.set_edge_attributes(graph, 'color',
                               {tuple(edge): pt.ORANGE for edge in ensure_edges_})

    return graph
Esempio n. 7
0
 def add_clique(graph, nodes, edgeattrs={}, nodeattrs={}):
     edge_list = ut.upper_diag_self_prodx(nodes)
     graph.add_edges_from(edge_list, **edgeattrs)
     return edge_list
Esempio n. 8
0
def merge_viewpoint_graph():
    r"""
    CommandLine:
        python -m ibeis.scripts.specialdraw merge_viewpoint_graph --show

    Example:
        >>> # DISABLE_DOCTEST
        >>> from ibeis.scripts.specialdraw import *  # NOQA
        >>> result = merge_viewpoint_graph()
        >>> print(result)
        >>> ut.quit_if_noshow()
        >>> import plottool as pt
        >>> ut.show_if_requested()
    """
    import plottool as pt
    import ibeis
    import networkx as nx

    defaultdb = 'PZ_Master1'
    ibs = ibeis.opendb(defaultdb=defaultdb)

    #nids = None
    aids = ibs.get_name_aids(4875)
    ibs.print_annot_stats(aids)

    left_aids = ibs.filter_annots_general(aids, view='left')[0:3]
    right_aids = ibs.filter_annots_general(aids, view='right')
    right_aids = list(set(right_aids) - {14517})[0:3]
    back = ibs.filter_annots_general(aids, view='back')[0:4]
    backleft = ibs.filter_annots_general(aids, view='backleft')[0:4]
    backright = ibs.filter_annots_general(aids, view='backright')[0:4]

    right_graph = nx.DiGraph(ut.upper_diag_self_prodx(right_aids))
    left_graph = nx.DiGraph(ut.upper_diag_self_prodx(left_aids))
    back_edges = [
        tuple([back[0], backright[0]][::1]),
        tuple([back[0], backleft[0]][::1]),
    ]
    back_graph = nx.DiGraph(back_edges)

    # Let the graph be a bit smaller

    right_graph.edge[right_aids[1]][right_aids[2]]['constraint'] = ut.get_argflag('--constraint')
    left_graph.edge[left_aids[1]][left_aids[2]]['constraint'] = ut.get_argflag('--constraint')

    #right_graph = right_graph.to_undirected().to_directed()
    #left_graph = left_graph.to_undirected().to_directed()
    nx.set_node_attributes(right_graph, 'groupid', 'right')
    nx.set_node_attributes(left_graph, 'groupid', 'left')

    #nx.set_node_attributes(right_graph, 'scale', .2)
    #nx.set_node_attributes(left_graph, 'scale', .2)
    #back_graph.node[back[0]]['scale'] = 2.3

    nx.set_node_attributes(back_graph, 'groupid', 'back')

    view_graph = nx.compose_all([left_graph, back_graph, right_graph])
    view_graph.add_edges_from([
        [backright[0], right_aids[0]][::-1],
        [backleft[0], left_aids[0]][::-1],
    ])
    pt.ensure_pylab_qt4()
    graph = graph = view_graph  # NOQA
    #graph = graph.to_undirected()

    nx.set_edge_attributes(graph, 'color', pt.DARK_ORANGE[0:3])
    #nx.set_edge_attributes(graph, 'color', pt.BLACK)
    nx.set_edge_attributes(graph, 'color', {edge: pt.LIGHT_BLUE[0:3] for edge in back_edges})

    #pt.close_all_figures();
    from ibeis.viz import viz_graph
    layoutkw = {
        'nodesep': 1,
    }
    viz_graph.viz_netx_chipgraph(ibs, graph, with_images=1, prog='dot',
                                 augment_graph=False, layoutkw=layoutkw)

    if False:
        """
        #view_graph = left_graph
        pt.close_all_figures(); viz_netx_chipgraph(ibs, view_graph, with_images=0, prog='neato')
        #viz_netx_chipgraph(ibs, view_graph, layout='pydot', with_images=False)
        #back_graph = make_name_graph_interaction(ibs, aids=back, with_all=False)

        aids = left_aids + back + backleft + backright + right_aids

        for aid, chip in zip(aids, ibs.get_annot_chips(aids)):
            fpath = ut.truepath('~/slides/merge/aid_%d.jpg' % (aid,))
            vt.imwrite(fpath, vt.resize_to_maxdims(chip, (400, 400)))

        ut.copy_files_to(, )

        aids = ibs.filterannots_by_tags(ibs.get_valid_aids(),
        dict(has_any_annotmatch='splitcase'))

        aid1 = ibs.group_annots_by_name_dict(aids)[252]
        aid2 = ibs.group_annots_by_name_dict(aids)[6791]
        aids1 = ibs.get_annot_groundtruth(aid1)[0][0:4]
        aids2 = ibs.get_annot_groundtruth(aid2)[0]

        make_name_graph_interaction(ibs, aids=aids1 + aids2, with_all=False)

        ut.ensuredir(ut.truthpath('~/slides/split/))

        for aid, chip in zip(aids, ibs.get_annot_chips(aids)):
            fpath = ut.truepath('~/slides/merge/aidA_%d.jpg' % (aid,))
            vt.imwrite(fpath, vt.resize_to_maxdims(chip, (400, 400)))
        """
    pass